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Data generation and collection

To conduct our joint integrative analysis of human and mouse regulatory landscapes across
progenitor and mature blood cell types, we collected 404 data sets of epigenetic features related
to gene regulation and expression, 216 in human and 188 in mouse. These datasets (illustrated
in Figure 1 of the main text) are listed in Supplemental Table S1 along with metadata such as
source laboratory (consortia and individual laboratories), biosamples, the molecule ascertained,
and file IDs. The 404 data sets included 44 new ones that were generated for this work; these
are listed in Supplemental Table S2 along with information about the biosamples and molecules
ascertained. Many of the new data sets were for epigenetic features and RNA in the HUDEP1
cell line, which is Human Umbilical Cord Blood-Derived Erythroid Progenitor cell line 1 that

expresses gamma-globin upon induced differentiation.

Most data collected were from primary cell populations, and data from commonly used cell lines
were also included. Much of the epigenetic data for mature blood cell types in humans was
collected as mapped reads (human genome build GRCh38) in bigWig format from the data
portal for the BLUEPRINT Project (Martens and Stunnenberg 2013; Stunnenberg et al. 2016).
Additional data, including ATAC-seq for human progenitor cells (Corces et al. 2016), and the full
set of features in HUDEP1 (generated for this paper), HUDEP2 (Cheng et al. 2021; Qi et al.
2021), and K562 (The ENCODE Project Consortium et al. 2020) cell lines were collected as
sequencing reads and processed through the mapping pipelines described in a previous
VISION paper (Xiang et al. 2020b), mapping the reads to human genome build GRCh38.
Replicate data were obtained for most but not all features across the cell types, especially for
the human blood cell types (Supplemental Table S1), and integrative analysis was conducted
keeping the replicate sets separate for each cell type. The sequencing reads in the data for
mouse hematopoietic cells, both new and described previously, were mapped to mouse

genome build mm10 (Xiang et al. 2020b).



The epigenetic features studied here were associated with several processes in gene
expression and regulation. Chromatin accessibility is a general feature of almost all regulatory
elements, and it was measured by the Assay for Transposase Accessible Chromatin with high
throughput sequencing (ATAC-seq, Buenrostro et al. 2013; Corces et al. 2016) or by DNase-
seq (Thurman et al. 2012) for almost all cell types in both species. Available ChIP-seq data for
up to six histone modifications provided information related to different elements or processes in
gene expression, specifically H3K4me3 for promoters and H3K4me1 for enhancers (Birney et
al. 2007; Heintzman et al. 2007), H3K27ac for activation (Roh et al. 2005; Smith and Shilatifard
2014), H3K36me3 for transcriptional elongation (Li et al. 2002), H3K27me3 for repression by
the Polycomb repressor complex (Muller et al. 2002; Schwartz et al. 2006), and H3K9me3 for
heterochromatin (Padeken et al. 2022). ChiP-seq data on occupancy by the structural protein
CTCF associated with insulation (West et al. 2002) were available in many cell types. Bulk

RNA-seq data were collected for all cell types.

Different data sets on epigenetic features in K562 cells were used for the integrative analysis
and for the compilation of orthogonal annotations. Specifically, the CTCF ChlIP-seq data from
K562 cells used for the integration were ENCODE files ENCFFOO0YLW and ENCFFOOQYLY.
For the orthogonal annotations, we used the CTCF ChlP-seq peaks reported by an independent
laboratory (Pugacheva et al. 2015). Other data sets from K562 cells used in the compilation of

orthogonal annotations (see later section) were not used in the IDEAS integrative analysis.

The newly generated data utilized in this paper came from purified populations of mouse blood
cells and from human and mouse blood cell lines. Populations of primary blood cells were
purified from mouse bone marrow by cell sorting using distinctive panels of surface markers

listed in Supplemental Table S1. Cell lines included Human Umbilical Cord Blood-Derived



Erythroid Progenitor cell line 1, abbreviated HUDEP1, a mouse model of Gata7-deficient
erythroid progenitor cells (G1E), and a subclone of G1E cells conditionally rescued with a hybrid
GATA1-estrogen receptor protein (G1E-ER4). The latter cell line was induced for erythroid

maturation by treatment with 1x10® M estradiol for 24 hr (G1E-ER4+E2 cells).

The protocol for ChlP-seq followed previously published procedures (Cheng et al. 2009). In
general, approximately 2.5 x 107 cells were used for each immunoprecipitation. Cells were
cross-linked with 1% formaldehyde for 10 min at room temperature with rotation, and the
reaction was quenched with glycine at a final concentration of 125 mM. Cross-linked cells were
then lysed and resuspended in 2 mL of RIPA buffer and sonicated for 12 cycles with a Branson
250 sonifier (10 s on/90 s off for a total of 2 min of pulses with 20% output from the micro-tip) or
equivalent to obtain fragments of chromatin approximately 200-300 bp in size. Supernatants
were precleared by incubation with 200 uL of protein A/G agarose bead slurry (Thermo Fisher
Scientific, cat. #15918014) overnight at 4°C with rotation. Meanwhile, 12.5 ug of IP antibody
was incubated with 50 L of protein A/G agarose bead slurry in 1 mL of PBS overnight at 4°C
with rotation. Saved precleared chromatin (20 uL) was used as the input sample. Precleared
chromatin was incubated with the antibody—bead complex for 7 hr at 4°C with rotation. Cross-
linking of DNA was reversed by incubation with RNase A (1 ug/uL), proteinase K (0.2 mg/mL),
and 0.25 M NaCl overnight at 65°C. Immunoprecipitated DNA was purified using the Qiagen
PCR Extraction Kit and eluted with 20 uL of EB elution buffer. Sequencing libraries were
prepared using the NEBNext Ultra Il DNA Library Prep Kit (NEB, cat. #£7645) with TruSeq
adaptors. Libraries were sequenced on an lllumina system, either HiSeq 4000, HiSeq 2000, or

NextSeq 2000.

The protocol for RNA-seq followed previously published procedures (Cheng et al. 2021; Qi et al.

2021). RNA was extracted from 1 million cells using the RNeasy Mini Kit (Qiagen). The TruSeq



Stranded mRNA Library Prep Kit (lllumina) was used to enrich for polyA+ RNA and to create

libraries for HiSeq2000 sequencing (lllumina).

Data normalization

The epigenomic data from multiple sources differed in many properties, including sequencing
depth, fraction of reads on target, and signal-to-noise ratio (Xiang et al. 2020a). To reduce the
impact of these technical differences, we used an improved version of the S3norm method,
called S3V2, to normalize and denoise all data sets. This normalization method was designed to
match the ranges of both signal intensities and variances across epigenetic datasets (Xiang et
al. 2021). In this procedure, we first generated a reference signal track for each epigenetic
feature by computing the mean signal of all data sets for that feature at each genomic location
(200 bp bins). Then, the peak means and the background non-zero means of the reference
signal tracks for the different epigenetic features were equalized by the S3norm method (Xiang
et al. 2020a). We then used these mean-adjusted references as the new reference signal tracks
for each epigenetic feature. For all datasets of the same epigenetic feature, we normalized their
signal against the reference signal track using the recently developed S3V2 method (Xiang et
al. 2021). The S3V2 version of the method was designed to adjust both the non-zero means
and the standard deviations of the background regions, so that it can better reduce background

noise in some data sets with higher variance at the background regions.

This adjustment produced a stronger and more consistent correlation by feature across cell

types, indicating that the denoising and normalization were effective (Supplemental Fig. S1).
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Supplemental Figure S1. Improved consistency of epigenetic signals after normalization and
denoising. The Pearson’s correlation coefficient for the signal intensity values for each
epigenetic feature in each human blood cell type (in 200 bp bins) across the human genome
(GRCh38) was computed, organized by hierarchical clustering, and displayed as these
heatmaps, with a stronger intensity of red meaning a higher positive correlation and blue
indicating a negative correlation. These correlations were computed before (A) and after (B)



normalization using the S3V2 method. The epigenetic features are labeled by different color
bars on the right side the heatmap. Most datasets clustered by epigenetic features across cell
types after normalization, whereas the groupings by feature were not as apparent prior to
normalization. For example, the box with dotted lines in panel A highlights datasets of
epigenetic features associated with different functions (H3K27me3, H3K9me3 and H3K27ac),
which form an unexpected group prior to normalization and then are grouped with other
datasets for those individual features after normalization and denoising. The clear separation
between active features and the repressive features after normalization and denoising by S3V2
indicated that this procedure can reduce false positive signals, which may increase the
correlation between sets of different features.

Joint systematic integration of human and mouse blood cell epigenomes by IDEAS
Strategy for the joint systematic integration

A powerful class of methods for integrative analysis of epigenomes involves statistical modeling
to discover frequently occurring combinations of epigenetic features, comprising epigenetic
states, and then assigning DNA intervals (often of 200 bp) to those states to produce regulatory
annotations across the genome. These segmentation and genome annotation (SAGA) methods
(Libbrecht et al. 2021) include ChromHMM (Ernst and Kellis 2012), Segway (Hoffman et al.
2012), and IDEAS (Zhang et al. 2016; Zhang and Hardison 2017). We employed IDEAS
because its simultaneous two-dimensional modeling along chromosomes and across cell types
provides a consistent and well-resolved annotation while leveraging epigenetic information from
locally related cell types when assigning states in cell types with missing data (Zhang and
Mahony 2019). Moreover, its Bayesian statistical framework allows the incorporation of
epigenetic models from different studies and even from different species. This latter feature was

critical to the joint modeling between species described here.

We conducted an iterative, joint training on the epigenomic data of both human and mouse
blood cells to ensure that the same set of epigenetic states was learned and applied for both

species. Previous studies showed that the epigenetic states uncovered by SAGA methods such



as ChromHMM (Ernst and Kellis 2012) were similar in both mouse and human (Yue et al. 2014;

Roadmap Epigenomics Consortium et al. 2015; Gorkin et al. 2020). Indeed, when the

epigenomic data from mouse or human were used separately as input to IDEAS, most of the

resulting states were shared between the species (Supplemental Fig. S2). The states specific to

human or mouse were often similar to the shared states but with small variations in one or more

epigenetic features; no clear evidence for a state specific to either species was found.
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Supplemental Figure S2. Similar epigenetic states learned by modeling data separately in
mouse and human blood cells. The profiles of epigenetic feature emissions from the epigenetic
states identified separately in human and mouse blood cells were compared and presented as a
heatmap organized by hierarchical clustering of the columns, with each column representing
one state learned in the modeling. The arrow at the bottom points to an example of a state
found only in one species; note that it is very similar to other states found in both species.

10



Methods for the joint systematic integration

The joint modeling began with a search for epigenetic states that exhibit similar combinatorial
patterns across different epigenetic features in both human and mouse, which we defined as
reproducible epigenetic states (illustrated in Figure 2A in main text). Initially, 200 sets of
epigenetic states were identified by IDEAS at 100 randomly selected, 50 MB regions from each
species, using the S3V2-IDEAS pipeline (Xiang et al. 2021) on both species. The IDEAS
method learns the number of states in each run. In practice, the number of states within each of
the 200 initial epigenetic state sets can be influenced by a fixed parameter, “mycut”, at line 472
of the “S3V2_IDEAS_ESMP/bin/IDEAS_2018/bin/ideaspipe.R” script in the IDEAS package.
The "mycut" parameter can range from 0 to 1, such that a larger "mycut" setting can decrease
the number of states within each set, and vice versa. For this study, the "mycut" value is set to
0.55. The 200 sets of epigenetic states contained 7,550 states, meaning that the average
number of states learned in each run was 37.75. The reproducible IDEAS states were selected
by an internal combineState function in the IDEAS pipeline. Intuitively, this function clusters the
200 sets of epigenetic states from the initial IDEAS runs into groups based on the Euclidean
distances between their average epigenetic features’ signal vectors using hierarchical
clustering. If an output cluster contains epigenetic states generated by more than a certain
proportion of the 200 sets, these states are merged to define a reproducible epigenetic state.
Here, we wanted to include as reproducible states not only those found at high frequency in all
the runs on data from both species but also those that were either highly reproducible in one
species and also found in the other species or those that were moderately reproducible in both
species. By requiring that a state appear in at least 52% of the 200 runs, we ensured that the
collected states included the latter two categories. This search led to the retention of 27

reproducible states (steps 1 and 2).
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Then, to analyze the full epigenomic information in each species, we used these 27
reproducible states as the priors for the distribution parameters in the two rounds of IDEAS runs
across the whole genomes of both species. The two rounds of IDEAS runs for the two species
were performed sequentially, alternating between human and mouse. After each round of
IDEAS run, the frequency, mean, and variance parameters for each epigenetic state were
updated, so that the information of the species at the current round was then integrated into the
next IDEAS run (steps 3a and 3b). We found that two rounds of whole genome IDEAS runs
were sufficient, since the mean squared error of the mutual nearest neighbors of epigenetic
states was very small when comparing human and mouse after the second round

(Supplemental Fig. S3).
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Supplemental Figure S3. The Mean Squared Errors (MSEs) of the Mutual Nearest Neighbor
epigenetic states observed in the following IDEAS runs pairs: Human_round1_VS_
Mouse_round1 (Hr1_Mr1), Mouse_round1_VS_ Human_round2 (Mr1_Hr2), and
Human_round2_VS_ Mouse_round2 (Hr2_Mr2).
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Two heterogenous states, identified by their coefficient of variance (Supplemental Fig. S4), were
removed, because such states previously had been observed to be composites of low

frequency states (Xiang et al. 2020b).
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Supplemental Figure S4. Variance in epigenetic signals in the states learned in intermediate
stages of the IDEAS models. (A) The emission profiles of an intermediate, 27-state model are
represented by different intensities of blue, with darker blue indicating a stronger signal. The two
states subsequently removed because of high variance, indicative of heterogeneous states, are
indicated by horizontal lines that are the beginnings of arrows. (B) and (C ) These heatmaps
show the coefficient of variance in signal levels of each epigenetic feature in each state across
all the genomic bins assigned to that state. Observing a low variance for signal strength in the
features for a given state indicates good consistency in the features characteristic of that state;
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this is the case for almost all the states shown. In contrast, states such as state 20 in both
species and state 26 in human, with high variance for one or multiple features, reflect
heterogeneity in the epigenetic profiles of the genomic intervals contained within them (Xiang et
al. 2020b) and were removed (indicated by the ends of arrows). State 26 was removed after the
IDEAS run on human data, and thus it is not present in the heatmap of variance for the mouse
data.

After the two rounds of IDEAS runs for the two species, a set of 25 epigenetic states (main
Figure 2B) were used as the final joint epigenetic states for both species. To assign these final
joint epigenetic states to each genomic location in each cell type in both species, another two
rounds of IDEAS runs for the two species were performed in parallel. The proportions of the
genomes covered by each state were similar in human and mouse (main Figure 2B). The
largest portions of the genomes were in the quiescent state 0, characterized by no significant
detectable contribution from any feature. Some of the input ATAC-seq data sets had particularly
high signal with low noise (e.g., for HUDEP cells and K562 cells) or relatively high noise
(neutrophils), based both on inspection of signal tracks and the calling of higher numbers of
peaks in those cell types compared to others (Supplemental Fig. S5). These high ATAC-seq
signals may have resulted in the frequent assignment of genomic intervals to state 5 (low
ATAC-seq signal alone, light mauve color, main Figure 2B and Supplemental Fig. S5) in

HUDEP cells, K562 cells, and human neutrophils (example locus shown in main Figure 2C).

14



A 120000
Human

100000

80000

60000

40000+

= — = (=
S =
20000-] I II.- IIII
] "=Reg
0l !! = = !!Ei:!-
C0BoTT oo SOONRN OCUBTITIISBYIOOSTOO Y ITOST®
=150 I":D | |OOOOOO | IOO(DNOOLOVQEO OOQOmOOoo
dar—52aa028859,/,/008888-~558¥2202e95533
mmmmooggﬂﬂﬂﬂﬁﬁ||ﬁﬂgg%wq2gngﬁﬂ||gﬁﬂ%%
EEE08 0 aaode s 2aee88. 38 80 EEBa 0
23322 OO0ITXI=SS3000XRw0n 0 €330 00y
IIIIOz QQ’_| | ww S-a4-4505
=Q OoFr =53 Z3
-
S=
B. 60000
Mouse

[ 1 [ —

- - QA - - v v rr QA -+ &
b 1 I T e [ [ 1o 10 e e o S 0 It s e S
A X J J o ¥X X 0o 0MZ X X o DONT T & W S < w w
S SWUWwsSsSSsSuw OZnmwnoomwo ﬁ(ﬂ>H3m C - -
oS =2=20F% = = -4 00 za .y Fguwwaodcao

i e Tz Lo

o W ow

Supplemental Figure S5. Numbers of cCREs assigned to each epigenetic state across cell
types. (A) The numbers of cCREs (y-axis) assigned to each epigenetic state in each human
blood cell type and replicate are indicated by the color distinctive for each state. The neutrophil
cCREs were not included because the very high noise in the ATAC-seq data led to many
apparently false positives in the peak calls. (B) Same analysis for mouse blood cell types.

Heterogeneous states and epigenetic states localized to specific regions of the genome

Some epigenetic states are concentrated primarily in specific locations of the genome. A
notable example is the combination of H3K36me3 and H3K9me3 found in chromatin containing
genes for zinc finger proteins. SAGA methods, including IDEAS, are designed to find

combinations of epigenetic features that consistently found across the genome, and thus
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uncovering such localized states is challenging. In the joint human-mouse IDEAS modeling
described here, no state with an exclusive combination of H3K36me3 and H3K9me3 was found
(Fig. 2B). However, our earlier work using IDEAS to integrate epigenetic data in mouse blood
cells did discover this state (Xiang et al. 2020b). Also, in our current work the IDEAS method
found a state comprised of H3K36me3 and H3K9me3 in both human and mouse. Examination
of an intermediate, 27-state model (Supplemental Fig. S4A) shows that state 20 has the
H3K36me3 + H3K9me3 profile. However, the H3K9me3 signal across bins assigned to this
state had high variance (Supplemental Fig. S4B), which led to its elimination as a
heterogeneous state, as described above. A similar state (also state 20) was learned in the
mouse data, but again, the high variance in the H3K9me3 signal led to its elimination (Suppl.

Fig. S4C).

We have observed that the high variance in signal for one or more features in the
heterogeneous states arises from the combining of sets of genomic bins with related but distinct
profiles of epigenetic features. While IDEAS and other SAGA methods are successful in
learning the abundant, dominant combinations of epigenetic features in their state models,
many other, less frequent combinations of features are in the epigenome and the modeling
eventually groups them into a heterogeneous state. These high variance, heterogeneous states
can be subdivided into component states using ad hoc procedures, but we have not developed
a systematic way to accomplish this task. Thus, the IDEAS method (and other SAGA methods)
can retain an epigenetic state that is limited to a subset of the genome as reproducible, but the
ability to do so is at the margins of the ability to distinguish consistent states from
heterogeneous ones. We suggest that the ability to systematically handle this challenge is an

open issue for SAGA methods.
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Limited impact of number of datasets on the portion of the genome assigned to each state in
each cell type

The analysis in Supplemental Fig. S5 gives some insight into the question of whether the
number of available datasets had an impact on the amount of the genome in each cell type
assigned to each state. The IDEAS method learns the distribution of epigenetic signals locally in
related cell types and uses that information in the inference of epigenetic states, even for cell
types with missing data (Zhang and Mahony 2019). Thus, we expected the missing data to not
have a large impact. The pattern of availability for epigenetic data in human cells provided some
leverage for examining this question further. Specifically, only ATAC-seq data were available for
most stem and progenitor cell types in human, as shown in main Fig. 1. If the missing data had
a strong impact on the assignment of chromatin states from IDEAS, then the stem and
progenitor cells should show a different distribution of states from those in mature cells, for
which the feature data was complete or almost complete. We specifically examined the
distribution of states in the cCREs. The results show that while the number of cCCREs does vary
considerably across cell types, the cCREs in each cell type, including the stem and progenitor
cells, are assigned to all the epigenetic states (Supplemental Fig. S5). For example, human
HSC, MPP, CMP, and GMP cells have roughly average numbers of actuated cCREs (from the
ATAC-seq data), and in each cell type those cCREs are assigned to a similar distribution of
states to those in many mature cell types, even though no histone modification or CTCF binding
data were included in the input to IDEAS. The broad range of state assignments for cCREs in
mouse CFUMK (Supplemental Fig. S5B), which also has only chromatin accessibility data (main
Fig. 1), also supports the limited impact of missing data on state assignments by IDEAS.
Despite this ability to handle missing data, we do point out that the state assignments for
epigenomes in human stem and progenitor cells may be less robust compared to those for

similar cell types in mouse.
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Prior use of BluePrint Consortium data for integrative sementation
An earlier publication used the BluePrint Consortium data on 91 blood cell types as input for a
segmentation using ChromHMM (Carrillo-de-Santa-Pau et al. 2017). The results are available at

http://ftp.ebi.ac.uk/pub/databases/blueprint/releases/current release/homo sapiens/secondary

analysis/Segmentation_of ChIP-Seq_data. Our IDEAS-based segmentation serves as a useful

complement to this earlier segmentation. The input data for the two SAGA methods had some
notable differences. The histone modifications were the same for the BluePrint data in both
SAGAs, but the IDEAS analysis also included ATAC-seq and CTCF ChlP-seq data. The input
data for the IDEAS analysis included replicates of datasets in selected blood cell types from
healthy donors to the BluePrint project, whereas the ChromHMM segmentation used data from
more cell types obtained from both healthy and diseased donors. The ChromHMM SAGA
modeled 12 states. The IDEAS SAGA learned more states, and many of them have similar
emission profiles to those learned by ChromHMM (for the epigenetic features used as input in
common), but the states can include more features and can have states distinguishing strong
from weak signals. The current IDEAS SAGA was conducted jointly in both human and mouse,

whereas the ChromHMM analysis was only human blood cells.

Prediction of VISION cCREs using IDEAS-IS

We define a candidate cis-regulatory element, or cCCRE, as a DNA interval with a high signal for
chromatin accessibility in any cell type (Xiang et al. 2020b). When peaks of accessibility are
called independently on different cell types and then combined across cell types, the genomic
intervals inferred as peaks can enlarge excessively unless special procedures are employed to
prevent expansion (Meuleman et al. 2020; The ENCODE Project Consortium et al. 2020). We
reasoned that this expansion could be avoided by using both a combination of all the chromatin
accessibility signals and the original data for each cell type as input for modeling across all

these datasets to call peaks. We utilized a version of the IDEAS methodology for this purpose,
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running it in the signal intensity state (IS) mode on ATAC-seq and DNase-seq signals only
(Xiang et al. 2021), in contrast to the epigenetic state mode used for integrating data on multiple

epigenetic features.

The input data for the peak calling were the ATAC-seq signals for each replicate of each cell
type plus a track of combined average ATAC-seq signal. This combined average was computed
by averaging the normalized ATAC-seq signal in 200 bp bins for each cell type, and then
averaging these values per bin for all cell types (Supplemental Fig. S6). IDEAS in the IS mode
learned four signal intensity states, with state 0 being no detectable signal and state 3 being the
highest signal state, which were then used to annotate the genomes of all cell types plus the
combined cell data. The peaks were called using a hierarchical process designed to find
genomic DNA intervals in the high signal intensity states, compared to the local background,
both in many cell types and in restricted sets of cell types (Supplemental Fig. S6). Specifically,
in the first step (1), the DNA bins in the higher signal states, compared to the local background,
in the average track were collected as peaks. If a contiguous series of bins was in higher signal
states, indicating a longer accessible region, only the bin(s) in the highest signal state were
called as peaks. In the second step (2), bins in a high signal state in individual cell types were
included in the set of peaks. The next two steps added bins in a lower signal state, but still
above the local background, as peaks, with step (3) adding such bins from the average signal
track and step (4) adding such bins from signal tracks from individual cells. Juxtaposed peak
calls were combined into a single peak. If replicate determinations were available for chromatin
accessibility in a given cell type, the peak call had to be replicated. This procedure resulted in a
collection of peak calls that included both peaks present in many cell types as well as those in a
single cell type. Furthermore, the preference given to the peaks in the average signal track

helped prevent excessive lengthening of the peak calls after combining them.
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We employed the same peak-calling procedure for the blood cell epigenomes of human as well
as mouse, resulting in 200,342 peaks of chromatin accessibility for human blood cell types and
96,084 peaks for mouse blood cell types; these cCREs are listed in Supplemental Table S3.
Unlike the set of accessibility peaks used in earlier work (Xiang et al. 2020b), which were called
using the HOMER program (Heinz et al. 2010), all of the IDEAS-IS peaks were in a non-
quiescent state in at least one cell type. Thus, the sets of IDEAS-IS peaks comprised the sets of
VISION cCREs. The larger number of cCREs called in human than in mouse resulted at least in
part from the very high signal in chromatin accessibility data from some human cell lines
(HUDEP1, HUDEP2, and K562) and cell types (e.g., monocytes; Supplemental Fig. S5). We
found that the ATAC-seq data sets for human neutrophils had an excessive level of noise, such
that some extremely long genomic regions were called as peaks. To prevent the noise from this
apparent false discovery from compromising further analysis, ATAC-seq peaks that were found
only in the human neutrophil data were removed from the set of human blood cell cCCREs. Thus,
while the human neutrophil ATAC-seq data were included in the joint IDEAS modeling, the peak

calls exclusive to human neutrophils were excluded from the 200,342 human blood cell cCREs.
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Supplemental Figure S6. Method for calling cCREs using S3V2-IDEAS in the IS mode. The
normalized ATAC-seq signals (expressed as the negative log10 p-value for fitting a negative
binomial distribution, signal range 0-10, 200bp bins) are shown for a selected subset of the 39
human biosamples plus the average signal track in an 11kb genomic interval around the
transcription start site (TSS) of the ITGB2B gene is shown (GRCh38 Chr17:44,384,001-
44,395,000). The signal intensity states learned by IDEAS in the IS mode are shown as shades
of violet (state O is white, darker shades represent higher signal states). Genomic intervals in
high signal states were called as peaks (yellow rectangles) in a four-step hierarchical process
designed to limit the peak calls to local maxima while also finding cell type-specific peaks (see
Methods). Peaks in this genomic region illustrate calls at steps 1, 2, and 4 of the hierarchical
process.
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Comparison of ATAC-seq peak calls between IDEAS-IS and MACS3

We compared the peak calls between IDEAS-IS and MACS3 (Zhang et al. 2008) on ATAC-seq
data from 36 experiments in human blood cells that were available in a form that could be
analyzed by both tools. Using these ATAC-seq data as input, the IDEAS pipeline operating in
the signal intensity state (IS) mode called fewer peaks (200,342 peaks) than did the MACS3
peak caller (277,064, Supplemental Fig. S7A). A majority of both peak sets overlapped, but the
MACS3 peak set has almost three times more peaks distinctive to it than did the IDEAS IS set.
The distribution of ATAC-seq signal strengths for the peaks called by both pipelines were
similar, but the MACS-only peaks tended to have lower signal strength (Supplemental Fig.
S7B). We compared the sets of peaks for their ability to capture orthogonal, function-associated
genomic intervals, such as sets of active and predicted enhancers and DNA segments bound by
co-activators and CTCF (described in the section “Annotation of VISION cCREs using
orthogonal datasets of elements”), and found that the peaks called by IDEAS_IS were
significantly more effective than those called by MACS3 (p-value = 2.384e-07; Paired Wilcoxon

test; Supplemental Figure S7C).
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Supplemental Figure S7. Comparison of ATAC-seq peak calls from IDEAS-IS and MACSS3. (A)
Overlap in peaks called by each method. (B) Comparison of ATAC-seq signal strength for
shared peaks shared and those returned by only one method. (C) Differences in ability of each
ATAC-seq peak set to capture elements in 11 orthogonal function-related sets. The fold change
(y-axis) is the ratio of number of peaks from the designated peak caller that overlaps with a set
of function-associated genomic intervals (11 different sets) to the number of randomly selected
matched genomic intervals that overlap with those function-associated sets. Those 11 values for
fold change are summarized as boxplots.
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Annotation of VISION cCREs using other datasets of elements

Comparison with other large catalogs of cCREs

The VISION human blood cell cCCREs were found to be a sub-set of two large collections of
cCREs predicted from ENCODE data on a much larger number of cell types (Supplemental Fig.
S8). These large collections were the 926,535 ENCODE cCREs provided in Supplemental
Table 10 of reference (The ENCODE Project Consortium et al. 2020) and the 3,591,898

elements in the Index of DNase hypersensitive sites from Meuleman et al. (2020).
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Supplemental Figure S8. VISION cCREs are supported by elements from ENCODE. (A)
Overlap of the human VISION cCREs with the Index of consensus DHSs (Meuleman et al.
2020) and CRE catalog from ENCODE phase 3 (The ENCODE Project Consortium et al. 2020),
displayed as an UpSet plot. (B) Enrichments in the three large cCRE catalogs for overlap with
orthogonal sets of elements indicative of regulatory function. Abbreviations are DHS = Index of
consensus DHSs, ENC = CRE catalog from ENCODE phase 3, VIS= VISION cCREs, ERY
EP300 = peaks for EP300 ChIP-seq in three erythroid cell types or lines (Supplemental Table
S5), Validated CREs = a curated set of human erythroid regulatory elements gathered from the
literature (Supplemental Table S4).

Annotation of VISION cCREs by overlap with elements defined by orthogonal data
Additional, orthogonal data sets that were not included in the prediction and epigenetic state
annotation of VISION cCREs, but which annotate potential roles of human genomic intervals in

transcriptional regulation (CREs) or in chromatin structure (chromatin architecture), were
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curated from the literature and associated databases. Details of these orthogonal data sets,
including references and data sources, are presented in Supplemental Table S5. The
organization of the data sets into supersets of elements related to CREs and related to structure

and genome architecture is illustrated in Supplemental Fig. S9A.
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Supplemental Figure S9. Relationships among orthogonal datasets of likely functional
elements, VISION cCREs, and ENCODE cCREs.

A. Orthogonal sets of regulatory and structural genomic elements. Organization into supersets
of elements is indicated on the right, along with the numbers of elements in each superset.
Additional information is in Supplemental Table S5. B. Venn diagram showing the overlaps of
the ENCODE cCRE catalog with the orthogonal data sets of elements related to cCRE function
or structure in chromatin (right) along with a comparison with Venn diagram using the VISION
cCREs (left, which is Fig. 3A).
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The orthogonal sets of CREs included TSSs from the GENCODE basic gene set (Frankish et al.
2021), peaks from the Survey of Regulatory Elements (SURE), which is a massively parallel
reporter assay that reveals both promoter and enhancer activity, in K562 cells (van Arensbergen
et al. 2017), unmasked CpG islands downloaded from UCSC genome browser (Nassar et al.
2023), and a group of enhancer-related elements. The latter group of enhancer-related
elements were a combination of three sets: (1) enhancers predicted from eRNAs in hundreds of
human cell types (Andersson et al. 2014;
https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/enhancer/), (2) a combined
set of EP300 ChIP-seq peaks from K562 and GM12878 cell lines (The ENCODE Project
Consortium et al. 2020) and erythroblasts (Su et al. 2013), and (3) the erythroid Enhancer
Repertoire deduced from histone modification data (Huang et al. 2016). While the Survey of
Regulatory Elements (SURE) is a massively parallel reporter assay designed to detect promoter
activity (van Arensbergen et al. 2017), many enhancers also generate a peak in this assay,
albeit weaker than those for promoters. The chromatin structure category included CTCF-
occupied DNA segments (CTCF OSs), chromatin loop anchors, and TAD boundaries in primary
blood cells and related cell lines. The set of CTCF OSs was generated by combining peaks from
ChlP-seq experiments in human fetal and adult erythroblasts (Huang et al. 2017), and from
K562, MM1S, Delta47, and GM12878 cell lines (Sanchez-Castillo et al. 2015; The ENCODE
Project Consortium et al. 2020). Loop anchors determined by HICCUPS from Hi-C data in K562
and GM12878 cell lines (Rao et al. 2014) were downloaded from GEO [accession GSE63525]
and combined. TAD boundaries were called by OnTAD (An et al. 2019) using Hi-C data at 10kb
resolution in K562 and GM12878 cell lines (Rao et al. 2014). Even though CTCF ChIP-seq data
were used both in the IDEAS epigenetic state modeling and in the structure-related datasets, no
CTCF ChiIP-seq dataset was used in both. Data for K562 CTCF ChlP-seq is in both collections,
but the orthogonal data came from Pugacheva et al. (2015) while the data used in the IDEAS

modeling came from the ENCODE consortium.
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Pairwise overlaps between these orthogonal sets of elements and the VISION cCREs were
computed using the bedtool intersect tool (-u option) (Quinlan and Hall 2010). Intersections
among multiple datasets were computed using the intervene tool, version 0.6.5 (Khan and
Mathelier 2017), and displayed in UpSet plots using the UpSetR package (Conway et al. 2017)
and 3-way Venn diagrams using the eulerr package (https://CRAN.R-

project.org/package=eulerr).

Ten different randomly chosen sets of human genomic DNA intervals, matched with the cCREs
in length and G+C content, were generated by the script in the following link

https://github.com/YenLab/Tn5InsertPrefer/blob/main/StandaloneScripts/Negetive sequence m

atched length. Enrichments of overlaps between the VISION cCREs relative to those in the
random set of intervals were determined by computing overlaps (using tools described above)
between the sets of function- and structure-related elements and each of the ten sets of random
intervals, dividing the number of overlapped cCREs by the number of overlapped random
intervals (ten times), and using the average of the ten quotients as the enrichment. All ten

results were shown in boxplots.

The catalog of cCREs released by ENCODE (The ENCODE Project Consortium et al. 2020)
contained about 920,000 cCREs in the human genome. This catalog was determined from
epigenetic data on a much larger and diverse set of cell types and cell lines compared to the
blood cell types examined in the VISION project. Thus, the size of the cCRE catalog was much
larger for ENCODE than for VISION. When that larger number of ENCODE cCREs was
intersected with the orthogonal sets of cCRE-related and structure-related cCREs, we find that
the ENCODE set overlapped with larger numbers of the orthogonally defined elements

compared to the overlaps by the VISION catalog, but a substantial number of the ENCODE
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cCREs (almost 520,000) did not overlap (Supplemental Fig. S9B). These results likely reflect
the larger number of cell types examined in ENCODE, most of which are distinct from the blood

cells that were the focus of the orthogonal sets.

Considering the VISION cCREs that intersected with both structure- and CRE-related elements,
the largest group are those that overlap with enhancers and CTCF OSs, followed by enhancers
and loop anchors, and then promoter-like elements and CTCF OSs (Supplemental Fig. S10).
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Supplemental Figure S10. Numbers and enrichment of VISION cCREs that overlap with both
structure and CRE-related elements

The human VISION human cCREs were also compared to two sets of known CREs (main Fig.
3E). One was a compilation of 109 demonstrated regulatory elements in blood cells from the
literature (Supplemental Table S4). The other set was 664 enhancers with target genes,
determined by a high throughput mutagenesis and eQTL analysis in K562 cells (Gasperini et al.

2019).
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Enrichment of genetic variants for blood cell related traits in the VISION human cCRE
collection

Overlaps of cCREs with trait-associated SNPs

Most genetic variants associated with complex phenotypes occur in noncoding regions of the
genome (Hindorff et al. 2009), and candidate regulatory elements are strongly enriched for such
variants (Maurano et al. 2012; The ENCODE Project Consortium 2012). Thus, collections of
high quality predictions of CREs could provide insights into the functional mechanisms by which
noncoding variants mediate phenotypic variation (Hardison 2012). We reasoned that our
collection of cCREs would be informative for interpreting non-coding variants influencing blood
cell traits and blood diseases. Therefore, we computed the overlap of the human VISION
cCREs with several sets of phenotype-associated variants from the NHGRI-EBI GWAS Catalog
(Buniello et al. 2019), specifically those associated with red blood cell traits, immune diseases,
and brain measurements (as a negative control). The number of single nucleotide
polymorphisms (SNPs) associated with red cell traits overlapping with VISION cCREs was
much higher than the number overlapping a randomly selected set of genomic intervals
matched for GC content and length (Supplemental Fig. S11A). Refining the analysis to cCREs
that are actuated in each cell type, we found that the cCREs actuated in erythroid and related
cell types showed high overlap with SNPs associated with red cell traits (Supplemental Fig.
S11B). Conversely, SNPs associated with immune disease showed high overlap with cCREs
actuated in lymphoid cells (Supplemental Fig. S11C), whereas SNPs associated with brain
measurements showed infrequent overlap with cCREs actuated in any blood cell type

(Supplemental Fig. S11B).
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Supplemental Figure S11. Overlap of SNPs associated with blood cell phenotypes with
VISION cCREs. (A.) Overlaps with all VISION cCREs (c) compared with matched random DNA
intervals (r), without or with (pc and pr) padding of each SNP to a 200bp interval. The higher
numbers of SNPs captured by cCREs is significantly different from the numbers captured by
random sets (chi-squared test; p<0.0001 for both cCREs alone and for padded cCREs).

(B.) Overlaps of SNPs with cCREs actuated in specific cell types. (C.) Overlaps of SNPs
associated with immune disease with cCREs actuated in specific cell types.

30



Stratified linkage disequilibrium score regression (SLDSC)

When measuring enrichments from GWAS data, it is important to consider the haplotype
structure of human genomes, whereby association signals measured at assayed genetic
markers likely reflect an indirect effect driven by linkage disequilibrium (LD) with a causal variant
(that may or may not have been genotyped). Stratified linkage disequilibrium score regression
(sLDSC, Finucane et al. 2015) offers one principled approach to account for LD structure and
estimate the proportion of heritability of each trait explained by a given genomic annotation. We
applied sLDSC to quantify the enrichment of heritability in many traits from the UK Biobank
(UKBB) GWAS (Ge et al. 2017 and http://www.nealelab.is/uk-biobank/) within the VISION
cCREs relative to the rest of the genome. The UKBB (Ge et al. 2017 and
http://www.nealelab.is/uk-biobank/) is a database comprising genotypic data as well as data for
several medical traits from over 400,000 individuals, and GWAS summary statistic results are
publicly available for a number of these traits, stratified by sex. We used all 587 sex-stratified
traits for which inverse rank-normalized data was available (representing 295 unique traits) in
our analysis, including 54 traits labeled “blood count’-related traits by UKBB, 60 traits labeled
“blood biochemistry”-related, and 473 traits that are not blood-related. Blood count-related traits
reflect cell morphology and number while blood biochemistry-related traits reflect the
concentrations of certain proteins and metabolic products. (Note: hemoglobin concentration is

an exception and considered a blood count trait).

For each of these 587 traits, we used sLDSC (Finucane et al. 2015) to quantify the extent to
which our cCRE annotation is enriched in the heritability of the trait. Using SNPs within some
window of the annotation, this approach regresses the GWAS chi square summary statistic (for
the focal trait) of these SNPs onto the LD scores of the SNPs with respect to the annotation.

The LD score of a SNP reflects the extent to which that SNP is in linkage disequilibrium with the
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annotation. If the annotation is associated with the focal trait, we expect a linear relationship
between the LD scores of the tested SNPs with the annotation and the chi square values of
those SNPs. The slope of the regression line is an estimate of the SNP heritability of the trait
with respect to the annotation. By dividing this estimate by the overall SNP heritability of the
trait, we obtain an estimate of the proportion of heritability explained by the annotation. Finally,
dividing this by the portion of SNPs falling within the annotation provides an estimate of the

enrichment of that annotation in heritability of the focal trait.

The sLDSC tool recommends using a set of SNPs from HapMap 3 for analysis, and because
these SNPs are reported on GRCh37, we first lifted over (Hinrichs et al. 2006) our cCRE
annotations from GRCh38 to GRCh37. A total of 826 cCREs (0.4% of all cCREs) failed to
liftOver and were excluded from analysis. Using LDSC v1.0.1, and with these lifted over
annotations, we first computed LD scores for HapMap 3 SNPs within 1 cM of cCRE annotations.
Then, for each of the 587 UKBB traits, we performed sLDSC, regressing the trait summary
statistics onto the LD scores. From this, we obtain an estimate of the enrichment of the cCCRE

annotation in the heritability of each trait.

The results of the sLDSC analysis for the human VISION catalog of cCCREs were reported in
main text (main Fig. 3F), emphasizing the remarkable enrichment in heritability for blood count
traits. A set of 58 blood biochemistry traits were not enriched for heritability in the human
VISION cCREs. We note that those blood biochemistry traits were from screenings of
metabolites, proteins, and enzymes that were not produced in blood cells, but rather by the liver
(e.g., albumin, alkaline phosphatase, alanine aminotransferase, apolipoproteins, aspartate
aminotransferase, bilirubin, urea, cholesterol), kidney (e.g., creatinine), or other organs. While

these traits were labeled as blood-related traits by the UKBB, they are largely controlled by
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organs, tissues, and cell types that we did not assay when developing the VISION CRE

annotation.

Estimation of the impact of epigenetic states and cCREs on gene expression

Summary of the calculation of (B coefficients for epigenetic states and esRPs for cCREs

In order to use the categorical state assignments to estimate the impact of each cCRE in each
cell type on gene expression, we applied a modified version of the iterative multivariate linear
regression model (MVLR) developed previously (Xiang et al. 2020b) to quantify the biological
functions of each epigenetic state in terms of regulating gene expression. In this model, we
introduced two measurements: 3 coefficients for each epigenetic state and an esRP (epigenetic
state Regulatory Potential) score for each cCRE in each cell type or sample. The biological
interpretation of the two measurements are as follows. The B coefficients measure the
contribution of each epigenetic state to the expression of local genes; they are calculated in a
multivariate regression evaluating how changes in the coverage of cCREs and promoters by
each epigenetic state across cell types impact expression levels. The esRP score measures the
contribution of individual cCREs on regulating its target gene’s expression level; it is calculated
from the overall epigenetic state coverage of the cCRE in each cell type (Figure 4B). In contrast
to our previous modeling (Xiang et al. 2020b), our current model does not aim to identify the
likely target gene(s) for each cCRE; that will be the subject of a subsequent report. In brief, for
the current regression model, the epigenetic state coverage was computed on all cCCREs and
promoter regions within 50 kb on both sides of the TSS of each gene (an interval of 100kb). We
first calculated the B coefficients of the promoter intervals and distal cCCREs as separate terms in
the regression model. For further analyses and visualization, including computation of the esRP
scores, the B coefficients of each state were merged into a single value that was the average of
the B coefficients for promoters and for distal cCREs. A more detailed presentation on the

calculations of the B coefficients and the esRPs is in the following subsection.
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Detailed methods for the calculation of p coefficients and esRPs

We identified 14 cell types matched between human and mouse with RNA-seq datasets in the VISION
project. For each gene, the correlation coefficient was calculated between the two vectors of 14 values for
log2(TPM+1), generating one correlation coefficient value per cell type per gene. When calculating the
correlation coefficients, we added random noise (mean=0, sd=1) to the raw values to avoid high

correlation coefficients created between vectors with low signals.

In the MVLR model, we assumed the contribution of epigenetic states on gene regulation are different at
the promoter regions and the cCRE regions. For the independent variables in the model, we thus separated
the information of two classes of regions as follows: one class is the epigenetic state coverage at the
cCRE regions (cCREs within TSS +/- 50 kb window) and the other class is the epigenetic state coverage
at the promoter regions (TSS +/- 1 kb window). The promoter region was the entire 2Kb window centered
on the TSS, regardless of whether the DNA was called as a cCRE. In contrast, the cCRE regions were
only the cCREs, not any intervening DNA, within the 100Kb region centered on the TSS. The cCRE

regions included cCREs within the promoter region.

For a cCRE;, the state coverage (L; j o) for Epigenetic_State; in Cell_Type, is defined as the number of
base-pairs covered by Epigenetic_State; in cCRE; in Cell_Type.. For each Gene, the overall coverage
of Epigenetic_State; at the cCRE regions (CCy ; o) is defined as the sum of Epigenetic_State;’s

coverages of all individual cCREs within the TSS +/- 50 kb window:

CCg,j,C = Z Li,j,C
i
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For the promoter regions, the state coverage (CPy ) for Epigenetic_State; at Geney in Cell _Type, is
directly defined as the number of base-pairs covered by Epigenetic_State; within the TSS +/- 1 kb

window.

Previously, we directly used the CPy ; . and the CCy ; . as the input features for our iterative regression
model (Xiang et al. 2020b). However, the state coverage of epigenetic states with related functions are
likely collinear (i.e., are positively or negatively correlated), which can lead to unstable estimation for the
B coefficients in the regression model. To avoid this problem, we first transformed the original input
features matrix into orthogonal principal components (PCs), and then use the PCs that can explain 95% of
the variance in the original data matrix (CPy ;. and CCy ; ;) as the input feature matrix for the regression

model.

We first matched the mean and standard deviation of the CC j . matrix to the CPy ; . matrix to generate a

Standardized cCRE state Coverage, or SCC, computed by the following equation.

sd(CP) + mean(CP)

SCCgJ-,C = (CCg,j,C —mean(CC)) X 5d(CO)

We next combined the SCC matrix and the CP matrix as C matrix, and then used PCA to transform the C

matrix into a PC matrix that can explain 95% of the total variance in the € matrix.
C = cbind(CP,SCC)
PC=CQ®R

where cbind refers to the operation of combining the matrices, and R represents the rotation matrix in the

PCA analysis.

For the multivariate linear regression model, the values in the PC matrix were used as the independent

variables. The quantile normalized TPM values of RNA-seq data for protein coding genes were used as
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the dependent variable (Y). The signal of both RNA-seq and the state coverage were transformed into a

natural log scale for this analysis.
Y =F,PC+a

Pes =R & Bo

where the 8y represents the coefficient vector for all PCs learnt by the MVLR model, and the Sgs
represents the coefficient vector for all epigenetic states transformed by the rotation matrix (R) in the
PCA analysis. The biological interpretation of the Bgs ; is the contribution of one unit increase of
Epigenetic_State;’s coverage on regulating the target gene’s expression. In this part, we used only the
24 non-quiescent epigenetic states in the model, so the fgs o for the quiescent state (state 0) naturally
becomes 0, which means that we infer no contribution on gene expression regulation. Since we used the
information of the promoter regions and the cCRE regions as two separate terms in the MVLR model,
BEs 1s a vector with 50 elements, which can be further separated into 25 s values for promoter regions
(BEs p) and 25 Bgg values for all cCRE regions (Bgs ). The MVLR model was trained multiple times by
a leave-one-cell-type-out strategy. For downstream analysis, we combined the fBgs values for proximal

cCREs and distal cCREs to generate an average B coefficient. These are shown in panel A of Figure 4.

After we obtained the S5 coefficient vector, we further used the Sg¢ coefficient vector to define the

epigenetic-state gene expression regulatory potential (esRP; o) for each cCRE; in Cell_Type..

For cCRE; within the promoter regions, the esRP; . is defined as follows:

esRP; . = 2 Bescj X Lijc+ 2 Pesp j X Lijec
J j

For cCRE; NOT at the promoter regions, the esRP; . is defined as follows:
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esRP; . = 2 Besc j X Lijc
J

The biological interpretation of esRP; . is the contribution of cCRE; on regulating its target gene’s

expression level based on its overall epigenetic state coverage in Cell_Type,.

Since it is unlikely that every cCRE within the TSS +/- 50 kb window would be used to regulate the target
gene, it is reasonable to filter out some cCREs that are less likely to be relevant. We hypothesized the
esRP pattern of the relevant cCREs should be more correlated with the target gene’s expression pattern
across all cell-types. Therefore, we filtered the cCREs by the correlation between the cCRE’s esRP vector
and the target gene’s expression vector across all cell-types, requiring a correlation coefficient » < 0.2 in
order to be retained (Xiang et al. 2020b). After the filtering step, we recalculated the CC matrix and re-
trained the regression model. We iterated this filtering and re-training step two times and updated the

PEs cand Bgs p vectors for both human and mouse. To simplify the final output, we first took the average
of the two species’ fgs cand fgs p vector. We then defined the final contribution (Bgs) of the epigenetic

states on gene regulation as the sum of their contributions at both promoter regions (fgs p) and cCRE

regions (Bgs ¢):

max(Bes c)
Bes =B +p X ———————
ES ESC T PESP X 1 o( Brs.p)
where the —ZZ;CE?SC; is a factor to scale the contributions at the promoter regions (Sgs p) and the cCRE
ES P —

regions (fgs ¢) to a similar level.

The Sgs vector, and the corresponding esRP matrix for all cCREs across all cell-types’ samples in both

species, were used as the final outputs for downstream analysis.
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Potential advantage of esRP to consideration of each feature marginally

This procedure of using epigenetic states from integrative modeling of features to estimate beta-
coefficients and esRP scores raises the question of whether there is an advantage to the joint
estimate described here compared to directly considering each feature marginally, since the
latter approach would avoid the issue of co-linearity. In the series of steps to estimate the beta-
coefficients for epigenetic states and the corresponding esRP scores of cCREs based on state
coverage at proximal and distal regions, we reduced the dimensionality of the input matrix at the
regression step by replacing the state coverage with principal component (PC) values to reduce
the impact of collinearity, as described above. While the alternative approach of using the
marginal effects of each feature may have merit for future development, we offer three points
about the potential advantages of utilizing principal components of the esRP matrix.

(i) The esRP scores (and PCs) allow annotation of the direction of transcriptional
regulation (activation versus repression) and magnitudes for all epigenetic states, thereby
adding more functional meaning to the categorical epigenetic state labels.

(ii) Instead of examining each feature marginally, the esRP scores may capture (at least
in part) the interactions and joint effects of all features in each state. The esRP scores may
better handle some complexities of transcription regulation because the multiple epigenetic
features often work in concert.

(iii) Another advantage of esRP is the reduced impact of missing data on this score. The
computation of esRP scores uses IDEAS epigenetic state tracks as the input, and the modeling
and assignment of epigenetic states in IDEASSs utilize data from locally similar cell types to
reduce the impact of missing data in an individual cell type. As a result, the esRP score can be
computed, and it is comparable for all cell types, even for the ones with incomplete data. In
contrast, alternative methods, like estimating coefficients marginally for each epigenetic feature,
make it challenging to compare between cell types with missing data and those with complete

data sets.
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Impact of removing cCREs with a low correlation between states and gene expression across
cell types

In the estimation of esRP scores, we removed cCREs with low correlation values; specifically,
we filtered the cCREs by the correlation between the cCRE’s esRP vector and the target gene’s
expression vector across all cell-types, requiring a correlation coefficient r < 0.2 in order to be
retained. This step raised the question of what the impact may be, especially if a state is
primarily associated with constitutive gene activity. Indeed, if a state were exclusively
associated with high level expression, with little change in the expression level, in all cell types,
then the impact of the state on expression would be under-estimated or missed. However, in
practice almost every epigenetic state is associated with at least some genes with sufficient
variation in expression levels across cell types to be included in the regression modeling.
Examination of the beta coefficients computed for the epigenetic states (Fig. 4A in the main text)
shows that almost all states have a positive or negative score that is not widely divergent from
expectation based on the established associations of the epigenetic marks with expression. We
infer that the states associated with constitutive activity (for some genes) are also associated
with cell type-specific activity (for other genes), and thus we still see a signal in the regression.
Two of the states do have very low scores (close to zero), the quiescent state 0 and the
promoter-enhancer-associated state 12. Perhaps there is an association of cCREs in these
states with low variance genes that leads to an underestimate of the beta-coefficient.
Nevertheless, the current esRP scores do show substantial utility, as explored in this
manuscript. Also, our previous work (Xiang et al. 2020b) showed that the eRP scores
(computed using a similar regression modeling) had explanatory power even for the consistently
expressed genes, albeit less so than for differentially expressed genes (Fig. 6C in that paper).
Thus, it is likely that inclusion of all genes, as we did in our current procedure, will provide the

opportunity for the impact on expression of all or almost all the states to be estimated in the
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modeling, even with the potential for under-estimation for states primarily associated with

constitutively expressed genes.

Visualization of cCRE esRP scores across cell types using UMAPs

The esRP scores were used to visualize the collection of VISION cCREs and follow how their
regulatory impact changed across differentiation. Starting with the large matrix of about 200,000
human cCREs with esRP scores for each cell type and replicate, we employed the dimensional
reduction visualization method UMAP (Mclnnes et al. 2018) to visualize the esRP matrix of all
cCREs across all available cell types. This method for visualizing high dimensional data in lower
dimensional space has been widely used in single cell data analysis where each cell’s
transcriptomic or epigenomic profile is projected onto a 2-dimensional UMAP space. Similarly,
we projected each cCRE’s esRP scores onto a 2-dimensional UMAP space. Thus, each point
on our UMAP represents a cCRE rather than a cell, and cCREs with similar vectors of esRP
scores across cell types are placed in similar locations on the UMAP plane. We used the umap
library’s umap function in R with default settings to transform the data and generate the UMAP

images.

The resulting image (Supplemental Fig. S12A) showed multiple clusters populated with cCREs
(dots) that are colored to visualize their activity in individual cell types, with the color determined
by the esRP score in that cell type. The darker red dots indicate cCREs more strongly
implicated in gene activation in that cell type, as illustrated for erythroblasts (ERY) and
monocytes (MON). UMAPs annotated by esRP scores for all cell types in both human and
mouse along with movies showing the changes in estimated impact of cCREs across human
hematopoietic differentiation are provided in the Supplemental Materials

(Supplemental_Movie_S1.mp4) and on our VISION website (http://usevision.org). These

annotated UMAP projections revealed both cCREs active in all cell types, such as the long arc
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of red cCREs in the upper right of the graphs, as well as shifts in cCCRE activation as cells

differentiate. The cCREs in the UMAPs were also shaded by their membership in esRP-based

metaclusters distinctive for particular cell types or lineages (see next section on “Clustering of

cCREs based on esRP scores”). This visualization revealed well-defined clusters of cCREs

active in specific cell types (Supplemental Fig. S12B).
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Supplemental Figure
$12. Reduced
dimensionality
representation of
cCREs based on esRP
scores, chromatin
accessibility, and
H3K27ac signal. (A)
UMAP of cCREs based
on their esRP scores
across all cell-types.
The points are colored
by the esRP scores in
the designated cell type.
(B) UMAP of cCREs
based on their esRP
scores across all cell-
types, with the points
colored by the binary
label indicating whether
a cCRE belongs to the
specified joint
metacluster (JmC; see
next section). (C) and
(D) show UMAPs for the
VISION cCREs based
on their ATAC-seq
signal or their H3K27ac
signal, respectively, with
the colors indicating the
scores in ERY (left) or
MONCc (right).



Comparisons of esRP, chromatin accessibility, and H3K27ac in cCREs

The esRP-based UMAPs used a score that reflected an integration of eight epigenetic features
followed by an association with gene expression via multivariate linear regression, and our
exploration of these integrative scores for visualization showed that they did reveal informative
patterns. We also compare the results of using the integrative esRP scores versus simply using
single epigenetic features for visualization. We generated UMAPs of the cCREs based on their
signal intensity for ATAC-seq or H3K27ac across cell types. The UMAP based on ATAC-seq
signal spread the cCREs over much of the projection plane, and it showed a long arc of cCREs
active in all cell types examined along with groups of cCREs active preferentially in ERY or
MONCc (Supplemental Fig. S12C). The UMAP based on H3K27ac signal intensity revealed a
shape on the projection plane that is similar to that for the esRP UMAP, but inverted, along with
a prominent long arc of broadly active cCREs (Supplemental Fig. S12D). The comparisons of
the UMAPs do not support any of the three metrics as being superior for visualization, but they
do indicate that any of the three, including the integrative esRP scores, can reveal informative

patterns when used as input for visualizations by dimensional reduction methods.

The three signals showed a positive association in pairwise comparisons (Supplemental Fig.
S13A). The H3K27ac signal intensity was strongly and consistently associated with the beta-
coefficients in each state, as expected from the well-established association of this histone
modification with activation of CREs. Some IDEAS states had high ATAC-seq signal but low
values for beta-coefficients, as expected for CREs serving predominantly structural roles, but

the overall trend of the comparison was positive.

We also compared the three signals in a discriminatory task, specifically the ability to distinguish

cCREs overlapping with transcription start sites (TSS) versus those that overlap with
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“transcription end sites” (TES, poly-A addition sites) or cCREs located elsewhere with respect to
gene bodies. These annotations were chosen for the discriminatory task because they could be
determined for all cCREs and are invariant across cell types. The UMAP projections based on
each of the three signals in cCREs showed some clusters that appeared enriched for TSS and
others that were somewhat enriched for TES (Supplemental Fig. S13B). The discriminatory
ability of each signal was quantified using the Local Inverse Simpson’s Index, or LISI
(Korsunsky et al. 2019). The distributions of LISI scores for distinguishing TSS or TES were
high for all three signals, but the distributions were higher for esRP compared to the signals for
the two individual features, indicating a somewhat better performance for esRP (Supplemental

Fig. S13C).
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Supplemental Figure S13. Relationships among esRP, ATAC-seq and H3K27ac signals and
their ability to distinguish cCREs based on position within gene bodies. (A) This panel depicts
the relationship between ATAC-seq or H3K27ac signal and the beta-coefficient for each IDEAS
state. The left part of each graph shows the mean ATAC-seq (top) or H3K27ac (bottom) signals
in cCREs in each of the 25 IDEAS states, and the right part of each graph is a scatter plot of the
means signals for the individual feature versus the beta-coefficient computed for each state in
the MVLR. (B) UMAPs of cCREs, color-coded according to their intersection with gene
structures, specifically red for overlap with transcription start sites (TSS, +/- 2kb), green for
overlap with “transcription end sites” (TES, poly-A addition sites, +/- 2kb), and orange for all
other cCREs. (C) This panel presents the LISI score for the UMAP, demonstrating its ability to
differentiate specific gene structure cCREs from the remaining cCREs.
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Clustering of cCREs based on esRP scores

Rationale

To infer the potential biological functions of the cCREs, we clustered them based on their esRP
scores across different cell types. The traditional methods for clustering cCREs are based on a
pairwise distance matrix of signals measured in different epigenomic datasets across different
cell-types. However, these approaches cannot capture the information of the potential biological
effects of the epigenetic modifications on gene expression regulation. For example, transitions
from an initial state with only H3K4me3 to a second state with only H3K9me3 or to a second
state with only H3K27ac have opposite associations with biological processes (repression
versus activation, respectively), but the pairwise distances determined from the vectors of
epigenetic signals would be very similar. In contrast to the signals measured directly by
epigenomic datasets, the esRP score has already integrated all available epigenetic features’
information as a quantitative score that can reflect the overall potential of each cCRE for
regulating gene expression. Thus, we hypothesized that clustering the cCREs using a distance
based on esRP score would produce groups that better capture the changes of biological

effects of the cCRE across different cell types.

Method for generating esRP-based joint metaclusters of cCREs

In this study, we conducted a series of clustering steps to generate robust clusters representing
the prevalent patterns of inferred regulatory potential (esRP scores) across cell types jointly in
both human and mouse species (Supplemental Fig. S14). We first created a combined matrix of
esRP scores for all human and mouse cCREs across all shared cell types in both species. This
ensured that the identified clusters were based on esRP patterns across the same set of cell
types in both species. To mitigate the potential issues of cross-cell type collinearity and
overfitting, we performed a principal component analysis and selected the top 10 principal

components (PCs), which account for 99% of the variance. This generated a matrix containing
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10 PC values corresponding to each cCRE. Although we had data for neutrophils from both
species, we excluded the esRP scores for cCREs in neutrophils due to the significant noise in

the ATAC-seq, which affected the overall quality of our results.

To identify robust clusters, we employed an iterative k-means clustering strategy, finding
clusters with high consensus across repeated clustering rounds and then re-assigning all
cCREs to these robust clusters. The initial clustering round (Step 1, Supplemental Fig. S14)
used k-means clustering (K=100) based on the pairwise Euclidean distance of PCs of esRP
scores across all cell types. This was performed 100 times, generating 10,000 clusters that
could contain both human and mouse cCREs or cCREs from only one species. To identify
consensus clusters across the 100 k-means runs, we combined the vectors of mean PC values
for each of the 10,000 clusters from Step 1 into a matrix and clustered them again using k-
means (K=100, Step 2, Supplemental Fig. S14). This step partitions the Step 1 clusters with

similar characteristics into groups of clusters, where a large group size implies high consensus.

We considered groups with more than 70 Step 1 clusters as high consensus clusters,
determined by calculating the Z score for the group size and finding the group size
corresponding to the upper tail probability of 0.05. We identified 61 such groups, which we
called robust clusters. However, these 61 clusters did not contain all cCREs, so we reassigned
all cCREs in both human and mouse to one of the 61 robust clusters based on the cosine
distance between each cCRE's esRP score profile and each cluster’s average esRP score
profile, which was computed by averaging the mean-esRP-signal-vectors of the Step 1 clusters

within each robust cluster.

Since our goal was to find clusters with cCCREs in both species, we counted the number of

cCREs from each species in each robust cluster and calculated the proportion of cCCREs in each
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species for each robust cluster. We identified 44 clusters in which the proportion of cCREs did
not significantly differ between the two species (i.e., the absolute log2 fold changes of cCRE
proportion between the species were <= 2.18 (p-value = 0.05)), which we designated as robust
clusters shared across species. Using the cosine distance, we reassigned each cCRE in each

species to one of these 44 shared robust clusters.

Lastly, we observed that the average esRP score profiles across cell types for some subsets of
the 44 clusters were similar, indicating they were not distinct clusters. To better differentiate
groups of cCREs shared between species, we created joint metaclusters (JmCs) by clustering
the clusters (Step 3, Supplemental Fig. S14). We combined the 44 clusters to generate 15
JmCs using hierarchical clustering (Hclust) and dynamic trimming with dynamicTreeCut
(Murtagh and Legendre 2014). We ran Hclust followed by dynamicTreeCut 100 times, adding
different noise (uniformly distributed within a range of -0.001 to 0.001) for each run and using
the cosine distance matrix. We then created a count matrix to record the frequency of each
cluster being found in the same JmC. We used Hclust to cluster the count matrix and applied
dynamicTreeCut to cut the Hclust tree into 15 JmCs. As a result, each cCRE in mouse and
human was assigned to one of the 15 JmCs. These JmCs provide discrete categories for

cCREs based on the cell type distribution of their estimated regulatory impact.
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Supplemental Figure S14. Overview of clustering of cCREs based on their esRP scores,
leading to the partitioning of all human and mouse cCREs into one of 15 joint metaclusters
(JmCs). The steps in the clustering are described in the Methods. Abbreviations are CT = cell
type, esRP = epigenetic state Regulatory Potential, PC = principal component, RC = robust

cluster, SRC = shared robust cluster, JmC = joint metacluster.
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Enrichment of specific JmCs for promoter or enhancer annotations

A. Metacluster mean esRP scores log2(Obs/Exp)

Enh Nmbr
TSS F5 ERY cCREs

1 - 0.24 0.28/'27814
4 0.39 0.29 17138

12 -0.84 -0.09 -0.92 8272
9 -0.76 -0.03 11352
| 8 -0.65 -0.29 -1.29 18078
10 -1.26 -0.06 0.55 15416
2 | <184 -004 065 15461
- 5  -070 -0.22001i88 12402
— 3 -1.22 -0.45 -0.92 18416
15 -1.17 -0.05 0.14 17031
7 -0.34 0.04 0.69 9249
11 0.01 -0.08 0.15 5503
14 -0.08 -0.06 0.24 8015
6 0.18 023 053 9612
13 017 0.15 0.23 6583
0.2 OITOmMm Z44d0>w
Io.15%§8§3§§X88%r<n
0.1 i o 0 N
0.05
0 Shared cell types
B Mouse Phenotype
- Human cCREs in JmC 10 Human cCREs in JmC 15
enriched in ERY and MK enriched in MON and progenitors
Binomial Binomial
fold fold
Abnormal feature or disease FDR Q-val enrich Abnormal feature or disease FDR Q-val enrich
blood cell morphology 1.93E-261 2.15 immune system physiology 0 2.05
myeloid cell morphology 1.83E-234 2.11 hematopoietic system physiol 1.95E-293 2.22
hematopoietic cell number  4.73E-233 2.01 adaptive immunity 1.03E-285 2.28
erythroid lineage cell morph  1.41E-164 2.35 cell-mediated immunity 1.31E-282 2.29
incr. hematopoietic cell nmbr 9.49E-161 2.06 immune cell physiology 1.52E-281 2.29
erythrocyte morphology 5.83E-159 2.38 blood cell physiology 1.22E-280 2.24
blood cell morph/devel 1.02E-148 2.10 leukocyte physiology 1.07E-269 2.27
myeloid cell nmbr 1.62E-130 2.53 innate immunity 3.57E-238 2.94
hemopoiesis 5.70E-125 2.08 professional APC physiology 3.28E-234 2.46
definitive hematopoiesis 2.10E-120 2.07 immune serum protein physiol 3.34E-209 2.29
hemoglobin 1.82E-119 2.71 inflammatory response 2.07E-193 2.13
mean corpuscular volume 8.23E-95 3.12 macrophage physiology 2.11E-192 3.12
bone marrow cell morph/devl 6.56E-92 2.21 cytokine secretion 2.63E-174 2.57
ion homeostasis 2.34E-91 217 response to infection 1.54E-163 2.67

decreased myeloid cell nmbr 1.16E-88 2.51 myeloid leukocyte morph 1.26E-157 2.16
increased myeloid cell nmbr 2.30E-86 2.79 increased inflammatory resp 2.09E-150 2.07

mineral homeostasis 4.29E-86 2.31 altered susceptibility to infxn  1.27E-148 2.65
mineral level 2.47E-83 2.31 phagocyte morphology 1.55E-145 2.20
anemia 4.45E-80 2.45 interleukin secretion 2.38E-145 2.67
hemoglobin content 1.73E-78 2.76 professional APC morphol 2.51E-141 2.04

APC = antigen presenting cell

Supplemental Figure S15. Enrichment of orthogonal functional annotations and mouse
phenotype terms in the joint metaclusters of cCREs based on their esRP scores across cell
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types. (A) Enrichment and depletion of cCREs in esRP joint metaclusters (JmCs) for function-
associated elements. Enrichment or depletion is the log2(Obs/Exp) for overlaps of the cCCREs
in each JmC with the designated set of function-associated elements. The expected value was
calculated from the fraction of all human VISION cCREs (200,342) that overlap with the sets of
elements. TSSs were from GENCODE (extended +/- 500bp for a 1000bp interval). Enhancer
sets were from FANTOMS enhancers (F5) determined from enhancer RNAs in many cell types
(Andersson et al. 2014) or the Xu laboratory erythroid (ERY) enhancer repertoire (Huang et al.
2016), determined from histone modification patterns in adult and fetal erythroblasts. (B)
Enrichment of functional terms from phenotype ontologies for human cCREs in JmC 10
(enriched in erythroid and megakaryocytic cells) and JmC 15 (enriched in monocytes and
progenitor cells). Queries on the VISION cCRE_db returned 15,416 human cCREs in JmC 10
and 17,031 human cCREs in JmC 15. These sets of genomic intervals were analyzed for
functional term enrichment of linked genes using the GREAT tool, v.4.0.4 (McLean et al. 2010),
using the "Basal plus extension" option to associate genomic regions with genes, choosing the
default proximal = 5 kb upstream and 1 kb downstream but limiting the extension to 100 kb
rather than the default of 1000 kb. The table lists the top 20 Mouse Phenotype terms ordered by
the FDR g-value; the fold enrichment is also given. Enriched terms from the Human Phenotype
ontology also were associated with the blood cell types in which the JmCs were enriched, but
those terms were not as precise as the ones from the Mouse Phenotype ontology.

Enrichment of JImCs assigned to cCREs in gene loci

Related to main Figure 4D.

We calculated the enrichment of JmC assignments of cCCREs at gene loci (TSS +/-50kb) in both
species. For each Gene;, the enrichment of Jm(; is defined as follows:

Enrichment;

(Gene; JmC;_cCREyyman + 1) % (Gene; JmC;_cCREyqyse + 1)
B (expected_Genei_]ij_cCREHuman + 1) X (expected_GeneiJij_cCREMouse + 1)

where the Gene; JmC;_cCREpyman/mouse 1S the number cCRE assigned to Jm(; at the Gene;
locus in human or mouse, the expected_Gene; JmC;_cCREypyman/mouseiS the expected number of

cCRE assigned to J/m(; at the Gene; locus in human or mouse by random chance.
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Enrichment of trait-associated SNPs in the joint metaclusters (JmCs)

We sought to determine the enrichment of trait-associated SNPs in the subsets of VISION
cCREs based on activity within groups of cell types, i.e., the joint metaclusters (JmCs). We re-
analyzed the blood trait-associated variants by running sLDSC with fifteen separate
annotations, each annotation defined by a JmC, to see if the trait heritability was enriched in any
JmCs. Running these annotations through the same pipeline described above (see section
“Enrichment of genetic variants for blood cell related traits in the VISION human cCRE
collection”), we obtained estimates of the enrichment of each JmC in the heritability of each of

587 traits.

We found five JmCs with significant results at a 5% FDR (Supplemental Fig. S16). The cCREs
more active in erythroid and megakaryocytic cells, i.e., those in JmCs 10 and 2, were
significantly enriched for heritability of several blood traits, including many related to erythroid
cells. Several of the enrichments were for cCREs in JmCs 1 and 4, which are active across all
cell types examined and are themselves highly enriched for proximal regulatory regions such as
promoters (Supplemental Fig. S15A). While this result may suggest that many blood-trait
associated variants were in proximal regulatory regions of genes with active epigenetic marks
broadly present across blood cells, more study is needed to establish such a relationship. One
caveat is that the large number of cCREs in JmCs 1 and 4 makes it more likely for them to
overlap with any feature, and thus the large overlap with proximal regulatory regions could be
separable, at least in part, from the overlap with trait-associated variants. Many of the JmCs
showed no significant enrichment, perhaps reflecting a reduced power for JMCs comprising

fewer cCREs.
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JmC Trait Enrichments
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Supplemental Figure S16. Enrichment of SNPs associated with blood cell traits from UK
Biobank in VISION cCREs. Results of the JmC sLDSC analysis where each set of cCREs
within a JmC was considered as a separate annotation. The plot lists a trait on the x-axis if any
JmC had a significant enrichment for it. The labels for these traits are maroon for blood count
traits, purple for blood biochemistry traits, and black for non-blood related traits. The plot lists
the JmC on the y-axis. For a given JmC and trait combination, a dot is plotted if and only if there
was an observed significant enrichment for that combination. Size of the dot reflects the
significance of the enrichment, and the color of the dot reflects the size of the enrichment itself.
Negative enrichments are colored gray. Panels separate the sex in which the GWAS analysis
was performed for each trait.

Comparisons of cCREs clusters based on esRP, chromatin accessibility, and H3K27ac
for distinguishing among cell types

Based on prior work, it was expected that some cCRE clusters would be distinctive for individual
cell types. The JmCs based on esRP scores tended to contain cCREs active in groups of cell
types in a lineage (e.g., lymphoid cells) rather than in individual cell types. We investigated
whether this apparent loss of specificity was a result of the metric used for clustering or whether

it resulted from combining previously distinctive clusters.
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First, we generated joint metaclusters of the cCREs using the procedure illustrated in

Supplemental Fig. S14 but using the signals in each cCRE for ATAC-seq or for H3K27ac in

each cell type as the input for clustering. The patterns of the single or integrative (esRP) signals

across cell types had broad similarities, with some JmCs composed of cCREs with high signal

across all cell types and other JMCs more distinctive to related groups of cell types

(Supplemental Fig. S17). None of the three signal sources showed a superior ability to

distinguish among individual cell types.
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Supplemental Figure S17. Joint metaclusters
of cCREs based on three different input
signals. The metaclusters were combinations of
shared robust clusters (see Supplemental Fig.
S13) generated by a series of k-means
clusterings using as input the esRP scores
(top), ATAC-seq signal (middle) or H3K27ac
signal (bottom) of cCREs in each cell type. The
mean signal for the cCREs in each metacluster
in each cell type was indicated by the intensity
of red color in the heat map.
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We then examined the larger number of shared robust clusters (SRCs) generated though this

clustering pipeline for each input signal. For all three input signals, the SRCs had clusters of

cCREs that were distinctive for individual cell types (Supplemental Fig. S18). For example,

esRP-based SRCs 9:37 and 12:54 (JmCid:SRCid) distinguished cCREs active in T cells from

those in NK cells, and SRCs 5:5 and 5:52 distinguished cCREs active in B cells from those

active in CLPs. The ATAC-seq SRCs 6:80 and 9:36 were distinctive for cCREs active in MON,

while SRC 6:93 was distinctive for B cells. Similarly, the H3K27ac SRCs 5:74 and 10:45 were

distinctive for cCREs active in MON, while SRCs 5:78 and 10:90 were distinctive for B cells. We

conclude that clusters of cCREs based on any of the three signals could be distinctive for

individual cell types when a sufficiently large number of clusters were considered.
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Supplemental Figure S18. Shared robust clusters of cCREs based on three different input
signals. The shared robust clusters (SRCs) were generated by a series of k-means clusterings
using as input the esRP scores (left), ATAC-seq signal (middle) or H3K27ac signal (right) of
cCREs in each cell type (see Supplemental Fig. S13). The SRCs were clusters of cCREs found
frequently in multiple rounds of k-means clustering that also contained cCREs from both mouse
and human. The mean signal for the cCREs in each SRC in each cell type was indicated by the
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intensity of red color in the heat map. Each row was labeled by the joint metacluster assignment
followed by the SRC assignment, i.e., JmCid:SRCid.

Self-organizing maps

A complementary approach to systematic integration of epigenetic features or RNA data across
cell types is to build self-organizing maps (SOMs) such that each map unit contains elements
(cCREs or genes) with similar profiles (epigenetic or expression) across cell types, and units
with similar collections of profiles are close to each other in the SOM. We built DNA and RNA
SOMs for the human VISION data (Jansen et al. 2019). To build DNA SOMs, the ChlP-seq and
ATAC-seq data over all the cCCREs were trained on a 60x90 SOM using the SOMatic package
(https://github.com/csjansen/SOMatic). This approach yielded 160 different metaclusters, each
of which represents a collection of cCREs with a similar signal profile across each cell type and
experiment (Supplemental Fig. S19A). An RNA SOM was built by training a 40x60 SOM on the
expression profiles of genes across cell types (Supplemental Fig. S19B), which generated 21
metaclusters, each of which contained genes with similar expression profiles across cell types.

These SOMs can be viewed interactively at the server at http://usevision.org.

A

ChIP and ATAC data
in cCREs,
S3Norm corrected

DNA SOM
analysis

B B RNA

RNA data for genes, RNA SOM ERY RNA
Batch corrected analysis

X more RNA experiments

Supplemental Figure S19. Self-organizing maps of DNA-based data and RNA-based data.
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Enrichment for transcription factor binding site motifs in joint metaclusters of cCREs

We used the Maelstrom tool in the GimmeMotifs suite (v0.17.1) to identify motifs that are
differentially enriched across JmCs (Bruse and van Heeringen 2018). In contrast to previous
analyses in which all cCCREs active in a specific cell type or those that are distinctive for a cell
type were examined (e.g., Neph et al. 2012; Vierstra et al. 2020), our search for motif
enrichment in the JmCs examined not only sets of cCCREs that are distinctive for a lineage, but
also sets of cCCREs with a broader distribution of activity. We first labeled all cCREs according to
their JMC membership. We then ran separate Maelstrom analyses on human and mouse cCRE
sets to find enrichment of motifs in GimmeMotif's default “gimme.vertebrate.v5.0.pfm” collection
of non-redundant clustered vertebrate motifs derived from the Cis-BP database (Weirauch et al.
2014). Maelstrom’s --filter-cutoff parameter was set to the default value of 0.8, which has the
effect of filtering redundant motif enrichment results based on scores across the input sets. We
filtered out motifs that did not achieve a Maelstrom Z-score of at least 4 in any JmC. We then
combined results across human and mouse (which required running Maelstrom again for each
species using the --no-filter option to fill in Z-scores for motifs that were found in one species but
not the other). Heatmaps were constructed using the Python seaborn package (Waksom 2021)
and motif logos were plotted using WebLogo3 (Crooks et al. 2004). Putative TF names were
associated with each motif by examining the identities of Cis-BP motifs that were clustered into
the relevant non-redundant motifs within the GimmeMotifs non-redundant set, and by matching
enriched motifs against mouse and human motifs from Cis-BP (v.2.0) using STAMP (v.1.0)

(Mahony and Benos 2007) with arguments “-cc PCC -align SWU”.
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Binding of CTCF to cCREs in JmCs: species similarities and differences

The enrichment of TFBS motifs for CTCF and ZBTB7A presented some potential exceptions to
the sharing of motifs across species. The cCREs in JmC 8 showed the expected strong
enrichment for these motifs in both human and mouse, with little enrichment for binding site
motifs of other TFs (main Fig. 4E). These cCREs had modest regulatory impact, as estimated
by esRP scores, across most cell types, suggesting the hypothesis that cCREs in JmC 8 may
consist of CTCF-bound sites that are not involved in gene activation. Indeed, examination of
ChlP-seq results showed that the cCREs in JmC 8 were enriched for CTCF occupancy in both
mouse and human and for overlap with loop anchors (Supplemental Fig. S20A and B). In
contrast, the cCREs in several JmCs were enriched for CTCF and ZBTB7A motifs only in
mouse (e.g., JmCs 12, 7, and 10) or only in human (e.g., JmCs 11 and 13; see main Fig. 4E). In
these JmCs, the cCREs were also enriched for binding sites for other TFs, with those other
motifs enriched in the cCREs from both species. The frequency of occupancy by CTCF in the
cCREs in these latter JNCs corresponded well with the enrichments for the motifs, with JmCs
with greater enrichment for CTCF motifs in human also more enriched for CTCF occupancy in
human, and vice versa for mouse (Supplemental Fig. S20A). These observations lent support to
the suggested species-specificity. A parallel analysis of the cCREs in human and mouse JmCs
by the multi-label discriminative motif-finder SeqUnwinder (Kakumanu et al. 2017) also
uncovered enrichment of some motifs that apparently systematically vary in

enrichment between mouse and human cCREs, but the magnitude of enrichment was limited

(Supplemental Fig. S21).
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A. Enrichment of cCREs in each JmC for overlap with CTCF occupancy, normalized for total
overlap of cCREs with CTCF occupancy

Human Mouse
% (Y%ovlp % (Yovlp
Nmbr | cCREs | JmC)/ Nmbr | cCREs | JmC)/ | CTCF and

Nmbr ovlp ovlp (%ovlp | Nmbr | ovip ovlp (%ovlp | ZBTB7A motif
JmC | cCREs | CTCF | CTCF | all) cCREs | CTCF | CTCF | all) enrichment

1 27,814 11,186 40.2 1.39 12,824 7,627 59.5 1.30 neither species
4 17138 7292 425, 147 14857 8583 57.8 126 alittle in human
12 8272 1812 219 076 2542 1436 565 123 H<M
9 11352 3284 289 100 1,054 439 417 091 H<M
8 18078 7,473 413 143 6865 492 723 158 H=M
10 15416 3,051 198 068 3503 2053 586 128 H<M
2 15,461 2,470 16.0 0.55 4,311 1,547 35.9 0.78 neither species
5 12,402 3,623 292 101 3387 1896 560 122 H<M
3 18416 3,048 166 057 7,693 1246 162 [0.85 neither species
15 17,031 1,653 97 L084] 4217 1138 270 059 neither species
7 9249 2619 283 098 5097 2791 548 120 H<M
11 5503 2114 384 133 9411 2731 290 063 H>M
14 8015 2557 319 110 2656 1,336 503 110 H>M
6 9612 2768 288 099 9914 3064 309 068 neither species
13 6583 3,093 470 162| 7753 3,118 402 0.88 H>M
Al 200,342 58,043 290 100 96,084 43967 458  1.00

B. Overlap of cCREs for CTCF occupancy, loop anchors, and TAD boundaries, for those in
groups of JmCs that differ in the species distribution of enrichment for CTCF motifs

Nmbr Nmbr Nmbr
cCREs, | Nmbr ovlp ovip % ovlp % ovlp | Distribution
both ovlp loop TAD % ovlp | loop TAD of motif
JmC species | CTCF anchors | bnd CTCF | anchors | bnd enrichment
8 24943 12,435 4,318 2,335 49.85 17.31 936 H=M
12,9,10 42,139 12,075 5,212 3,496 12.37 830 H<M
13,14 25,007 10,174 2914 2,039 40.68 815 H>M

Supplemental Figure S20. Overlap of cCREs in joint metaclusters with DNA segments bound
by CTCF and with loop anchors. (A) Enrichment for overlap of cCREs in JmCs for occupancy by
CTCF. Extensive data on CTCF occupancy in many blood cell types were recorded in our cCRE
db, and we used its query capacity to find the numbers of cCREs in each JmC (human and
mouse separately) that were bound by CTCF, according to the ChlP-seq results compiled in the
VISION project. These numbers were listed in the indicated column, along with percentage of
cCREs that overlap and an estimated enrichment for overlap (colored cells, red for higher
enrichment), determined by dividing by the percentage of all cCREs that are bound by CTCF.
The final column summarizes the results on motif enrichment from main Fig. 4E. (B) Enrichment
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for overlap of cCREs in JmCs for loop anchors and TAD boundaries. This analysis was
conducted on the groups of JmCs that differ in the species distribution of enrichment for CTCF
motifs. Abbreviations in both panels: JmC = joint metacluster, Nmbr = number, ovlp = overlap,
bnd = boundaries, H = human, M = mouse.

Method for SeqUnwinder

We used the SeqUnwinder multi-label discriminative motif finder to discover de novo motifs
associated with each JmC and to search for motifs that were potentially constitutively
differentially enriched across species. We first gave every cCRE two labels: their JInC
membership and their species of origin. We then filtered out sequences that were larger than
1kbp and randomly selected 50,000 sequences from the remaining set. We then provided these
doubly-labeled sequences to SeqUnwinder (v.0.1.5) (Kakumanu et al. 2017) and ran analysis
using the following options: --threads 8 --win 200 --mink 4 --maxk 5 --r 10 --x 3 --a 200 --
hillsthresh 0.1 --memesearchwin 16 --minsubclass 150. Heatmaps were again constructed
using the Python seaborn package (Waksom 2021) and motif logos were plotted using
WebLogo3 (Crooks et al. 2004). Putative TF names were associated with each SeqUnwinder-
discovered motif by matching against mouse and human motifs from Cis-BP (v.2.0) using

STAMP (v.1.0) (Mahony and Benos 2007) with arguments “-cc PCC -align SWU".
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Supplemental Figure S21.
Discriminatory motifs
discovered by SeqUnwinder.
This multi-label
discriminative motif-finder
can deconvolute
contributions of the esRP
pattern from the contributions
of the species in the motif
enrichment patterns. The first
15 columns show motif
enrichments in each of the
joint metaclusters of cCREs,
and the last two columns
show motifs that were
enriched specifically in each
of the two species. As shown
toward the bottom of the
matrix, these species-
specific motifs were primarily
a GC-rich motif that was
systematically enriched in
human cCREs and a TGTG-
repeat motif enriched in
mouse cCREs. The
magnitude of enrichment of
these motifs was limited.
These apparently species-
specific motifs can serve as
the basis for more detailed
studies in the future.



Small differences in the number of cCREs in the structure and function conserved
category (SF cCREs)

The sets of cCREs conserved both in interspecies sequence alignments and inferred function
as regulatory elements (SF cCREs, main Fig. 5A) were expected to have the same numbers of
cCREs in both human and mouse. While the numbers were quite similar, they were not
identical. We discovered “breakage” of a cCRE in one species into multiple cCREs in the other
species was a contributor to this apparent discrepancy (Supplemental Fig. S22). The most
common splits were one cCRE being divided into two cCREs in the other species. Such a split
could reflect a gap in the interspecies alignment or an evolutionary separation into two elements

in the other species.

1595 human SF cCREs have more 932 mouse SF cCREs have more
than one matching in mouse cCREs than one matching human cCREs
# of human |# of matching # of mouse |# of matching
SF cCRE mouse cCRE SF cCRE human cCRE

1476 2 879 2
103 3 46 3
12 4 3 4
2 5 2 6
1 6 1 7
1 7 1 9

Supplemental Figure S22. Frequencies at which a single cCRE in one species was split into
multiple cCREs in the other species during the liftOver procedure.
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Comparison of magnitude of chromatin accessibility in orthologous cCREs in human and
mouse blood cells

The sets of SF cCREs presented the opportunity to examine whether orthologous, presumptive
regulatory elements were involved in similar regulatory processes in both species. We reasoned
that the level of chromatin accessibility would reflect the role and frequency of utilization of an
element, and we used the accessibility signal as a proxy for regulatory role. We found that SF
cCREs in analogous cell types in human and mouse showed a substantial positive correlation in
ATAC-seq signal strength (Supplemental Fig. S23), with Pearson’s correlation coefficients
ranging from 0.52 to 0.67. This result indicated that the SF cCREs may be playing similar

regulatory roles in both species.

human cCREs in HSC human cCREs in CMP human cCRESs in GMP human cCREs in MEP

cor=0.52 cor=0.57 Counts 100 cor=0.59 cor=0.55 Counts
108
Q
D 127
o
®™
¢ 364
- o . 00 0 20 0 ;o & 100 0 20 0 80 ® 100 0 an 100
max in mouse max in mouse max in mouse max in mouse
human cCREs in ERY human ¢cCRES in MONc human cCREs in T_CD4 human cCREs in B cells
. ™
cor=0.59 Counts cor=0.60 cor=0.65 cor=0.67

© 20

“ ry
max in mouse max in mouse max in mouse

Supplemental Figure S23. ATAC-seq signal strength comparisons across species. The signal
strengths for chromatin accessibility for SF cCREs (conserved both in sequence and inferred
function) were represented by the maximum normalized ATAC-seq signal across replicates in
each cell type. Two-dimensional density plots were generated for the signal strength for
chromatin accessibility of SF cCREs in analogous cell types between mouse and human, and
the correlation coefficients were used to estimate the similarities of the signal strength in those
cCREs. Quantile normalization was applied to make the distribution of ATAC-seq signals
comparable between the two species. In general, the signal strength of chromatin accessibility
of SF cCREs were positively correlated in analogous cell types between mouse and human.
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Profiles of epigenetic states in the three evolutionary categories of cCREs in human and
mouse blood cells

To investigate whether any epigenetic states occurred more frequently in one of the three
evolutionary categories of cCREs, we determined the fraction of cCREs in each epigenetic state
in the various cell types for cCREs in each evolutionary category in human and in mouse. We
focused on eight cell types, specifically hematopoietic stem and progenitor cells (human HSC
and mouse LSK), CMP, GMP, MEP, erythroblasts (ERY), B cells, CD4+ T cells and CD8+ T
cells, that were considered analogous between human and mouse. All had replicated epigenetic
datasets on human (for a total of 16 biosamples), and two had replicated datasets in mouse (10
biosamples). The cCREs in each evolutionary category were assigned to a single dominant
epigenetic state in each cell type (and replicate), and the distribution of epigenetic states on
cCREs was computed. Because the full set of human cCREs was about twice the size of the set
of mouse cCREs, a selection of 96,084 human cCREs based on the strongest mean ATAC-seq
signal across all cell types was used for comparison (Supplemental Fig. S24A, B). Epigenetic
states associated with promoter function were prevalent in the SF-conserved cCREs in both
human and mouse, notably states 14 (PA), 15 (PNA), and 19 (PN) (Supplemental Fig. S24C). In
contrast, greater proportions of epigenetic states associated with enhancers were assigned to S
cCREs and N cCREs in human and mouse, such as states 4 (E1) and 5 (N) (Supplemental Fig.
S24D). States associated with transcription were also common in the S and N categories of
cCREs. State 13 (CN), associated with CTCF binding and chromatin accessibility, was common
in all three categories, but notably higher in SF cCREs (Supplemental Fig. S24E). The
distributions of epigenetic states were quite similar between the S-conserved and nonconserved
cCREs across cell types and between species. These results indicated that the stringency of
conservation of cCCREs was related to their inferred function, with the cCREs conserved in

sequence and inferred function associated with promoter-like states. This association led to the
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hypothesis that many SF cCREs were promoters, and this hypothesis was supported by the

analyses presented in the main text, Fig. 5B.
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Supplemental Figure S24. Epigenetic state profile comparisons of cCCREs across evolutionary
categories and between human and mouse. (A) Proportions of 25 epigenetic states in eight
analogous cell types between mouse and human for three evolutionary categories. The top
96,084 Human cCREs were selected to match the total number of mouse cCREs based on
maximum averaged ATAC-seq signal strength across cell types. The proportions for the full list
of human cCREs were shown in (B). Examples of the percentages for promoter-related (C),
enhancer-related (D), and CTCF-binding-related (E) epigenetic states in three evolutionary
categories among eight analogous cell types between mouse and human.
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Impact of cCRE location relative to the transcription start site (TSS) of genes on
conservation scores

The differences in distributions of phyloP scores were interpreted as reflections of differing
levels of evolutionary constraint on cCREs in the three evolutionary categories. However, the
positions of cCREs relative to strongly conserved elements such as coding exons can influence
the phyloP score because the DNA sequence alignments used in computing the phyloP scores
are impacted by positions of aligning DNA segments relative to highly conserved sequences
(King et al. 2007). Specifically, the local alignments were built by extensions from initial high-
scoring matches, and those initial matching segments were frequently in coding exons
(Schwartz et al. 2003). Previous work has shown that the fraction of predicted cCREs with
sequences that align between mammalian genomes was impacted by masking the coding
exons when constructing the whole genome alignment (King et al. 2007). To investigate the
potential impact of this effect, we computed the distribution of distances from the transcription
start site (TSS) of genes both for cCREs and for randomly chosen matched genomic intervals
(Supplemental Fig. S25). The distributions of distances showed considerable overlap, but the
distribution for cCREs had a higher peak close to the TSS compared to the random intervals.
The distributions were significantly different, and thus we cannot exclude an effect of position
relative to the TSS on the distributions of phyloP scores. However, this effect does not rule out
an impact of evolutionary constraint on the phyloP scores, which are themselves derived from a

statistical model that includes phylogenetic inferences.
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Supplemental Figure S25. Distributions of distances from the TSS of the nearest protein-
coding gene for cCREs and for randomly selected matched genomic intervals. Distributions of
distances within a 100 kb interval on each side of the TSS are shown for cCREs and random
intervals for (A) human and (B) mouse. The distributions were significantly different between
cCREs and random intervals (p-value < 2.2*-16 by a two-sample Kolmogorov-Smirnov test).

Given that the distance from the TSS could have some impact on the phyloP scores, we
computed the distribution of these scores after partitioning the cCREs in each evolutionary
category into those that are proximal to the TSS (+/- 1kb) or distal (all other cCRESs). For all
three evolutionary categories, the distribution of phyloP scores was higher for the proximal than
for the distal elements. However, even focusing on the distal elements, the distribution of phyloP
scores is still highest for SF cCREs, followed by S cCREs, and lowest for the N cCREs

(Supplemental Fig. S26).
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Correlation between human and mouse of gene expression levels in blood cell types
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Supplemental Figure S27. Distribution of correlations of RNA levels for protein-coding genes
across blood cell types between human and mouse. The correlations for the GATA1/Gata1
genes and for other closely linked genes are marked with a vertical line.
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Comparison of epigenetic state landscapes between human and mouse blood cells

To compare the epigenetic state landscapes of blood cells between human and mouse, we
computed a correlation based on those state profiles. First, we constructed a vector of values
for the epigenetic states across the 15 blood cell types that are analogous for both human and
mouse. Specifically, we started with the epigenetic states assigned to each 200bp bin in the
human and mouse genomes, based on the IDEAS joint modeling across species. Those states
provided a quantitative profile of the eight epigenetic features used in the modeling
(Supplemental Fig. S28A). Thus, for each 200bp bin, a vector was constructed, comprised of
the eight values for epigenetic features in the state assigned to a cell type, for all 15 cell types.
This process produced a vector of 120 (i.e., 8x150) values (Supplemental Fig. S28B). Second,
we computed the correlations across those vectors in mouse and human, comparing all 200bp
bins across a locus in human with all 200bp bins across the orthologous locus in mouse. This
local, all versus all comparison gave an estimate of the similarity in epigenetic landscapes

across species (Figure 6B). Note that genomic sequence is not included in this comparison.
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Supplemental Figure S28. Computation of a correlation between epigenetic state landscapes

of human and mouse blood cells.
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Decomposition of the correlation matrix of epigenetic states using nonnegative matrix

factorization (NMF)

Method for NMF

To uncover the underlying structure of the correlation matrix of epigenetic states across cell
types and to discern relationships between different genomic regions in both human and mouse,
we applied Nonnegative Matrix Factorization (NMF) to decompose the correlation matrix. NMF
is a dimensionality reduction technique that can efficiently decompose a non-negative matrix
into two lower dimensional matrices. Specifically, given an m-by-n correlation matrix, R0, where
'm' represents the number of genomic bins around the target gene in humans and 'n' represents
those around the orthologous target gene in mouse, we first converted the correlation matrix RO
to a non-negative correlation matrix R by setting all non-positive values in RO to a small value of
1x107"°. This modified matrix, R, was then decomposed into two matrices - an m-by-k matrix (A)
and an n-by-k matrix (B), such that R approximates the product of A and the transpose of B (R =
ABT). The matrices A and B were learned by using the multiplication update rules presented by
Lee and Seung (1999). For the number of factors in NMF, we chose a value of 6 based on the
'elbow' method, which corresponds to the inflection point on the plot of the Bayesian Information

Criterion (BIC) versus number of factors K (Supplemental Fig. S29).
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Each of the six NMF factors captured a distinct, non-overlapping set of epigenetic features

associated with a particular process in gene expression or regulation (Supplemental Fig. S30).
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Supplemental Figure S30. Profile of each of the six factors from NMF, highlighting difference
processes contributing to each factor.

To identify genomic regions with high loading to each NMF factor, we employed a Z-score
based method. One NMF factor k is associated with two NMF loading score vectors: Sk human iS
the k-th column of the matrix A, which includes the NMF loading scores to factor k for all
genomic bins near the target gene in human, and Sk mouse is the k-th column of the matrix B,
which includes the NMF loading scores to factor k for all genomic bins near the target gene in
mouse. We first smoothed the Sk human and Skmouse Vectors using the loess function in R (with a
“span” parameter set at 0.03) to mitigate noise. Subsequently, we implemented two approaches

to pinpoint genomic bins with a high loading to this NMF factor:
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FDR adjusted Z-score based approaches without background gene set adjustment

We first applied a two-round Z-score process to pinpoint genomic bins with a high loading to this
NMF factor. For the S numan (O the Skmouse) Vector, we first transformed it into its corresponding
Z-score vector and associated p-values (round 1). Given our assumption that bins contributing
to a particular NMF factor should exhibit significantly higher Z-scores relative to other bins, we
recalculated the Z-scores for all bins (round 2). This was achieved by excluding those bins with
round 1 Z-score p-values < 0.01 during mean and variance calculations. Following this, we
further adjusted the round 2 p-values by using the False Discovery Rate (FDR), and those
genomic bins with FDR < 0.1 were selected as bins that have significantly higher loading to the
NMF factor k. This procedure was independently done in both human and mouse for each NMF
factor. As a result, for both human and mouse, we identified a set of genomic bins that have
significantly higher loadings to the NMF factor k. We further define the two sets of genomic
regions in human and mouse as the peak regions exhibiting common cross cell type epigenetic
state patterns (positive regulatory dynamics for GATA1/Gata1 gene loci) between the two

species.

NMF factors in human and mouse capture a similar set of epigenetic features across cell types
In this analysis, we interpreted the regions within the same Non-negative Matrix Factorization
(NMF) factors as genomic regions in the two species that show highly similar cross-cell type
epigenetic state patterns. To validate this interpretation, we computed the average correlation
between the regions with high loading scores of each pair of the NMF-factors across the two
species. Specifically, we first selected genomic bins that exhibit high NMF loading scores
(exceeding the 90th percentile) as representative bins for each factor in each of the species.
Then, for a pair of the NMF-factors, factor-i and factor-j, the correlation between the two species
was computed as the average correlation of epigenetic states across cell types between the

representative bins of factor-i in human and the representative bins of factor-j in mouse. As
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illustrated in Supplemental Fig. S31, each NMF factor in human (each column) exhibits one of
the highest average correlations against the same NMF factor in mouse (each row). We

conclude that the NMF factors capture a similar set of epigenetic state patterns in each species.

06 Supplemental Figure S31. The
Gata1_1 82 average correlation matrix between

and the representative bins of factor-j

in mouse.
Gatal_5
.Gata1_6

Human factors

N %% human NMF factors and mouse NMF
— 01 factors. Each entry in the matrix shows
O Gatal_2

— the average of Pearson’s correlation
O Gatat 3 coefficients of epigenetic states across
ch - cell types between the representative
Q (high scoring) bins of factor-i in human
w) Gatal_4

-

=

LTIVIVD

27 IVIvD

€ IVIVD

VYD

STIVIVD

97 IVIVD

FDR adjusted Z-score based approaches with background gene set adjustment

Some of the cross-cell-type epigenetic state patterns are more commonly shown across the
genome, and thus the previous approach is likely to identify some of these patterns as false
positive discoveries that would be found in comparisons of random loci. To reduce the impact of
this issue, we refined our approach by incorporating a background gene set adjustment.
Specifically, we began with calculating the correlation matrix between human-target gene and
mouse-target gene (Rhuman-tar-vs-mouse-tar) @nd decomposing this correlation matrix into two NMF
matrices (Rhuman-tarvsmouse-tar = ABT). Next, instead of directly converting the A matrix's Sk human
vectors into Z-scores using mean and variance from the A matrix, we revised our method to

include an initial selection of 100 random mouse genes. For each of 100 randomly selected
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mouse genes, we calculated its correlation matrix with the human-target gene, denoting each as
one of the background correlation matrices (Rhuman-tar-vs-mouse-bg-i)- We then decomposed the
Rhuman-tar-vs-mouse-bg-i USiNg NMF, keeping the A matrix constant as derived from the original
correlation matrix between human-target gene and mouse-target gene decomposition (Rhuman-tar-
vs-mouse-bgi = ABbg-i |). Subsequently, for each Sk numan Vector, we computed the corresponding Z-
score vector and associated p-values. The mean and variance for these calculations were
derived from all 100 Sk mouse-bg-i VECtOrs. The Z-scores were then converted to p-values, which
were then adjusted using the FDR. Genomic bins with an FDR < 0.1 were identified as having
significantly higher loading scores to the NMF factor k. The same analysis was also done for the
B matrix to identify genomic bins with significantly higher loading scores to all NMF factors in
mouse. In summary, this approach mitigated the false positive discoveries for the cross-cell-type
pattern that are commonly presented across the genome in this analysis. The effectiveness of
this bias reduction is demonstrated in Supplemental Fig. S33, as presented in the next section
“False discovery rate in finding related elements using NMF of correlation matrices of epigenetic

states”.

Robustness of epigenetic patterns captured by NMF factors

We found that the identification of the patterns characteristic of factors 3 and 6, discovered
using k=6 for NMF, was robust to the choice of k. The factors identified using k ranging from 4
to 9 included factors with patterns similar to those of factors 3 and 6 (from k=6), as shown in
Supplemental Fig. S32A. Using high values of k (15 and 20) decomposed these patterns into
multiple factors (Supplemental Fig. S32B) but using these high values for k was not supported

by the BIC analysis (Supplemental Fig. S29).
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Supplemental Figure S32. The patterns discovered for NMF factors 3 and 6 are robust to the
choice of k. The intensities of signals for the NMF factors from decomposition of the correlation
matrix for interspecies comparisons of epigenetic states along the region around the human
GATA1 gene (see main Figure 6) are shown for various values of k used in NMF. The factors
corresponding to factor 3 and factor 6 (discovered using k=6) are labeled in the results for each
value of k. (A) Results for using k from 4 to 9. (B) Results for using k=15 and k=20.
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False discovery rate in finding related elements using NMF of correlation matrices of
epigenetic states

Statement of the problem

Having shown that comparisons of the epigenetic landscape between species can reveal
elements with similar roles in regulation, even in the absence of genomic sequence alignment,
we wanted to estimate the frequency at which these interspecies correlations of epigenetic
states across cell types would lead to false discovery. The question of what constitutes a false
positive in this context is challenging. A major complication is the well-established association of
certain histone modifications with particular processes in gene regulation and expression. Those
processes may not show gene specificity, as illustrated by the presentation on NMF factor 6 in
Fig. 6 F and G, in which a common function of transcriptional elongation across most cell types
is assigned to two different intervals in the same 100kb region, specifically downstream of
GATA1 and the HDACG6 gene. Of course, one expects to find a high correlation in the epigenetic
states across cell types between any genes — orthologous or non-orthologous - in which the
H3K36me3 modification is left during elongation in most cell types. Such a case points to a
common mechanism of expression or regulation across most cell types. The interesting new
discovery in the state correlation and NMF decomposition was that some NMF factors reveal
specificity in regulating the same gene or regulating genes with a similar cell type-specific
expression profile. In considering the issue of false discovery, the pertinent question is whether
the epigenetic comparisons reveal a common function with some specificity. To investigate this
issue of potential false discovery, we examined the correlation matrices between cross-cell type
epigenetic state profiles of one human locus and those from multiple non-orthologous loci in
mouse, under the assumption that elements with high correlations at non-orthologous loci were
candidates for false discovery. When evaluating the results, we distinguished between two
related goals. The initial goal was (1) to find tissue-specific regulatory elements that requlate a

particular pair of orthologous genes between species. Our examination of epigenetic state
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correlations across cell types in non-orthologous loci led to the articulation of a second goal,
which was (2) to reveal genomic elements that appear to be involved in a common function as
tissue-specific requlatory elements. The estimate of false discovery rate differs depending on

the stated goal.

In the following presentation, we began with a broad assessment in which all discovery between
non-orthologous loci was considered a “false positive” (using goal 1 of finding regulatory
elements for orthologous genes), which in turn led to an improvement in the method used for
calling peaks in the NMF factors. We then assessed some of the signals driving the apparent
“false discoveries”, focusing on factors with specificity for regulation in erythroid and
megakaryocytic cells. Finally, we show that an apparent “false discovery” (by goal 1) in a non-
orthologous locus was actually pointing to a previously unrecognized genomic region with
multiple hallmarks of erythroid regulation, and hence it is a candidate for a true discovery by the

criterion of goal 2, i.e., finding tissue-specific regulatory elements.

Analytical approach

As an approach to systematically evaluating false discoveries, we examined the epigenetic state
correlation matrices between orthologous and non-orthologous loci. We compared the
epigenetic states across cell types between the human GATA1 gene locus and four mouse loci,
the orthologous Gata? gene locus and three non-orthologous loci. For the non-orthologous
comparisons, we chose the locus containing Cd4 because that gene is expressed specifically in
CD4+ T-cells, the locus containing Rps19 because that gene is expressed ubiquitously in all the
cell types examined, and the locus containing Sic4a1 because that gene is specifically
expressed in erythroid cells and may reveal some elements with an erythroid regulatory
component in common with those identified in comparisons of the human GATA1 and mouse

Gata1 loci. The distinct expression patterns of genes in these three non-orthologous loci should
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provide a diverse basis for comparison. We found that certain regions within the locus
containing the human GATA1 gene exhibit ed high state correlation with these non-orthologous
mouse loci, with correlation coefficients in a range similar to those for the comparison with the
orthologous mouse locus (panels A-D of Supplemental Figure S33). We then applied NMF to
decompose the correlation matrices and reveal the NMF factors contributing to the high
correlations (panels E-H). In this decomposition, we fixed the human GATA1 locus factor matrix
to be the one obtained from the human GATA1 locus and mouse Gata1 locus NMF

decomposition and only updated the factor matrix for each of the non-orthologous loci.

Initial statistical results

We used FDR-adjusted Z-score p-values to identify specific intervals within these mouse loci
that correlate highly with each 200 bp bin of the human GATAT locus (panels I-L). The state
correlations associated with NMF factors 2, 3, 4, and 6 passed the threshold for several
genomic bins, and thus these genomic intervals contributed to statistical discovery in this
analysis. In contrast, the state correlations associated with NMF factor 5 had relatively low
correlation coefficients, and no genomic intervals passed the FDR threshold for highly
correlated elements (panels I-L) in any of the loci. NMF factor 1 largely captured the background

correlations, none of which passed the threshold for highly correlated.

These results showed that, if one included all the windows in non-orthologous loci with
significant state correlations as “false positives” (all the intervals in panels J-L), then many
discoveries were “false” by goal 1, approaching the number of “true positive” discoveries in the
orthologous comparisons. To estimate the false-discovery rate for GATA7-Gata1 comparisons,
we assigned all the genomic intervals in the mouse Gata7 locus with high correlation (panel I)
as “true positives” and those in non-orthologous loci with high correlation as “false positives”

(panel J, K, and L). The false discovery rates from this initial estimate were indeed high, even
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for NMF factors 3 and 4 that are associated with erythroid-megakaryocytic specific activation
(panel Q).
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Supplemental Figure S33. Assessment of false and true discovery by epigenetic state
comparisons at orthologous and non-orthologous loci.

(A-D) The state correlation matrices between human GATA1 locus and four mouse loci, which
were approximately 100kb regions containing the genes Gata? (orthologous to human GATAT,
panel A), and three non-orthologous genes Cd4, Rps19, and Sic4a1 (panels B-D). The
epigenetic state landscapes from the joint human-mouse IDEAS model in 15 cell types are
shown along the axes, along with gene annotations. (E-H) The factor matrices of the four
correlation matrices after NMF decomposition. (I-P) The mouse genomic intervals identified as
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having significantly high correlation scores within each of the NMF factors. Panels I-L show the
result from the initial approach, which used the mean and standard deviation of the same gene
locus to establish the background for the Z-score and FDR calculations. Panels M-P show the
result based on the mean and standard deviation determined from a diverse set of loci for the
background. (Q and R) The FDR of identified mouse genomic intervals with high epigenetic
state correlations in the Gata7 locus based on NMF factors 3 and 4 relative to the three
comparison, non-orthologous loci. (Q) The top panel is the result based on the mean and
standard deviation of the same gene locus (initial method). (R) The bottom panel is the result
based on the mean and standard deviation of the diverse set of loci for the background (refined
method).

Refinement of the criterion for discovery

These initial results suggested that incorporating epigenetic state correlations between non-
orthologous loci could improve our approach to finding highly correlated intervals. Our initial
method relied solely on the state correlation matrix between the human GATA1 locus and one
specific mouse target locus for the Z-score calculation, and we refined the method to
incorporate the state correlation matrices between the human GATA1 locus and multiple other
mouse loci. The examination of a diverse set of loci was expected to provide a more robust
estimate of the background correlations. First, we randomly selected 100 loci of about 100kb
surrounding different mouse genes to use as background loci and generated the correlation
matrices between the human GATA1 locus and these mouse background loci. Then, we
decomposed the correlation matrices by NMF, again fixing the human GATA1 locus factor
matrix as the one obtained from the human GATA1 locus and mouse Gata? locus NMF
decomposition, and only updating the factor matrix for each of the background loci. Next, we
used the output of the factor matrices from the 100 background loci to establish a background
mean and standard deviation for recomputing the Z-score for the factor matrices for the
foreground gene loci (Gata1, Cd4, Rps19, Sic4a1). In this refined approach, we selected the

genomic intervals based on the 10% false discovery rate relative to the 100 background genes.
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The impact of this refinement is evident in panels M-P and panels Q vs. R. This refined
approach had little impact on the “true discovery” in the orthologous comparisons (compare
panels | and M), but it did exclude much of the “false discovery” at the Cd4 locus (compare
panels J and N) while increasing the discovery at the Sic4a1 locus (compare panels L and P),
which was expected to have some regulatory elements similar to those at the Gata? locus. We
note that the “false discovery” at the Rps79 locus was not strongly impacted by the refined
approach. This recalibration of the background reduced the estimated false discovery rate for
comparisons between the human GATA1 locus and the mouse Cd4 locus (compare panels Q
and R); this estimated rate for NMF factor 3 was reduced from about 0.4 to about 0.1 while the
estimated FDR for NMF factor 4 was reduced from about 0.6 to almost zero. The limited impact
on the estimated false discovery rate for NMF factors 3 and 4 for comparisons with the Rps19
locus and the increased rate for comparisons with the Sic4a1 locus appear to reflect erythroid
and megakaryocytic gene regulatory regions, and thus they could be considered “true
discovery” by goal 2 (finding tissue-specific regulatory elements), as explained in the next

subsection.

Biochemical interpretations and a candidate for true discovery in a non-orthologous locus

The statistical analysis using a simple rule for distinguishing “true” from “false” positives gave a
low estimate for a false discovery rate for comparison with one non-orthologous locus (panel R),
but several discoveries at the non-orthologous loci Rps19 and Sic4a1 remained or were
enhanced by the refined approach to finding strongly correlated genomic intervals. A deeper
examination of the biochemical signatures and epigenetic features driving these correlations
improved the interpretation of apparent “false” discoveries (by goal 1) and led us to propose that
many appeared to be discoveries of tissue-specific regulatory elements, and hence would be

considered “true” discoveries by goal 2.
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The state correlations driven by NMF factors 3 and 4 were of particular interest because they
were associated with gene activation specifically in erythroid and megakaryocytic cells
(Supplemental Fig. S30), just like the GATA1 gene that was in the center of the human locus
used in all the comparisons. The non-orthologous locus containing Cd4 has no genes
expressed specifically in erythroid cells, and the epigenetic state landscape, displayed along the
vertical axis of panel B, does not show any regions with an erythroid or megakaryocytic pattern
of active states. Most of the genomic intervals with correlations associated with NMF factors 3
and 4 were no longer considered discoveries when the multiple random gene background was
adopted for the FDR-adjusted Z score p-value (panel N). In contrast, the gene Sic4a1 is
abundantly expressed specifically during late erythroid maturation, which was reflected in the
pattern of active epigenetic states only in erythroid cells (y-axis of panel D). Thus, we thought
we might see regulatory regions for Sic4a1 to have a signal for factors 3 and 4, despite the fact
that this gene is not expressed in megakaryocytes, whereas the reference gene (GATAT) is
expressed in both erythroid and megakaryocytic cells. Indeed, the mouse Sic4a1 gene and
surrounding regions showed state correlations associated with NMF factors 3 and 4 (panel H),
but none passed our initial FDR threshold for highly correlated elements (panel L). However, the
refined approach revealed several highly correlated elements for NMF factors 3 and 4 (panel P).
These elements (indicated on panel P) correspond to regulatory regions demonstrated
experimentally to regulate expression of the mouse Sic4a1 gene (Fox et al. 2020). Thus, while
the estimated false discovery rate for NMF factors 3 and 4 are high (about 0.5 and 0.4,
respectively) for comparing the human GATA7 and mouse Sic4a1 loci, we would argue that
most of these discoveries at the non-orthologous locus can be considered “true” discoveries of

erythroid regulatory elements (goal 2).

The discovery of elements with high correlations associated with NMF factors 3 and 4 in the

comparison between the human GATA1 and mouse Rps19 loci were initially puzzling. We had
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chosen this locus to represent one with genes commonly expressed in all the cell types
examined, and indeed the epigenetic state landscape reflects the common expression of genes
Arhgef1 and Rprs19, with active promoter states (red) and transcriptional elongation states
(green) for all cell types included (y-axis of panel C). The elements with highly correlated
epigenetic states and associated with NMF factors 3 and 4 were located in a different part of the
locus, between the genes Gm9844 and Gm5893 (indicated on panel O). Although these genes
are not known to be expressed specifically in erythroid or megakaryocytic cell types, the
epigenetic state pattern in this region showed states associated with enhancers (yellow) and
promoters (red), with a strong signal in the erythroid and megakaryocytic cells. To obtain further
experimental evidence as to whether this region could contain elements with a potential role of
regulation in erythroid and/or megakaryocytic cell types, we examined the occupancy profile of
transcription factors and co-activators active these two cell types in mouse. The transcription
factors GATA1 and TAL1 are major regulators of gene expression in erythroid and
megakaryocytic cells, and we found that multiple sites within this region were shown by ChlIP-
seq to be bound by these transcription factors in erythroid cells, and a different site was bound
by them in megakaryocytic cells (Supplemental Fig. S34). These sites bound by GATA1 and
TAL1 in erythroid cells were also bound by the co-activator EP300 and the chromatin modulator
BRD2. Thus, we infer that the “false” discovery (by the goal 1 criterion of all discovery at non-
orthologous loci being false, panel R of Supplemental Fig. S33) actually pointed to a previously
unrecognized region with a plausible potential regulatory role specifically in erythroid and

megakaryocytic cells, which would be a “true” discovery by goal 2.
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Supplemental Figure S34. A candidate for a discovery of a potential element regulating
expression in erythroid and/or megakaryocytic cells based on correlations of epigenetic states at
non-orthologous loci. The 101kb mouse genomic locus containing the Rps19 gene is shown
with (top to bottom) the epigenetic state assignments from the joint human-mouse IDEAS model
in 15 blood cell types, the VISION cCREs, the gene annotations, and ChlP-seq profiles for
occupancy by the cofactor EP300 in an erythroid tissue (fetal liver) and two cell lines (erythroid
MEL and B-cell derived CH12), an HA-tagged form of the chromatin modulator BRD2 in an
erythroid cell line model (G1E-ER4+EZ2), the transcription factors GATA1 and TAL1 in several
erythroid or megakaryocytic cell tissues or cell lines, and the structural protein CTCF in several
erythroid tissues or cell lines and CH12. Abbreviations include: fl = fetal liver, MK =
megakaryocyte, ERY = erythroblast. The red rectangle encompasses the region with chromatin
signatures of epigenetic features associated with erythroid and megakaryocytic regulation.

83



Much of the high state correlation was contributed by epigenetic states around genes expressed
or regulated by a shared process across many cell types. For example, NMF factor 5, which is
dominated by the polycomb mark H3K27me3, accounted for much of the high correlation of
states between the ERAS and PCSK1N genes in the human GATA1 locus and the non-
orthologous mouse loci containing Cd4 (almost all the genes except MIf2), Rps19 (the Dmrtc2
and Gm4881 genes), and Sic4a1 (the Rundc3a gene and some intergenic intervals)
(Supplemental Fig. S33). These intervals with polycomb-modified chromatin across most cell
types clearly contributed to the state correlations (panels B-D) and NMF factor 5 (panels F-H)).
Another example is NMF factor 6, which is dominated by the elongation mark H3K36me3.
Factor 6 accounted for additional correlations of epigenetic states around the HDACG6 gene in
the human GATA1 locus with specific genes in the non-orthologous loci, such as the MIf2 gene
in the Cd4 locus and the Arhgef1 gene in the Rps19 locus. Similarly, genomic intervals with
states associated with active promoters across all cell types (NMF factor 2) were found in the
orthologous and non-orthologous comparisons. We interpret these correlations accounted for by
NMF factors 5, 6, and 2 as reflecting the common functions across cell types of polycomb-
mediated repression of some genes (factor 5) elongation of transcription at expressed genes
(factor 6), or active promoters (factor 2). We would argue that these apparent “false” discoveries
(by the criterion of all discovery at non-orthologous loci being false) actually indicated a

discovery of regulation or expression by these common functions broadly across cell types.
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Effectiveness of interspecies sequence alignment and epigenetic state correlation for
regulatory element discovery

Statement of the issue

By utilizing chromatin accessibility and epigenetic state annotation in blood cells in our VISION
project, we have predicted cCREs without regard to their sequence conservation between
species (human and mouse). The collection of VISION cCREs provided an opportunity to
estimate how much true discovery will be missed by focusing only on genomic elements in
which the DNA sequence aligns between species. Given that regulatory elements have been
discovered in transposable elements that are found only in human (or only in mouse), it is
apparent that some regulatory elements would be missed by requiring interspecies sequence
alignments. We wanted to use the VISION cCRE collection to assess how large the impact

could be.

Approach to analysis

Under the assumption that the true discovery of our interspecies analysis lies in identifying
specific DNA elements with regulatory functions demonstrated experimentally, we used a large,
almost comprehensive collection of short DNA elements shown to be active in a robust assay
for elements that regulate reporter gene expression as a proxy for the true discovery. Agarwal et
al. (2023) used an enhanced lentivirus massively parallel reporter assay (lentiMPRA) to test
over 200,000 DNA segments for activity in boosting or reducing gene expression after
integration into three different cell lines. We focused on the results from K652 cells, in which all
promoters for protein coding genes and a close to comprehensive set of candidate enhancers
(based on DNase-seq peaks from ENCODE), along with many controls, were tested in forward
and reverse orientations. The activities of each construct in the lentiMPRA library were reported
as mean activity scores, which incorporated results from multiple barcoded constructs for each

DNA fragment and running the assay in triplicate. A total of 87,186 lentiMPRA constructs
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produced scores that were interpreted as reflecting an element active in this assay, i.e., the
mean of the activity scores for the three replicates passed a threshold (-0.117) that corresponds
to an FDR of 5%. Those active scores were generated from a set of 57,061 elements, reflecting

the fact that some elements were active in both orientations.

A larger fraction of elements active in lentiMPRA are in chromatin with a non-quiescent state
than are in DNA segments that align between human and mouse.

That collection of 57,061 elements shown to be active in at least one orientation in the
lentiMPRA in K562 cells can be considered a proxy for a ground truth to ascertain the impact
and efficacy on true discovery of (a) requiring that DNA sequences align between human and
mouse and of (b) requiring an epigenetic state or esRP score in K562 cells indicative of activity
in expression or regulation. For each of the active elements, we determined whether the human
DNA sequence aligned with the mouse genome assembly using the liftOver tool. We found that
34,434 (60.8%) had an aligning sequence in the mouse genome, but the remaining 22,627
(39.2%) elements did not align to mouse. These results show that requiring sequence alignment

will miss a large portion (about 40%) of elements active in lentiMPRA.

In contrast, about 87% of the active elements were in an epigenetic state in K562 cells
indicative of dynamic chromatin modifications and accessibility. We determined the dominant
epigenetic state in K562 cells (from our joint IDEAS modeling) for 56,663 elements; this slightly
smaller set does not include almost 400 active elements that are located regions of human
genome to which large numbers of sequencing reads map (high signal regions or blacklisted
regions). The epigenetic states were aggregated into those with histone modifications, CTCF
binding, and/or nuclease accessibility, which we termed non-quiescent states, in contrast to the
low signal quiescent state. As tabulated below, almost 87% of the active elements were in a

non-quiescent state. After aggregating active elements by whether their states are associated
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with gene activation, repression, or transcriptional elongation, we found that 82.5% of the active

elements were in states associated with gene activation.

Category Number of elements | Percent
Non-quiescent state 49,145 86.7
Quiescent state 7,518 13.3
States associated with gene activation 46,770 82.5
States associated with gene repression 1,713 3.0
States associated with transcriptional elongation | 662 1.2

Since a greater proportion (86.7%) of the active elements are in dynamically active chromatin
than are in sequences that align between human and mouse (60.8%), one can make more true
discoveries by including sequences that do not align between human and mouse in the

predictions of CREs. These results are summarized graphically as panel D of main Figure 5.

Elements active in lentiMPRA are more highly enriched in DNA intervals with high cross-cell
type correlations in epigenetic state with and without DNA sequence alignment to mouse

To verify whether our method, which is predicated on correlations derived from cross-cell type
epigenetic state patterns, can effectively identify 'true discovery' DNA elements, we applied it to
analyze the lentiMPRA results around 30 genes. These genes were selected based on their
high or specific expression in K562 cells, while including some genes not expressed in K562
cells, such as Cd4. We divided a 100kb interval centered on the transcription start site (TSS)
into 200bp windows, giving 501 windows (250 windows on each side of the window containing
the TSS) for of each of the 30 different genes. Each window was placed into one of four distinct

groups, which were defined as having: (1) both high cross-cell-type epigenetic state pattern
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correlation (sufficient to be called as a peak in an NMF factor from the epigenetic state
correlation matrix) and sequence conservation between human and mouse, as established by
liftOver between the two genome assemblies (S&C); (2) high cross-cell type epigenetic state
pattern correlation only (C); or (3) interspecies sequence conservation only (S). All remaining
windows were placed into the fourth category, Other. For the DNA windows in each of these
four categories, we calculated the enrichment of the intersection between the group region set

and the collection of 57,061 active DNA elements based on lentiMPRA.

Nobs,i,jlentiMPRATSTL

N: - N: . il
( by L,lenthPRA,XNi total+5n)
Nitotal Njtotal ’

enrichment; ; =

where Nops i i 1entimpra iS the number of 200bp windows that intersect with both Nyptimpra PEaK
regions and group-j regions in the 100kb window round the TSS of gene-i, N; ; is the number of
200bp bins that intersect with group-j regions in the 100kb window around the TSS of gene-i,

N; 1entimpra IS the number of 200bp bins that intersect with lentiMPRA peak regions in the 100kb
window around the TSS of gene-i, N; 1o¢4; is the total number of 200bp bins in the 100kb window
around the TSS of gene-i, and sn is an added small number to avoid zeros in the denominator.
As shown in Supplemental Fig. S35A, the S&C group and C group have significantly higher

enrichment (pairwise Wilcoxon test p-value < 0.05).

We then delved deeper to understand why the regions that are conserved in sequence but not
called as peaks in the epigenetic state correlation (S) showed lower enrichment. One
hypothesis was that these regions might predominantly be located in transcribed regions. To
investigate this, we assessed the enrichment of these four sets in DNA regions exhibiting high

H3K36me3 signals in K562 cells (IDEAS states 2 and 8). Supplemental Fig. S35B illustrates our

88



findings: as anticipated, the sequence-only conserved regions (S) show a notable enrichment in

these specific areas.

In conclusion, our findings show that, for the four categories examined, DNA regions exhibiting
both sequence conservation and high similarity in cross-cell-type epigenetic state patterns are
more likely to function as true regulatory elements. In cases where only one of these criteria is
met, the regions with a high similarity in the cross-cell-type epigenetic state patterns tend to be
more enriched in regulatory function, as revealed by lentiMPRA assays. The observed low
enrichment in the lentiMPRA intersections for regions with only sequence conservation implies
that these intervals are less likely to be involved in gene regulation, while their enrichment for

the H3K36me3 modification associated with elongation indicates that they are frequently

transcribed.
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Supplemental Figure S35. The enrichment of requlatory elements and regions of
transcriptional elongation in four categories of DNA windows defined by sequence alignment
between human and mouse and by high correlation of epigenetic state profiles between human
and mouse orthologous genes. (A) The enrichment of experimentally determined regulatory
elements from lentiMPRA results in K562 cells. (B) The enrichment of DNA regions labeled as
being in IDEAS epigenetic states associated with transcriptional elongation (H3K36me3) in
K562 cells. Each box plot gives a summary of the distribution of enrichment values for the 30
genes for the indicated feature (lentiMPRA active in A and H3K36me3 state in B) and category
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of DNA windows. The categories are (S&C) both high cross-cell type epigenetic state pattern
correlation and sequence alignment between human and mouse, (C only) high cross-cell type
epigenetic state pattern correlation only, (S only) interspecies sequence alignment only, and
(Others) all remaining windows. In the box plots, the line in the box indicates the median, and
the whiskers extend to 1.5 times the interquartile range.

Enrichment of cCREs in the three evolutionary categories for specific JmCs in the
vicinity of orthologous genes

The comparison of epigenetic state profiles across cell types also provided a means to
categorize cCREs across species that did not require a match in the underlying genomic DNA
sequence. We used that information to identify cCREs that may be playing a similar role in
regulation in both species despite their lack of conservation in DNA sequence. Specifically, we
hypothesized that most cCREs regulating expression of orthologous genes would show a
similar epigenetic profile across cell types in both species, regardless of whether the element
was conserved in sequence. We leveraged the membership of each cCRE in the joint
metaclusters (JmCs) determined in human and mouse because those JmCs reflect the inferred
activity (deduced from epigenetic states) of the cCREs across cell types, reasoning that most
cCREs regulating a given gene would be in one of the JmCs found frequently in the locus.
Orthologous loci in mouse and human were defined as 100 kb genomic DNA intervals centered
on the TSS of a gene with an identical name in the two species. Within these orthologous loci,
we calculated the enrichment of each joint metacluster (JmC) in the collection of cCREs and
assessed whether each individual cCCRE was a member of the enriched JmC (Supplemental
Fig. S36). Thus, each cCRE was assessed both for its evolutionary history, which relied on DNA
sequence alignments, and its regulatory potential deduced from epigenetic state profiles, which
did not rely on DNA sequence alignments. The cCREs in these orthologous loci were assigned
to a subdivision of the conservation categories; the cCREs in JmCs enriched for a specific
orthologous locus were labeled SF+, S+, and N+, whereas those not in enriched JmCs were

labeled SF, S, and N cCREs (Supplemental Fig. S36C). Using this approach, one can deduce
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that even cCREs in non-aligning genomic regions, such as the one upstream of Gata7, have
epigenetic state profiles suggestive of a role in regulation of the orthologous gene
(Supplemental Fig. S36D). Inclusion of the JmC enrichment along with the evolutionary
categories increased the correlation between the esRP scores of cCREs and the expression of
their inferred target genes (Supplemental Fig. S36E). The increase in correlation was observed
for cCREs in all three evolutionary categories, including the species-specific N category,
consistent with our hypothesis of common epigenetic profiles across cell types for relevant
regulatory elements regardless of evolutionary category. These JmC enrichments provided an
opportunity to delve into assessment of potential functions across species even in regions of the

genome that no longer align between species.
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Supplemental Figure S36. Enrichment of epigenetic states in orthologous loci. (A)
Categorization of cCREs using liftOver between human and mouse for conservation of
sequence (S) and cCRE calls in human and mouse for conservation of inferred function (F). (B)
A proxy for analogous function is a similar epigenetic pattern across cell types, which was
captured as membership in the same joint metaclusters (JmCs) in human and mouse. The
JmCs enriched in cCREs in each gene region (TSS+/-50kb) were determined, and then the
cCREs were assessed for membership in the enriched JmCs. The JmC assignment for each
cCRE does not change as windows are centered on different genes, but enrichment for that
JmC can change. (C and D) JmC enrichment tracks of cCCREs at the human GATA7 and mouse
Gata1 gene loci. A “+” sign assigned to a cCRE indicates that the JmC to which it belongs was
enriched at the GATA1/Gata1 gene locus. (E) The correlation between the cCRE’s esRP score
and the target gene expression level. The results for each set of cCREs are shown as box plots
summarizing the distribution of correlations observed for all loci with orthologous protein-coding
genes. The cCREs in each evolutionary category were separated into those that are members
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of the JmCs enriched for a gene locus (indicated by a +) or those that are not (labeled SF, S,
and N).

The enrichment threshold required to consider a JmC enriched in the vicinities of an orthologous
gene pair (Supplemental Fig. S36 B-D) was determined based on the distribution of FDR
adjusted p-values of the Z scores for the computed enrichments of all JmC enrichment for all
gene pairs (Supplemental Fig. S37). Those enrichment scores were converted to Z-scores, and
the FDR-adjusted p-values were computed from the distribution of Z-scores. The JmC
enrichment of 2.27 was chosen as the threshold based on the FDR adjusted Z-score p-value =

0.1.

Supplemental Figure S37. The
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CODE ACCESS

Scripts and code used in the analyses in this paper are provided as two zipped directories in the
Supplemental Material: scripts_for_ GR2023_analysis for the joint IDEAS modeling and most
other analyses, and cre_heritability for the sLDSC analysis. These scripts and code are also in

two GitHub repositories: https://github.com/quanjue/Joint Human Mouse IDEAS State for the

joint human-mouse IDEAS pipeline and https://github.com/usevision/cre _heritability for the

sLDSC analysis.
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