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Data generation and collection  

To conduct our joint integrative analysis of human and mouse regulatory landscapes across 

progenitor and mature blood cell types, we collected 404 data sets of epigenetic features related 

to gene regulation and expression, 216 in human and 188 in mouse. These datasets (illustrated 

in Figure 1 of the main text) are listed in Supplemental Table S1 along with metadata such as 

source laboratory (consortia and individual laboratories), biosamples, the molecule ascertained, 

and file IDs. The 404 data sets included 44 new ones that were generated for this work; these 

are listed in Supplemental Table S2 along with information about the biosamples and molecules 

ascertained. Many of the new data sets were for epigenetic features and RNA in the HUDEP1 

cell line, which is Human Umbilical Cord Blood-Derived Erythroid Progenitor cell line 1 that 

expresses gamma-globin upon induced differentiation.  

 

Most data collected were from primary cell populations, and data from commonly used cell lines 

were also included. Much of the epigenetic data for mature blood cell types in humans was 

collected as mapped reads (human genome build GRCh38) in bigWig format from the data 

portal for the BLUEPRINT Project (Martens and Stunnenberg 2013; Stunnenberg et al. 2016). 

Additional data, including ATAC-seq for human progenitor cells (Corces et al. 2016), and the full 

set of features in HUDEP1 (generated for this paper), HUDEP2 (Cheng et al. 2021; Qi et al. 

2021), and K562 (The ENCODE Project Consortium et al. 2020) cell lines were collected as 

sequencing reads and processed through the mapping pipelines described in a previous 

VISION paper (Xiang et al. 2020b), mapping the reads to human genome build GRCh38. 

Replicate data were obtained for most but not all features across the cell types, especially for 

the human blood cell types (Supplemental Table S1), and integrative analysis was conducted 

keeping the replicate sets separate for each cell type. The sequencing reads in the data for 

mouse hematopoietic cells, both new and described previously, were mapped to mouse 

genome build mm10 (Xiang et al. 2020b). 
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The epigenetic features studied here were associated with several processes in gene 

expression and regulation. Chromatin accessibility is a general feature of almost all regulatory 

elements, and it was measured by the Assay for Transposase Accessible Chromatin with high 

throughput sequencing (ATAC-seq, Buenrostro et al. 2013; Corces et al. 2016) or by DNase-

seq (Thurman et al. 2012) for almost all cell types in both species. Available ChIP-seq data for 

up to six histone modifications provided information related to different elements or processes in 

gene expression, specifically H3K4me3 for promoters and H3K4me1 for enhancers (Birney et 

al. 2007; Heintzman et al. 2007), H3K27ac for activation (Roh et al. 2005; Smith and Shilatifard 

2014), H3K36me3 for transcriptional elongation (Li et al. 2002), H3K27me3 for repression by 

the Polycomb repressor complex (Muller et al. 2002; Schwartz et al. 2006), and H3K9me3 for 

heterochromatin (Padeken et al. 2022). ChIP-seq data on occupancy by the structural protein 

CTCF associated with insulation (West et al. 2002) were available in many cell types. Bulk 

RNA-seq data were collected for all cell types.  

 

Different data sets on epigenetic features in K562 cells were used for the integrative analysis 

and for the compilation of orthogonal annotations. Specifically, the CTCF ChIP-seq data from 

K562 cells used for the integration were ENCODE files ENCFF000YLW and ENCFF000YLY. 

For the orthogonal annotations, we used the CTCF ChIP-seq peaks reported by an independent 

laboratory (Pugacheva et al. 2015). Other data sets from K562 cells used in the compilation of 

orthogonal annotations (see later section) were not used in the IDEAS integrative analysis. 

 

The newly generated data utilized in this paper came from purified populations of mouse blood 

cells and from human and mouse blood cell lines. Populations of primary blood cells were 

purified from mouse bone marrow by cell sorting using distinctive panels of surface markers 

listed in Supplemental Table S1. Cell lines included Human Umbilical Cord Blood-Derived 
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Erythroid Progenitor cell line 1, abbreviated HUDEP1, a mouse model of Gata1-deficient 

erythroid progenitor cells (G1E), and a subclone of G1E cells conditionally rescued with a hybrid 

GATA1-estrogen receptor protein (G1E-ER4). The latter cell line was induced for erythroid 

maturation by treatment with 1x10-8 M estradiol for 24 hr (G1E-ER4+E2 cells).  

 

The protocol for ChIP-seq followed previously published procedures (Cheng et al. 2009). In 

general, approximately 2.5 × 107 cells were used for each immunoprecipitation. Cells were 

cross-linked with 1% formaldehyde for 10 min at room temperature with rotation, and the 

reaction was quenched with glycine at a final concentration of 125 mM. Cross-linked cells were 

then lysed and resuspended in 2 mL of RIPA buffer and sonicated for 12 cycles with a Branson 

250 sonifier (10 s on/90 s off for a total of 2 min of pulses with 20% output from the micro-tip) or 

equivalent to obtain fragments of chromatin approximately 200–300 bp in size. Supernatants 

were precleared by incubation with 200 µL of protein A/G agarose bead slurry (Thermo Fisher 

Scientific, cat. #15918014) overnight at 4°C with rotation. Meanwhile, 12.5 µg of IP antibody 

was incubated with 50 µL of protein A/G agarose bead slurry in 1 mL of PBS overnight at 4°C 

with rotation. Saved precleared chromatin (20 µL) was used as the input sample. Precleared 

chromatin was incubated with the antibody–bead complex for 7 hr at 4°C with rotation. Cross-

linking of DNA was reversed by incubation with RNase A (1 µg/µL), proteinase K (0.2 mg/mL), 

and 0.25 M NaCl overnight at 65°C. Immunoprecipitated DNA was purified using the Qiagen 

PCR Extraction Kit and eluted with 20 µL of EB elution buffer. Sequencing libraries were 

prepared using the NEBNext Ultra II DNA Library Prep Kit (NEB, cat. #E7645) with TruSeq 

adaptors. Libraries were sequenced on an Illumina system, either HiSeq 4000, HiSeq 2000, or 

NextSeq 2000. 

 

The protocol for RNA-seq followed previously published procedures (Cheng et al. 2021; Qi et al. 

2021). RNA was extracted from 1 million cells using the RNeasy Mini Kit (Qiagen). The TruSeq 
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Stranded mRNA Library Prep Kit (Illumina) was used to enrich for polyA+ RNA and to create 

libraries for HiSeq2000 sequencing (Illumina). 

 

Data normalization 

The epigenomic data from multiple sources differed in many properties, including sequencing 

depth, fraction of reads on target, and signal-to-noise ratio (Xiang et al. 2020a). To reduce the 

impact of these technical differences, we used an improved version of the S3norm method, 

called S3V2, to normalize and denoise all data sets. This normalization method was designed to 

match the ranges of both signal intensities and variances across epigenetic datasets (Xiang et 

al. 2021). In this procedure, we first generated a reference signal track for each epigenetic 

feature by computing the mean signal of all data sets for that feature at each genomic location 

(200 bp bins). Then, the peak means and the background non-zero means of the reference 

signal tracks for the different epigenetic features were equalized by the S3norm method (Xiang 

et al. 2020a). We then used these mean-adjusted references as the new reference signal tracks 

for each epigenetic feature. For all datasets of the same epigenetic feature, we normalized their 

signal against the reference signal track using the recently developed S3V2 method (Xiang et 

al. 2021). The S3V2 version of the method was designed to adjust both the non-zero means 

and the standard deviations of the background regions, so that it can better reduce background 

noise in some data sets with higher variance at the background regions. 

 

This adjustment produced a stronger and more consistent correlation by feature across cell 

types, indicating that the denoising and normalization were effective (Supplemental Fig. S1).  
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Supplemental Figure S1. Improved consistency of epigenetic signals after normalization and 
denoising. The Pearson’s correlation coefficient for the signal intensity values for each 
epigenetic feature in each human blood cell type (in 200 bp bins) across the human genome 
(GRCh38) was computed, organized by hierarchical clustering, and displayed as these 
heatmaps, with a stronger intensity of red meaning a higher positive correlation and blue 
indicating a negative correlation. These correlations were computed before (A) and after (B) 
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normalization using the S3V2 method. The epigenetic features are labeled by different color 
bars on the right side the heatmap. Most datasets clustered by epigenetic features across cell 
types after normalization, whereas the groupings by feature were not as apparent prior to 
normalization. For example, the box with dotted lines in panel A highlights datasets of 
epigenetic features associated with different functions (H3K27me3, H3K9me3 and H3K27ac), 
which form an unexpected group prior to normalization and then are grouped with other 
datasets for those individual features after normalization and denoising. The clear separation 
between active features and the repressive features after normalization and denoising by S3V2 
indicated that this procedure can reduce false positive signals, which may increase the 
correlation between sets of different features.  
 

 

Joint systematic integration of human and mouse blood cell epigenomes by IDEAS 

Strategy for the joint systematic integration 

A powerful class of methods for integrative analysis of epigenomes involves statistical modeling 

to discover frequently occurring combinations of epigenetic features, comprising epigenetic 

states, and then assigning DNA intervals (often of 200 bp) to those states to produce regulatory 

annotations across the genome. These segmentation and genome annotation (SAGA) methods 

(Libbrecht et al. 2021) include ChromHMM (Ernst and Kellis 2012), Segway (Hoffman et al. 

2012), and IDEAS (Zhang et al. 2016; Zhang and Hardison 2017). We employed IDEAS 

because its simultaneous two-dimensional modeling along chromosomes and across cell types 

provides a consistent and well-resolved annotation while leveraging epigenetic information from 

locally related cell types when assigning states in cell types with missing data (Zhang and 

Mahony 2019). Moreover, its Bayesian statistical framework allows the incorporation of 

epigenetic models from different studies and even from different species. This latter feature was 

critical to the joint modeling between species described here. 

 

We conducted an iterative, joint training on the epigenomic data of both human and mouse 

blood cells to ensure that the same set of epigenetic states was learned and applied for both 

species. Previous studies showed that the epigenetic states uncovered by SAGA methods such 
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as ChromHMM (Ernst and Kellis 2012) were similar in both mouse and human (Yue et al. 2014; 

Roadmap Epigenomics Consortium et al. 2015; Gorkin et al. 2020). Indeed, when the 

epigenomic data from mouse or human were used separately as input to IDEAS, most of the 

resulting states were shared between the species (Supplemental Fig. S2). The states specific to 

human or mouse were often similar to the shared states but with small variations in one or more 

epigenetic features; no clear evidence for a state specific to either species was found.  

 

 

Supplemental Figure S2. Similar epigenetic states learned by modeling data separately in 
mouse and human blood cells. The profiles of epigenetic feature emissions from the epigenetic 
states identified separately in human and mouse blood cells were compared and presented as a 
heatmap organized by hierarchical clustering of the columns, with each column representing 
one state learned in the modeling. The arrow at the bottom points to an example of a state 
found only in one species; note that it is very similar to other states found in both species. 
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Methods for the joint systematic integration  

The joint modeling began with a search for epigenetic states that exhibit similar combinatorial 

patterns across different epigenetic features in both human and mouse, which we defined as 

reproducible epigenetic states (illustrated in Figure 2A in main text). Initially, 200 sets of 

epigenetic states were identified by IDEAS at 100 randomly selected, 50 MB regions from each 

species, using the S3V2-IDEAS pipeline (Xiang et al. 2021) on both species. The IDEAS 

method learns the number of states in each run. In practice, the number of states within each of 

the 200 initial epigenetic state sets can be influenced by a fixed parameter, “mycut”, at line 472 

of the “S3V2_IDEAS_ESMP/bin/IDEAS_2018/bin/ideaspipe.R” script in the IDEAS package. 

The "mycut" parameter can range from 0 to 1, such that a larger "mycut" setting can decrease 

the number of states within each set, and vice versa. For this study, the "mycut" value is set to 

0.55. The 200 sets of epigenetic states contained 7,550 states, meaning that the average 

number of states learned in each run was 37.75. The reproducible IDEAS states were selected 

by an internal combineState function in the IDEAS pipeline. Intuitively, this function clusters the 

200 sets of epigenetic states from the initial IDEAS runs into groups based on the Euclidean 

distances between their average epigenetic features’ signal vectors using hierarchical 

clustering. If an output cluster contains epigenetic states generated by more than a certain 

proportion of the 200 sets, these states are merged to define a reproducible epigenetic state. 

Here, we wanted to include as reproducible states not only those found at high frequency in all 

the runs on data from both species but also those that were either highly reproducible in one 

species and also found in the other species or those that were moderately reproducible in both 

species. By requiring that a state appear in at least 52% of the 200 runs, we ensured that the 

collected states included the latter two categories. This search led to the retention of 27 

reproducible states (steps 1 and 2).  
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Then, to analyze the full epigenomic information in each species, we used these 27 

reproducible states as the priors for the distribution parameters in the two rounds of IDEAS runs 

across the whole genomes of both species. The two rounds of IDEAS runs for the two species 

were performed sequentially, alternating between human and mouse. After each round of 

IDEAS run, the frequency, mean, and variance parameters for each epigenetic state were 

updated, so that the information of the species at the current round was then integrated into the 

next IDEAS run (steps 3a and 3b). We found that two rounds of whole genome IDEAS runs 

were sufficient, since the mean squared error of the mutual nearest neighbors of epigenetic 

states was very small when comparing human and mouse after the second round 

(Supplemental Fig. S3). 

 

 

Supplemental Figure S3.  The Mean Squared Errors (MSEs) of the Mutual Nearest Neighbor 
epigenetic states observed in the following IDEAS runs pairs: Human_round1_VS_ 
Mouse_round1 (Hr1_Mr1), Mouse_round1_VS_ Human_round2 (Mr1_Hr2), and 
Human_round2_VS_ Mouse_round2 (Hr2_Mr2). 
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Two heterogenous states, identified by their coefficient of variance (Supplemental Fig. S4), were 

removed, because such states previously had been observed to be composites of low 

frequency states (Xiang et al. 2020b).  

 

Supplemental Figure S4. Variance in epigenetic signals in the states learned in intermediate 
stages of the IDEAS models. (A) The emission profiles of an intermediate, 27-state model are 
represented by different intensities of blue, with darker blue indicating a stronger signal. The two 
states subsequently removed because of high variance, indicative of heterogeneous states, are 
indicated by horizontal lines that are the beginnings of arrows. (B) and (C ) These heatmaps 
show the coefficient of variance in signal levels of each epigenetic feature in each state across 
all the genomic bins assigned to that state. Observing a low variance for signal strength in the 
features for a given state indicates good consistency in the features characteristic of that state; 
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this is the case for almost all the states shown. In contrast, states such as state 20 in both 
species and state 26 in human, with high variance for one or multiple features, reflect 
heterogeneity in the epigenetic profiles of the genomic intervals contained within them (Xiang et 
al. 2020b) and were removed (indicated by the ends of arrows). State 26 was removed after the 
IDEAS run on human data, and thus it is not present in the heatmap of variance for the mouse 
data. 
 

After the two rounds of IDEAS runs for the two species, a set of 25 epigenetic states (main 

Figure 2B) were used as the final joint epigenetic states for both species. To assign these final 

joint epigenetic states to each genomic location in each cell type in both species, another two 

rounds of IDEAS runs for the two species were performed in parallel. The proportions of the 

genomes covered by each state were similar in human and mouse (main Figure 2B). The 

largest portions of the genomes were in the quiescent state 0, characterized by no significant 

detectable contribution from any feature. Some of the input ATAC-seq data sets had particularly 

high signal with low noise (e.g., for HUDEP cells and K562 cells) or relatively high noise 

(neutrophils), based both on inspection of signal tracks and the calling of higher numbers of 

peaks in those cell types compared to others (Supplemental Fig. S5). These high ATAC-seq 

signals may have resulted in the frequent assignment of genomic intervals to state 5 (low 

ATAC-seq signal alone, light mauve color, main Figure 2B and Supplemental Fig. S5) in 

HUDEP cells, K562 cells, and human neutrophils (example locus shown in main Figure 2C). 
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Supplemental Figure S5. Numbers of cCREs assigned to each epigenetic state across cell 
types. (A) The numbers of cCREs (y-axis) assigned to each epigenetic state in each human 
blood cell type and replicate are indicated by the color distinctive for each state. The neutrophil 
cCREs were not included because the very high noise in the ATAC-seq data led to many 
apparently false positives in the peak calls. (B) Same analysis for mouse blood cell types. 
 

Heterogeneous states and epigenetic states localized to specific regions of the genome 

Some epigenetic states are concentrated primarily in specific locations of the genome. A 

notable example is the combination of H3K36me3 and H3K9me3 found in chromatin containing 

genes for zinc finger proteins. SAGA methods, including IDEAS, are designed to find 

combinations of epigenetic features that consistently found across the genome, and thus 
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uncovering such localized states is challenging. In the joint human-mouse IDEAS modeling 

described here, no state with an exclusive combination of H3K36me3 and H3K9me3 was found 

(Fig. 2B). However, our earlier work using IDEAS to integrate epigenetic data in mouse blood 

cells did discover this state (Xiang et al. 2020b). Also, in our current work the IDEAS method 

found a state comprised of H3K36me3 and H3K9me3 in both human and mouse. Examination 

of an intermediate, 27-state model (Supplemental Fig. S4A) shows that state 20 has the 

H3K36me3 + H3K9me3 profile. However, the H3K9me3 signal across bins assigned to this 

state had high variance (Supplemental Fig. S4B), which led to its elimination as a 

heterogeneous state, as described above. A similar state (also state 20) was learned in the 

mouse data, but again, the high variance in the H3K9me3 signal led to its elimination (Suppl. 

Fig. S4C). 

 

We have observed that the high variance in signal for one or more features in the 

heterogeneous states arises from the combining of sets of genomic bins with related but distinct 

profiles of epigenetic features. While IDEAS and other SAGA methods are successful in 

learning the abundant, dominant combinations of epigenetic features in their state models, 

many other, less frequent combinations of features are in the epigenome and the modeling 

eventually groups them into a heterogeneous state. These high variance, heterogeneous states 

can be subdivided into component states using ad hoc procedures, but we have not developed 

a systematic way to accomplish this task. Thus, the IDEAS method (and other SAGA methods) 

can retain an epigenetic state that is limited to a subset of the genome as reproducible, but the 

ability to do so is at the margins of the ability to distinguish consistent states from 

heterogeneous ones. We suggest that the ability to systematically handle this challenge is an 

open issue for SAGA methods.  
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Limited impact of number of datasets on the portion of the genome assigned to each state in 

each cell type 

The analysis in Supplemental Fig. S5 gives some insight into the question of whether the 

number of available datasets had an impact on the amount of the genome in each cell type 

assigned to each state. The IDEAS method learns the distribution of epigenetic signals locally in 

related cell types and uses that information in the inference of epigenetic states, even for cell 

types with missing data (Zhang and Mahony 2019). Thus, we expected the missing data to not 

have a large impact. The pattern of availability for epigenetic data in human cells provided some 

leverage for examining this question further. Specifically, only ATAC-seq data were available for 

most stem and progenitor cell types in human, as shown in main Fig. 1. If the missing data had 

a strong impact on the assignment of chromatin states from IDEAS, then the stem and 

progenitor cells should show a different distribution of states from those in mature cells, for 

which the feature data was complete or almost complete. We specifically examined the 

distribution of states in the cCREs.  The results show that while the number of cCREs does vary 

considerably across cell types, the cCREs in each cell type, including the stem and progenitor 

cells, are assigned to all the epigenetic states (Supplemental Fig. S5). For example, human 

HSC, MPP, CMP, and GMP cells have roughly average numbers of actuated cCREs (from the 

ATAC-seq data), and in each cell type those cCREs are assigned to a similar distribution of 

states to those in many mature cell types, even though no histone modification or CTCF binding 

data were included in the input to IDEAS. The broad range of state assignments for cCREs in 

mouse CFUMK (Supplemental Fig. S5B), which also has only chromatin accessibility data (main 

Fig. 1), also supports the limited impact of missing data on state assignments by IDEAS. 

Despite this ability to handle missing data, we do point out that the state assignments for 

epigenomes in human stem and progenitor cells may be less robust compared to those for 

similar cell types in mouse. 
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Prior use of BluePrint Consortium data for integrative sementation 

An earlier publication used the BluePrint Consortium data on 91 blood cell types as input for a 

segmentation using ChromHMM (Carrillo-de-Santa-Pau et al. 2017). The results are available at 

http://ftp.ebi.ac.uk/pub/databases/blueprint/releases/current_release/homo_sapiens/secondary_

analysis/Segmentation_of_ChIP-Seq_data. Our IDEAS-based segmentation serves as a useful 

complement to this earlier segmentation. The input data for the two SAGA methods had some 

notable differences. The histone modifications were the same for the BluePrint data in both 

SAGAs, but the IDEAS analysis also included ATAC-seq and CTCF ChIP-seq data. The input 

data for the IDEAS analysis included replicates of datasets in selected blood cell types from 

healthy donors to the BluePrint project, whereas the ChromHMM segmentation used data from 

more cell types obtained from both healthy and diseased donors. The ChromHMM SAGA 

modeled 12 states. The IDEAS SAGA learned more states, and many of them have similar 

emission profiles to those learned by ChromHMM (for the epigenetic features used as input in 

common), but the states can include more features and can have states distinguishing strong 

from weak signals. The current IDEAS SAGA was conducted jointly in both human and mouse, 

whereas the ChromHMM analysis was only human blood cells. 

 

Prediction of VISION cCREs using IDEAS-IS 

We define a candidate cis-regulatory element, or cCRE, as a DNA interval with a high signal for 

chromatin accessibility in any cell type (Xiang et al. 2020b). When peaks of accessibility are 

called independently on different cell types and then combined across cell types, the genomic 

intervals inferred as peaks can enlarge excessively unless special procedures are employed to 

prevent expansion (Meuleman et al. 2020; The ENCODE Project Consortium et al. 2020). We 

reasoned that this expansion could be avoided by using both a combination of all the chromatin 

accessibility signals and the original data for each cell type as input for modeling across all 

these datasets to call peaks. We utilized a version of the IDEAS methodology for this purpose, 
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running it in the signal intensity state (IS) mode on ATAC-seq and DNase-seq signals only 

(Xiang et al. 2021), in contrast to the epigenetic state mode used for integrating data on multiple 

epigenetic features.  

 

The input data for the peak calling were the ATAC-seq signals for each replicate of each cell 

type plus a track of combined average ATAC-seq signal. This combined average was computed 

by averaging the normalized ATAC-seq signal in 200 bp bins for each cell type, and then 

averaging these values per bin for all cell types (Supplemental Fig. S6). IDEAS in the IS mode 

learned four signal intensity states, with state 0 being no detectable signal and state 3 being the 

highest signal state, which were then used to annotate the genomes of all cell types plus the 

combined cell data. The peaks were called using a hierarchical process designed to find 

genomic DNA intervals in the high signal intensity states, compared to the local background, 

both in many cell types and in restricted sets of cell types (Supplemental Fig. S6). Specifically, 

in the first step (1), the DNA bins in the higher signal states, compared to the local background, 

in the average track were collected as peaks. If a contiguous series of bins was in higher signal 

states, indicating a longer accessible region, only the bin(s) in the highest signal state were 

called as peaks. In the second step (2), bins in a high signal state in individual cell types were 

included in the set of peaks. The next two steps added bins in a lower signal state, but still 

above the local background, as peaks, with step (3) adding such bins from the average signal 

track and step (4) adding such bins from signal tracks from individual cells. Juxtaposed peak 

calls were combined into a single peak. If replicate determinations were available for chromatin 

accessibility in a given cell type, the peak call had to be replicated. This procedure resulted in a 

collection of peak calls that included both peaks present in many cell types as well as those in a 

single cell type. Furthermore, the preference given to the peaks in the average signal track 

helped prevent excessive lengthening of the peak calls after combining them. 
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We employed the same peak-calling procedure for the blood cell epigenomes of human as well 

as mouse, resulting in 200,342 peaks of chromatin accessibility for human blood cell types and 

96,084 peaks for mouse blood cell types; these cCREs are listed in Supplemental Table S3. 

Unlike the set of accessibility peaks used in earlier work (Xiang et al. 2020b), which were called 

using the HOMER program (Heinz et al. 2010), all of the IDEAS-IS peaks were in a non-

quiescent state in at least one cell type. Thus, the sets of IDEAS-IS peaks comprised the sets of 

VISION cCREs. The larger number of cCREs called in human than in mouse resulted at least in 

part from the very high signal in chromatin accessibility data from some human cell lines 

(HUDEP1, HUDEP2, and K562) and cell types (e.g., monocytes; Supplemental Fig. S5). We 

found that the ATAC-seq data sets for human neutrophils had an excessive level of noise, such 

that some extremely long genomic regions were called as peaks. To prevent the noise from this 

apparent false discovery from compromising further analysis, ATAC-seq peaks that were found 

only in the human neutrophil data were removed from the set of human blood cell cCREs. Thus, 

while the human neutrophil ATAC-seq data were included in the joint IDEAS modeling, the peak 

calls exclusive to human neutrophils were excluded from the 200,342 human blood cell cCREs. 
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Supplemental Figure S6. Method for calling cCREs using S3V2-IDEAS in the IS mode. The 
normalized ATAC-seq signals (expressed as the negative log10 p-value for fitting a negative 
binomial distribution, signal range 0-10, 200bp bins) are shown for a selected subset of the 39 
human biosamples plus the average signal track in an 11kb genomic interval around the 
transcription start site (TSS) of the ITGB2B gene is shown (GRCh38 Chr17:44,384,001-
44,395,000). The signal intensity states learned by IDEAS in the IS mode are shown as shades 
of violet (state 0 is white, darker shades represent higher signal states). Genomic intervals in 
high signal states were called as peaks (yellow rectangles) in a four-step hierarchical process 
designed to limit the peak calls to local maxima while also finding cell type-specific peaks (see 
Methods). Peaks in this genomic region illustrate calls at steps 1, 2, and 4 of the hierarchical 
process. 
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Comparison of ATAC-seq peak calls between IDEAS-IS and MACS3 

We compared the peak calls between IDEAS-IS and MACS3 (Zhang et al. 2008) on ATAC-seq 

data from 36 experiments in human blood cells that were available in a form that could be 

analyzed by both tools. Using these ATAC-seq data as input, the IDEAS pipeline operating in 

the signal intensity state (IS) mode called fewer peaks (200,342 peaks) than did the MACS3 

peak caller (277,064, Supplemental Fig. S7A). A majority of both peak sets overlapped, but the 

MACS3 peak set has almost three times more peaks distinctive to it than did the IDEAS_IS set. 

The distribution of ATAC-seq signal strengths for the peaks called by both pipelines were 

similar, but the MACS-only peaks tended to have lower signal strength (Supplemental Fig. 

S7B). We compared the sets of peaks for their ability to capture orthogonal, function-associated 

genomic intervals, such as sets of active and predicted enhancers and DNA segments bound by 

co-activators and CTCF (described in the section “Annotation of VISION cCREs using 

orthogonal datasets of elements”), and found that the peaks called by IDEAS_IS were 

significantly more effective than those called by MACS3 (p-value = 2.384e-07; Paired Wilcoxon 

test; Supplemental Figure S7C). 

 



 

23 

 

Supplemental Figure S7. Comparison of ATAC-seq peak calls from IDEAS-IS and MACS3. (A) 
Overlap in peaks called by each method. (B) Comparison of ATAC-seq signal strength for 
shared peaks shared and those returned by only one method. (C) Differences in ability of each 
ATAC-seq peak set to capture elements in 11 orthogonal function-related sets. The fold change 
(y-axis) is the ratio of number of peaks from the designated peak caller that overlaps with a set 
of function-associated genomic intervals (11 different sets) to the number of randomly selected 
matched genomic intervals that overlap with those function-associated sets. Those 11 values for 
fold change are summarized as boxplots.  
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Annotation of VISION cCREs using other datasets of elements 

Comparison with other large catalogs of cCREs 

The VISION human blood cell cCREs were found to be a sub-set of two large collections of 

cCREs predicted from ENCODE data on a much larger number of cell types (Supplemental Fig. 

S8). These large collections were the 926,535 ENCODE cCREs provided in Supplemental 

Table 10 of reference (The ENCODE Project Consortium et al. 2020) and the 3,591,898 

elements in the Index of DNase hypersensitive sites from Meuleman et al. (2020).  

 

 

Supplemental Figure S8. VISION cCREs are supported by elements from ENCODE. (A) 
Overlap of the human VISION cCREs with the Index of consensus DHSs (Meuleman et al. 
2020) and CRE catalog from ENCODE phase 3 (The ENCODE Project Consortium et al. 2020), 
displayed as an UpSet plot. (B) Enrichments in the three large cCRE catalogs for overlap with 
orthogonal sets of elements indicative of regulatory function. Abbreviations are DHS = Index of 
consensus DHSs, ENC = CRE catalog from ENCODE phase 3, VIS= VISION cCREs, ERY 
EP300 = peaks for EP300 ChIP-seq in three erythroid cell types or lines (Supplemental Table 
S5), Validated CREs = a curated set of human erythroid regulatory elements gathered from the 
literature (Supplemental Table S4). 
 

Annotation of VISION cCREs by overlap with elements defined by orthogonal data 

Additional, orthogonal data sets that were not included in the prediction and epigenetic state 

annotation of VISION cCREs, but which annotate potential roles of human genomic intervals in 

transcriptional regulation (CREs) or in chromatin structure (chromatin architecture), were 
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curated from the literature and associated databases. Details of these orthogonal data sets, 

including references and data sources, are presented in Supplemental Table S5. The 

organization of the data sets into supersets of elements related to CREs and related to structure 

and genome architecture is illustrated in Supplemental Fig. S9A. 

 

Supplemental Figure S9. Relationships among orthogonal datasets of likely functional 
elements, VISION cCREs, and ENCODE cCREs. 
A. Orthogonal sets of regulatory and structural genomic elements. Organization into supersets 
of elements is indicated on the right, along with the numbers of elements in each superset. 
Additional information is in Supplemental Table S5.  B. Venn diagram showing the overlaps of 
the ENCODE cCRE catalog with the orthogonal data sets of elements related to cCRE function 
or structure in chromatin (right) along with a comparison with Venn diagram using the VISION 
cCREs (left, which is Fig. 3A).  
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The orthogonal sets of CREs included TSSs from the GENCODE basic gene set (Frankish et al. 

2021), peaks from the Survey of Regulatory Elements (SuRE), which is a massively parallel 

reporter assay that reveals both promoter and enhancer activity, in K562 cells (van Arensbergen 

et al. 2017), unmasked CpG islands downloaded from UCSC genome browser (Nassar et al. 

2023), and a group of enhancer-related elements. The latter group of enhancer-related 

elements were a combination of three sets: (1) enhancers predicted from eRNAs in hundreds of 

human cell types (Andersson et al. 2014; 

https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/enhancer/), (2) a combined 

set of EP300 ChIP-seq peaks from K562 and GM12878 cell lines (The ENCODE Project 

Consortium et al. 2020) and erythroblasts (Su et al. 2013), and (3) the erythroid Enhancer 

Repertoire deduced from histone modification data (Huang et al. 2016). While the Survey of 

Regulatory Elements (SuRE) is a massively parallel reporter assay designed to detect promoter 

activity (van Arensbergen et al. 2017), many enhancers also generate a peak in this assay, 

albeit weaker than those for promoters. The chromatin structure category included CTCF-

occupied DNA segments (CTCF OSs), chromatin loop anchors, and TAD boundaries in primary 

blood cells and related cell lines. The set of CTCF OSs was generated by combining peaks from 

ChIP-seq experiments in human fetal and adult erythroblasts (Huang et al. 2017), and from 

K562, MM1S, Delta47, and GM12878 cell lines (Sánchez-Castillo et al. 2015; The ENCODE 

Project Consortium et al. 2020). Loop anchors determined by HICCUPS from Hi-C data in K562 

and GM12878 cell lines (Rao et al. 2014) were downloaded from GEO [accession GSE63525] 

and combined. TAD boundaries were called by OnTAD (An et al. 2019) using Hi-C data at 10kb 

resolution in K562 and GM12878 cell lines (Rao et al. 2014). Even though CTCF ChIP-seq data 

were used both in the IDEAS epigenetic state modeling and in the structure-related datasets, no 

CTCF ChIP-seq dataset was used in both. Data for K562 CTCF ChIP-seq is in both collections, 

but the orthogonal data came from Pugacheva et al. (2015) while the data used in the IDEAS 

modeling came from the ENCODE consortium. 
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Pairwise overlaps between these orthogonal sets of elements and the VISION cCREs were 

computed using the bedtool intersect tool (-u option) (Quinlan and Hall 2010). Intersections 

among multiple datasets were computed using the intervene tool, version 0.6.5 (Khan and 

Mathelier 2017), and displayed in UpSet plots using the UpSetR package (Conway et al. 2017) 

and 3-way Venn diagrams using the eulerr package (https://CRAN.R-

project.org/package=eulerr). 

 

Ten different randomly chosen sets of human genomic DNA intervals, matched with the cCREs 

in length and G+C content, were generated by the script in the following link 

https://github.com/YenLab/Tn5InsertPrefer/blob/main/StandaloneScripts/Negetive_sequence_m

atched_length. Enrichments of overlaps between the VISION cCREs relative to those in the 

random set of intervals were determined by computing overlaps (using tools described above) 

between the sets of function- and structure-related elements and each of the ten sets of random 

intervals, dividing the number of overlapped cCREs by the number of overlapped random 

intervals (ten times), and using the average of the ten quotients as the enrichment. All ten 

results were shown in boxplots.  

 

The catalog of cCREs released by ENCODE (The ENCODE Project Consortium et al. 2020) 

contained about 920,000 cCREs in the human genome. This catalog was determined from 

epigenetic data on a much larger and diverse set of cell types and cell lines compared to the 

blood cell types examined in the VISION project. Thus, the size of the cCRE catalog was much 

larger for ENCODE than for VISION. When that larger number of ENCODE cCREs was 

intersected with the orthogonal sets of cCRE-related and structure-related cCREs, we find that 

the ENCODE set overlapped with larger numbers of the orthogonally defined elements 

compared to the overlaps by the VISION catalog, but a substantial number of the ENCODE 
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cCREs (almost 520,000) did not overlap (Supplemental Fig. S9B). These results likely reflect 

the larger number of cell types examined in ENCODE, most of which are distinct from the blood 

cells that were the focus of the orthogonal sets. 

 

Considering the VISION cCREs that intersected with both structure- and CRE-related elements, 

the largest group are those that overlap with enhancers and CTCF OSs, followed by enhancers 

and loop anchors, and then promoter-like elements and CTCF OSs (Supplemental Fig. S10). 

 

Supplemental Figure S10. Numbers and enrichment of VISION cCREs that overlap with both 
structure and CRE-related elements 
 

The human VISION human cCREs were also compared to two sets of known CREs (main Fig. 

3E). One was a compilation of 109 demonstrated regulatory elements in blood cells from the 

literature (Supplemental Table S4). The other set was 664 enhancers with target genes, 

determined by a high throughput mutagenesis and eQTL analysis in K562 cells (Gasperini et al. 

2019). 
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Enrichment of genetic variants for blood cell related traits in the VISION human cCRE 

collection 

Overlaps of cCREs with trait-associated SNPs 

Most genetic variants associated with complex phenotypes occur in noncoding regions of the 

genome (Hindorff et al. 2009), and candidate regulatory elements are strongly enriched for such 

variants (Maurano et al. 2012; The ENCODE Project Consortium 2012). Thus, collections of 

high quality predictions of CREs could provide insights into the functional mechanisms by which 

noncoding variants mediate phenotypic variation (Hardison 2012). We reasoned that our 

collection of cCREs would be informative for interpreting non-coding variants influencing blood 

cell traits and blood diseases. Therefore, we computed the overlap of the human VISION 

cCREs with several sets of phenotype-associated variants from the NHGRI-EBI GWAS Catalog 

(Buniello et al. 2019), specifically those associated with red blood cell traits, immune diseases, 

and brain measurements (as a negative control). The number of single nucleotide 

polymorphisms (SNPs) associated with red cell traits overlapping with VISION cCREs was 

much higher than the number overlapping a randomly selected set of genomic intervals 

matched for GC content and length (Supplemental Fig. S11A). Refining the analysis to cCREs 

that are actuated in each cell type, we found that the cCREs actuated in erythroid and related 

cell types showed high overlap with SNPs associated with red cell traits (Supplemental Fig. 

S11B). Conversely, SNPs associated with immune disease showed high overlap with cCREs 

actuated in lymphoid cells (Supplemental Fig. S11C), whereas SNPs associated with brain 

measurements showed infrequent overlap with cCREs actuated in any blood cell type 

(Supplemental Fig. S11B).  
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Supplemental Figure S11. Overlap of SNPs associated with blood cell phenotypes with 
VISION cCREs. (A.) Overlaps with all VISION cCREs (c) compared with matched random DNA 
intervals (r), without or with (pc and pr) padding of each SNP to a 200bp interval. The higher 
numbers of SNPs captured by cCREs is significantly different from the numbers captured by 
random sets (chi-squared test; p<0.0001 for both cCREs alone and for padded cCREs). 
 (B.) Overlaps of SNPs with cCREs actuated in specific cell types. (C.) Overlaps of SNPs 
associated with immune disease with cCREs actuated in specific cell types. 
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Stratified linkage disequilibrium score regression (sLDSC) 

When measuring enrichments from GWAS data, it is important to consider the haplotype 

structure of human genomes, whereby association signals measured at assayed genetic 

markers likely reflect an indirect effect driven by linkage disequilibrium (LD) with a causal variant 

(that may or may not have been genotyped). Stratified linkage disequilibrium score regression  

(sLDSC, Finucane et al. 2015) offers one principled approach to account for LD structure and 

estimate the proportion of heritability of each trait explained by a given genomic annotation. We 

applied sLDSC to quantify the enrichment of heritability in many traits from the UK Biobank 

(UKBB) GWAS (Ge et al. 2017 and http://www.nealelab.is/uk-biobank/) within the VISION 

cCREs relative to the rest of the genome. The UKBB (Ge et al. 2017 and 

http://www.nealelab.is/uk-biobank/) is a database comprising genotypic data as well as data for 

several medical traits from over 400,000 individuals, and GWAS summary statistic results are 

publicly available for a number of these traits, stratified by sex. We used all 587 sex-stratified 

traits for which inverse rank-normalized data was available (representing 295 unique traits) in 

our analysis, including 54 traits labeled “blood count”-related traits by UKBB, 60 traits labeled 

“blood biochemistry”-related, and 473 traits that are not blood-related. Blood count-related traits 

reflect cell morphology and number while blood biochemistry-related traits reflect the 

concentrations of certain proteins and metabolic products. (Note: hemoglobin concentration is 

an exception and considered a blood count trait). 

 

For each of these 587 traits, we used sLDSC (Finucane et al. 2015) to quantify the extent to 

which our cCRE annotation is enriched in the heritability of the trait. Using SNPs within some 

window of the annotation, this approach regresses the GWAS chi square summary statistic (for 

the focal trait) of these SNPs onto the LD scores of the SNPs with respect to the annotation. 

The LD score of a SNP reflects the extent to which that SNP is in linkage disequilibrium with the 
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annotation. If the annotation is associated with the focal trait, we expect a linear relationship 

between the LD scores of the tested SNPs with the annotation and the chi square values of 

those SNPs. The slope of the regression line is an estimate of the SNP heritability of the trait 

with respect to the annotation. By dividing this estimate by the overall SNP heritability of the 

trait, we obtain an estimate of the proportion of heritability explained by the annotation. Finally, 

dividing this by the portion of SNPs falling within the annotation provides an estimate of the 

enrichment of that annotation in heritability of the focal trait. 

 

The sLDSC tool recommends using a set of SNPs from HapMap 3 for analysis, and because 

these SNPs are reported on GRCh37, we first lifted over (Hinrichs et al. 2006) our cCRE 

annotations from GRCh38 to GRCh37. A total of 826 cCREs (0.4% of all cCREs) failed to 

liftOver and were excluded from analysis. Using LDSC v1.0.1, and with these lifted over 

annotations, we first computed LD scores for HapMap 3 SNPs within 1 cM of cCRE annotations. 

Then, for each of the 587 UKBB traits, we performed sLDSC, regressing the trait summary 

statistics onto the LD scores. From this, we obtain an estimate of the enrichment of the cCRE 

annotation in the heritability of each trait.  

 

The results of the sLDSC analysis for the human VISION catalog of cCREs were reported in 

main text (main Fig. 3F), emphasizing the remarkable enrichment in heritability for blood count 

traits. A set of 58 blood biochemistry traits were not enriched for heritability in the human 

VISION cCREs. We note that those blood biochemistry traits were from screenings of 

metabolites, proteins, and enzymes that were not produced in blood cells, but rather by the liver 

(e.g., albumin, alkaline phosphatase, alanine aminotransferase, apolipoproteins, aspartate 

aminotransferase, bilirubin, urea, cholesterol), kidney (e.g., creatinine), or other organs. While 

these traits were labeled as blood-related traits by the UKBB, they are largely controlled by 
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organs, tissues, and cell types that we did not assay when developing the VISION CRE 

annotation.  

 

Estimation of the impact of epigenetic states and cCREs on gene expression 

Summary of the calculation of β coefficients for epigenetic states and esRPs for cCREs 

In order to use the categorical state assignments to estimate the impact of each cCRE in each 

cell type on gene expression, we applied a modified version of the iterative multivariate linear 

regression model (MVLR) developed previously (Xiang et al. 2020b) to quantify the biological 

functions of each epigenetic state in terms of regulating gene expression. In this model, we 

introduced two measurements: β coefficients for each epigenetic state and an esRP (epigenetic 

state Regulatory Potential) score for each cCRE in each cell type or sample. The biological 

interpretation of the two measurements are as follows. The β coefficients measure the 

contribution of each epigenetic state to the expression of local genes; they are calculated in a 

multivariate regression evaluating how changes in the coverage of cCREs and promoters by 

each epigenetic state across cell types impact expression levels. The esRP score measures the 

contribution of individual cCREs on regulating its target gene’s expression level; it is calculated 

from the overall epigenetic state coverage of the cCRE in each cell type (Figure 4B). In contrast 

to our previous modeling (Xiang et al. 2020b), our current model does not aim to identify the 

likely target gene(s) for each cCRE; that will be the subject of a subsequent report. In brief, for 

the current regression model, the epigenetic state coverage was computed on all cCREs and 

promoter regions within 50 kb on both sides of the TSS of each gene (an interval of 100kb). We 

first calculated the β coefficients of the promoter intervals and distal cCREs as separate terms in 

the regression model. For further analyses and visualization, including computation of the esRP 

scores, the β coefficients of each state were merged into a single value that was the average of 

the β coefficients for promoters and for distal cCREs.  A more detailed presentation on the 

calculations of the β coefficients and the esRPs is in the following subsection.  
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Detailed methods for the calculation of β coefficients and esRPs 

We identified 14 cell types matched between human and mouse with RNA-seq datasets in the VISION 

project. For each gene, the correlation coefficient was calculated between the two vectors of 14 values for 

log2(TPM+1), generating one correlation coefficient value per cell type per gene.  When calculating the 

correlation coefficients, we added random noise (mean=0, sd=1) to the raw values to avoid high 

correlation coefficients created between vectors with low signals. 

In the MVLR model, we assumed the contribution of epigenetic states on gene regulation are different at 

the promoter regions and the cCRE regions. For the independent variables in the model, we thus separated 

the information of two classes of regions as follows: one class is the epigenetic state coverage at the 

cCRE regions (cCREs within TSS +/- 50 kb window) and the other class is the epigenetic state coverage 

at the promoter regions (TSS +/- 1 kb window). The promoter region was the entire 2Kb window centered 

on the TSS, regardless of whether the DNA was called as a cCRE. In contrast, the cCRE regions were 

only the cCREs, not any intervening DNA, within the 100Kb region centered on the TSS. The cCRE 

regions included cCREs within the promoter region. 

For a 𝑐𝐶𝑅𝐸!, the state coverage (𝐿!,#,$) for 𝐸𝑝𝑖𝑔𝑒𝑛𝑒𝑡𝑖𝑐_𝑆𝑡𝑎𝑡𝑒# in 𝐶𝑒𝑙𝑙_𝑇𝑦𝑝𝑒$ is defined as the number of 

base-pairs covered by 𝐸𝑝𝑖𝑔𝑒𝑛𝑒𝑡𝑖𝑐_𝑆𝑡𝑎𝑡𝑒# in 𝑐𝐶𝑅𝐸! in 𝐶𝑒𝑙𝑙_𝑇𝑦𝑝𝑒$. For each 𝐺𝑒𝑛𝑒%, the overall coverage 

of 𝐸𝑝𝑖𝑔𝑒𝑛𝑒𝑡𝑖𝑐_𝑆𝑡𝑎𝑡𝑒#  at the cCRE regions (𝐶𝐶%,#,$) is defined as the sum of 𝐸𝑝𝑖𝑔𝑒𝑛𝑒𝑡𝑖𝑐_𝑆𝑡𝑎𝑡𝑒#’s 

coverages of all individual cCREs within the TSS +/- 50 kb window: 

𝐶𝐶%,#,$ =4
!

𝐿!,#,$ 
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For the promoter regions, the state coverage (𝐶𝑃%,#,$) for 𝐸𝑝𝑖𝑔𝑒𝑛𝑒𝑡𝑖𝑐_𝑆𝑡𝑎𝑡𝑒# at 𝐺𝑒𝑛𝑒% in 𝐶𝑒𝑙𝑙_𝑇𝑦𝑝𝑒$ is 

directly defined as the number of base-pairs covered by 𝐸𝑝𝑖𝑔𝑒𝑛𝑒𝑡𝑖𝑐_𝑆𝑡𝑎𝑡𝑒# within the TSS +/- 1 kb 

window. 

Previously, we directly used the 𝐶𝑃%,#,$ and the 𝐶𝐶%,#,$ as the input features for our iterative regression 

model (Xiang et al. 2020b). However, the state coverage of epigenetic states with related functions are 

likely collinear (i.e., are positively or negatively correlated), which can lead to unstable estimation for the 

β coefficients in the regression model. To avoid this problem, we first transformed the original input 

features matrix into orthogonal principal components (PCs), and then use the PCs that can explain 95% of 

the variance in the original data matrix (𝐶𝑃%,#,$ and 𝐶𝐶%,#,$) as the input feature matrix for the regression 

model. 

We first matched the mean and standard deviation of the 𝐶𝐶%,#,$ matrix to the 𝐶𝑃%,#,$ matrix to generate a 

Standardized cCRE state Coverage, or SCC, computed by the following equation. 

𝑆𝐶𝐶%,#,$ = (𝐶𝐶%,#,$ −𝑚𝑒𝑎𝑛(𝐶𝐶)) ×
𝑠𝑑(𝐶𝑃)
𝑠𝑑(𝐶𝐶)

+ 𝑚𝑒𝑎𝑛(𝐶𝑃) 

We next combined the 𝑆𝐶𝐶 matrix and the 𝐶𝑃 matrix as 𝐶 matrix, and then used PCA to transform the 𝐶  

matrix into a 𝑃𝐶 matrix that can explain 95% of the total variance in the 𝐶 matrix. 

𝐶 = 𝑐𝑏𝑖𝑛𝑑(𝐶𝑃, 𝑆𝐶𝐶) 

𝑃𝐶 = 𝐶 ⊗𝑅 

where cbind refers to the operation of combining the matrices, and  𝑅 represents the rotation matrix in the 

PCA analysis. 

For the multivariate linear regression model, the values in the 𝑃𝐶 matrix were used as the independent 

variables. The quantile normalized TPM values of RNA-seq data for protein coding genes were used as 
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the dependent variable (𝑌). The signal of both RNA-seq and the state coverage were transformed into a 

natural log scale for this analysis. 

𝑌 = 𝛽&𝑃𝐶 + 𝛼  

𝛽'( = 𝑅⊗ 𝛽& 

where the 𝛽& represents the coefficient vector for all PCs learnt by the MVLR model, and the 𝛽'( 

represents the coefficient vector for all epigenetic states transformed by the rotation matrix (𝑅) in the 

PCA analysis. The biological interpretation of the 𝛽'(_# is the contribution of one unit increase of 

𝐸𝑝𝑖𝑔𝑒𝑛𝑒𝑡𝑖𝑐_𝑆𝑡𝑎𝑡𝑒#’s coverage on regulating the target gene’s expression. In this part, we used only the 

24 non-quiescent epigenetic states in the model, so the 𝛽'(_& for the quiescent state (state 0) naturally 

becomes 0, which means that we infer no contribution on gene expression regulation. Since we used the 

information of the promoter regions and the cCRE regions as two separate terms in the MVLR model, 

𝛽'( is a vector with 50 elements, which can be further separated into 25 𝛽'( values for promoter regions 

(𝛽'(_*) and 25 𝛽'( values for all cCRE regions (𝛽'(_$). The MVLR model was trained multiple times by 

a leave-one-cell-type-out strategy. For downstream analysis, we combined the  𝛽'( values for proximal 

cCREs and distal cCREs to generate an average 𝛽'( coefficient. These are shown in panel A of Figure 4.  

After we obtained the 𝛽'( coefficient vector, we further used the 𝛽'( coefficient vector to define the 

epigenetic-state gene expression regulatory potential (𝑒𝑠𝑅𝑃!,$) for each 𝑐𝐶𝑅𝐸! in 𝐶𝑒𝑙𝑙_𝑇𝑦𝑝𝑒$. 

For 𝑐𝐶𝑅𝐸! within the promoter regions, the 𝑒𝑠𝑅𝑃!,$ is defined as follows: 

𝑒𝑠𝑅𝑃!,$ =4
#

𝛽'(_+_# × 𝐿!,#,$ +4
#

𝛽'(_*_# × 𝐿!,#,$ 

For 𝑐𝐶𝑅𝐸! NOT at the promoter regions, the 𝑒𝑠𝑅𝑃!,$ is defined as follows: 
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𝑒𝑠𝑅𝑃!,$ =4
#

𝛽'(_+_# × 𝐿!,#,$ 

The biological interpretation of 𝑒𝑠𝑅𝑃!,$ is the contribution of 𝑐𝐶𝑅𝐸! on regulating its target gene’s 

expression level based on its overall epigenetic state coverage in 𝐶𝑒𝑙𝑙_𝑇𝑦𝑝𝑒$.  

Since it is unlikely that every cCRE within the TSS +/- 50 kb window would be used to regulate the target 

gene, it is reasonable to filter out some cCREs that are less likely to be relevant. We hypothesized the 

esRP pattern of the relevant cCREs should be more correlated with the target gene’s expression pattern 

across all cell-types. Therefore, we filtered the cCREs by the correlation between the cCRE’s esRP vector 

and the target gene’s expression vector across all cell-types, requiring a correlation coefficient r < 0.2 in 

order to be retained (Xiang et al. 2020b). After the filtering step, we recalculated the 𝐶𝐶 matrix and re-

trained the regression model. We iterated this filtering and re-training step two times and updated the 

𝛽'(_+and 𝛽'(_* vectors for both human and mouse. To simplify the final output, we first took the average 

of the two species’ 𝛽'(_+and 𝛽'(_* vector. We then defined the final contribution (𝛽'() of the epigenetic 

states on gene regulation as the sum of their contributions at both promoter regions (𝛽'(_*) and cCRE 

regions (𝛽'(_+): 

𝛽'( = 𝛽'(_+ + 𝛽'(_* ×
𝑚𝑎𝑥(𝛽'(_+)
𝑚𝑎𝑥(𝛽'(_*)

 

where the ,-.(0!"_$)
,-.(0!"_%)

 is a factor to scale the contributions at the promoter regions (𝛽'(_*) and the cCRE 

regions (𝛽'(_+) to a similar level.  

The 𝛽'( vector, and the corresponding esRP matrix for all cCREs across all cell-types’ samples in both 

species, were used as the final outputs for downstream analysis. 

 



 

38 

Potential advantage of esRP to consideration of each feature marginally 

This procedure of using epigenetic states from integrative modeling of features to estimate beta-

coefficients and esRP scores raises the question of whether there is an advantage to the joint 

estimate described here compared to directly considering each feature marginally, since the 

latter approach would avoid the issue of co-linearity. In the series of steps to estimate the beta-

coefficients for epigenetic states and the corresponding esRP scores of cCREs based on state 

coverage at proximal and distal regions, we reduced the dimensionality of the input matrix at the 

regression step by replacing the state coverage with principal component (PC) values to reduce 

the impact of collinearity, as described above. While the alternative approach of using the 

marginal effects of each feature may have merit for future development, we offer three points 

about the potential advantages of utilizing principal components of the esRP matrix. 

(i) The esRP scores (and PCs) allow annotation of the direction of transcriptional 

regulation (activation versus repression) and magnitudes for all epigenetic states, thereby 

adding more functional meaning to the categorical epigenetic state labels.  

(ii) Instead of examining each feature marginally, the esRP scores may capture (at least 

in part) the interactions and joint effects of all features in each state. The esRP scores may 

better handle some complexities of transcription regulation because the multiple epigenetic 

features often work in concert. 

(iii) Another advantage of esRP is the reduced impact of missing data on this score. The 

computation of esRP scores uses IDEAS epigenetic state tracks as the input, and the modeling 

and assignment of epigenetic states in IDEASs utilize data from locally similar cell types to 

reduce the impact of missing data in an individual cell type. As a result, the esRP score can be 

computed, and it is comparable for all cell types, even for the ones with incomplete data. In 

contrast, alternative methods, like estimating coefficients marginally for each epigenetic feature, 

make it challenging to compare between cell types with missing data and those with complete 

data sets. 
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Impact of removing cCREs with a low correlation between states and gene expression across 

cell types 

In the estimation of esRP scores, we removed cCREs with low correlation values; specifically, 

we filtered the cCREs by the correlation between the cCRE’s esRP vector and the target gene’s 

expression vector across all cell-types, requiring a correlation coefficient r < 0.2 in order to be 

retained. This step raised the question of what the impact may be, especially if a state is 

primarily associated with constitutive gene activity. Indeed, if a state were exclusively 

associated with high level expression, with little change in the expression level, in all cell types, 

then the impact of the state on expression would be under-estimated or missed. However, in 

practice almost every epigenetic state is associated with at least some genes with sufficient 

variation in expression levels across cell types to be included in the regression modeling. 

Examination of the beta coefficients computed for the epigenetic states (Fig. 4A in the main text) 

shows that almost all states have a positive or negative score that is not widely divergent from 

expectation based on the established associations of the epigenetic marks with expression. We 

infer that the states associated with constitutive activity (for some genes) are also associated 

with cell type-specific activity (for other genes), and thus we still see a signal in the regression. 

Two of the states do have very low scores (close to zero), the quiescent state 0 and the 

promoter-enhancer-associated state 12. Perhaps there is an association of cCREs in these 

states with low variance genes that leads to an underestimate of the beta-coefficient. 

Nevertheless, the current esRP scores do show substantial utility, as explored in this 

manuscript. Also, our previous work (Xiang et al. 2020b) showed that the eRP scores 

(computed using a similar regression modeling) had explanatory power even for the consistently 

expressed genes, albeit less so than for differentially expressed genes (Fig. 6C in that paper). 

Thus, it is likely that inclusion of all genes, as we did in our current procedure, will provide the 

opportunity for the impact on expression of all or almost all the states to be estimated in the 
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modeling, even with the potential for under-estimation for states primarily associated with 

constitutively expressed genes. 

 

Visualization of cCRE esRP scores across cell types using UMAPs 

The esRP scores were used to visualize the collection of VISION cCREs and follow how their 

regulatory impact changed across differentiation. Starting with the large matrix of about 200,000 

human cCREs with esRP scores for each cell type and replicate, we employed the dimensional 

reduction visualization method UMAP (McInnes et al. 2018) to visualize the esRP matrix of all 

cCREs across all available cell types. This method for visualizing high dimensional data in lower 

dimensional space has been widely used in single cell data analysis where each cell’s 

transcriptomic or epigenomic profile is projected onto a 2-dimensional UMAP space. Similarly, 

we projected each cCRE’s esRP scores onto a 2-dimensional UMAP space. Thus, each point 

on our UMAP represents a cCRE rather than a cell, and cCREs with similar vectors of esRP 

scores across cell types are placed in similar locations on the UMAP plane. We used the umap 

library’s umap function in R with default settings to transform the data and generate the UMAP 

images. 

 

The resulting image (Supplemental Fig. S12A) showed multiple clusters populated with cCREs 

(dots) that are colored to visualize their activity in individual cell types, with the color determined 

by the esRP score in that cell type.  The darker red dots indicate cCREs more strongly 

implicated in gene activation in that cell type, as illustrated for erythroblasts (ERY) and 

monocytes (MON). UMAPs annotated by esRP scores for all cell types in both human and 

mouse along with movies showing the changes in estimated impact of cCREs across human 

hematopoietic differentiation are provided in the Supplemental Materials 

(Supplemental_Movie_S1.mp4) and on our VISION website (http://usevision.org). These 

annotated UMAP projections revealed both cCREs active in all cell types, such as the long arc 
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of red cCREs in the upper right of the graphs, as well as shifts in cCRE activation as cells 

differentiate. The cCREs in the UMAPs were also shaded by their membership in esRP-based 

metaclusters distinctive for particular cell types or lineages (see next section on “Clustering of 

cCREs based on esRP scores”). This visualization revealed well-defined clusters of cCREs 

active in specific cell types (Supplemental Fig.  S12B). 

 

Supplemental Figure 
S12. Reduced 
dimensionality 
representation of 
cCREs based on esRP 
scores, chromatin 
accessibility, and 
H3K27ac signal. (A) 
UMAP of cCREs based 
on their esRP scores 
across all cell-types. 
The points are colored 
by the esRP scores in 
the designated cell type. 
(B) UMAP of cCREs 
based on their esRP 
scores across all cell-
types, with the points 
colored by the binary 
label indicating whether 
a cCRE belongs to the 
specified joint 
metacluster (JmC; see 
next section). (C) and 
(D) show UMAPs for the 
VISION cCREs based 
on their ATAC-seq 
signal or their H3K27ac 
signal, respectively, with 
the colors indicating the 
scores in ERY (left) or 
MONc (right). 
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Comparisons of esRP, chromatin accessibility, and H3K27ac in cCREs  

The esRP-based UMAPs used a score that reflected an integration of eight epigenetic features 

followed by an association with gene expression via multivariate linear regression, and our 

exploration of these integrative scores for visualization showed that they did reveal informative 

patterns. We also compare the results of using the integrative esRP scores versus simply using 

single epigenetic features for visualization. We generated UMAPs of the cCREs based on their 

signal intensity for ATAC-seq or H3K27ac across cell types. The UMAP based on ATAC-seq 

signal spread the cCREs over much of the projection plane, and it showed a long arc of cCREs 

active in all cell types examined along with groups of cCREs active preferentially in ERY or 

MONc (Supplemental Fig. S12C). The UMAP based on H3K27ac signal intensity revealed a 

shape on the projection plane that is similar to that for the esRP UMAP, but inverted, along with 

a prominent long arc of broadly active cCREs (Supplemental Fig. S12D). The comparisons of 

the UMAPs do not support any of the three metrics as being superior for visualization, but they 

do indicate that any of the three, including the integrative esRP scores, can reveal informative 

patterns when used as input for visualizations by dimensional reduction methods.  

 

The three signals showed a positive association in pairwise comparisons (Supplemental Fig. 

S13A). The H3K27ac signal intensity was strongly and consistently associated with the beta-

coefficients in each state, as expected from the well-established association of this histone 

modification with activation of CREs. Some IDEAS states had high ATAC-seq signal but low 

values for beta-coefficients, as expected for CREs serving predominantly structural roles, but 

the overall trend of the comparison was positive.  

 

We also compared the three signals in a discriminatory task, specifically the ability to distinguish 

cCREs overlapping with transcription start sites (TSS) versus those that overlap with 
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“transcription end sites” (TES, poly-A addition sites) or cCREs located elsewhere with respect to 

gene bodies. These annotations were chosen for the discriminatory task because they could be 

determined for all cCREs and are invariant across cell types. The UMAP projections based on 

each of the three signals in cCREs showed some clusters that appeared enriched for TSS and 

others that were somewhat enriched for TES (Supplemental Fig. S13B). The discriminatory 

ability of each signal was quantified using the Local Inverse Simpson’s Index, or LISI 

(Korsunsky et al. 2019). The distributions of LISI scores for distinguishing TSS or TES were 

high for all three signals, but the distributions were higher for esRP compared to the signals for 

the two individual features, indicating a somewhat better performance for esRP (Supplemental 

Fig. S13C). 
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Supplemental Figure S13. Relationships among esRP, ATAC-seq and H3K27ac signals and 
their ability to distinguish cCREs based on position within gene bodies. (A) This panel depicts 
the relationship between ATAC-seq or H3K27ac signal and the beta-coefficient for each IDEAS 
state. The left part of each graph shows the mean ATAC-seq (top) or H3K27ac (bottom) signals 
in cCREs in each of the 25 IDEAS states, and the right part of each graph is a scatter plot of the 
means signals for the individual feature versus the beta-coefficient computed for each state in 
the MVLR. (B) UMAPs of cCREs, color-coded according to their intersection with gene 
structures, specifically red for overlap with transcription start sites (TSS, +/- 2kb), green for 
overlap with “transcription end sites” (TES, poly-A addition sites, +/- 2kb), and orange for all 
other cCREs. (C) This panel presents the LISI score for the UMAP, demonstrating its ability to 
differentiate specific gene structure cCREs from the remaining cCREs.  
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Clustering of cCREs based on esRP scores 

Rationale 

To infer the potential biological functions of the cCREs, we clustered them based on their esRP 

scores across different cell types. The traditional methods for clustering cCREs are based on a 

pairwise distance matrix of signals measured in different epigenomic datasets across different 

cell-types. However, these approaches cannot capture the information of the potential biological 

effects of the epigenetic modifications on gene expression regulation. For example, transitions 

from an initial state with only H3K4me3 to a second state with only H3K9me3 or to a second 

state with only H3K27ac have opposite associations with biological processes (repression 

versus activation, respectively), but the pairwise distances determined from the vectors of 

epigenetic signals would be very similar. In contrast to the signals measured directly by 

epigenomic datasets, the esRP score has already integrated all available epigenetic features’ 

information as a quantitative score that can reflect the overall potential of each cCRE for 

regulating gene expression. Thus, we hypothesized that clustering the cCREs using a distance 

based on esRP score would produce groups that better capture the changes of biological 

effects of the cCRE across different cell types.  

 

Method for generating esRP-based joint metaclusters of cCREs 

In this study, we conducted a series of clustering steps to generate robust clusters representing 

the prevalent patterns of inferred regulatory potential (esRP scores) across cell types jointly in 

both human and mouse species (Supplemental Fig. S14). We first created a combined matrix of 

esRP scores for all human and mouse cCREs across all shared cell types in both species. This 

ensured that the identified clusters were based on esRP patterns across the same set of cell 

types in both species. To mitigate the potential issues of cross-cell type collinearity and 

overfitting, we performed a principal component analysis and selected the top 10 principal 

components (PCs), which account for 99% of the variance. This generated a matrix containing 
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10 PC values corresponding to each cCRE. Although we had data for neutrophils from both 

species, we excluded the esRP scores for cCREs in neutrophils due to the significant noise in 

the ATAC-seq, which affected the overall quality of our results.  

 

To identify robust clusters, we employed an iterative k-means clustering strategy, finding 

clusters with high consensus across repeated clustering rounds and then re-assigning all 

cCREs to these robust clusters. The initial clustering round (Step 1, Supplemental Fig. S14) 

used k-means clustering (K=100) based on the pairwise Euclidean distance of PCs of esRP 

scores across all cell types. This was performed 100 times, generating 10,000 clusters that 

could contain both human and mouse cCREs or cCREs from only one species. To identify 

consensus clusters across the 100 k-means runs, we combined the vectors of mean PC values 

for each of the 10,000 clusters from Step 1 into a matrix and clustered them again using k-

means (K=100, Step 2, Supplemental Fig. S14). This step partitions the Step 1 clusters with 

similar characteristics into groups of clusters, where a large group size implies high consensus.  

 

We considered groups with more than 70 Step 1 clusters as high consensus clusters, 

determined by calculating the Z score for the group size and finding the group size 

corresponding to the upper tail probability of 0.05. We identified 61 such groups, which we 

called robust clusters. However, these 61 clusters did not contain all cCREs, so we reassigned 

all cCREs in both human and mouse to one of the 61 robust clusters based on the cosine 

distance between each cCRE's esRP score profile and each cluster’s average esRP score 

profile, which was computed by averaging the mean-esRP-signal-vectors of the Step 1 clusters 

within each robust cluster. 

 

Since our goal was to find clusters with cCREs in both species, we counted the number of 

cCREs from each species in each robust cluster and calculated the proportion of cCREs in each 
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species for each robust cluster. We identified 44 clusters in which the proportion of cCREs did 

not significantly differ between the two species (i.e., the absolute log2 fold changes of cCRE 

proportion between the species were <= 2.18 (p-value = 0.05)), which we designated as robust 

clusters shared across species. Using the cosine distance, we reassigned each cCRE in each 

species to one of these 44 shared robust clusters. 

 

Lastly, we observed that the average esRP score profiles across cell types for some subsets of 

the 44 clusters were similar, indicating they were not distinct clusters. To better differentiate 

groups of cCREs shared between species, we created joint metaclusters (JmCs) by clustering 

the clusters (Step 3, Supplemental Fig. S14). We combined the 44 clusters to generate 15 

JmCs using hierarchical clustering (Hclust) and dynamic trimming with dynamicTreeCut 

(Murtagh and Legendre 2014). We ran Hclust followed by dynamicTreeCut 100 times, adding 

different noise (uniformly distributed within a range of -0.001 to 0.001) for each run and using 

the cosine distance matrix. We then created a count matrix to record the frequency of each 

cluster being found in the same JmC. We used Hclust to cluster the count matrix and applied 

dynamicTreeCut to cut the Hclust tree into 15 JmCs. As a result, each cCRE in mouse and 

human was assigned to one of the 15 JmCs. These JmCs provide discrete categories for 

cCREs based on the cell type distribution of their estimated regulatory impact. 
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Supplemental Figure S14. Overview of clustering of cCREs based on their esRP scores, 
leading to the partitioning of all human and mouse cCREs into one of 15 joint metaclusters 
(JmCs). The steps in the clustering are described in the Methods. Abbreviations are CT = cell 
type, esRP = epigenetic state Regulatory Potential, PC = principal component, RC = robust 
cluster, SRC = shared robust cluster, JmC = joint metacluster. 
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Enrichment of specific JmCs for promoter or enhancer annotations

 

Supplemental Figure S15. Enrichment of orthogonal functional annotations and mouse 
phenotype terms in the joint metaclusters of cCREs based on their esRP scores across cell 
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types. (A) Enrichment and depletion of cCREs in esRP joint metaclusters (JmCs) for function-
associated elements.  Enrichment or depletion is the log2(Obs/Exp) for overlaps of the cCREs 
in each JmC with the designated set of function-associated elements. The expected value was 
calculated from the fraction of all human VISION cCREs (200,342) that overlap with the sets of 
elements. TSSs were from GENCODE (extended +/- 500bp for a 1000bp interval). Enhancer 
sets were from FANTOM5 enhancers (F5) determined from enhancer RNAs in many cell types 
(Andersson et al. 2014) or the Xu laboratory erythroid (ERY) enhancer repertoire (Huang et al. 
2016), determined from histone modification patterns in adult and fetal erythroblasts. (B) 
Enrichment of functional terms from phenotype ontologies for human cCREs in JmC 10 
(enriched in erythroid and megakaryocytic cells) and JmC 15 (enriched in monocytes and 
progenitor cells). Queries on the VISION cCRE_db returned 15,416 human cCREs in JmC 10 
and 17,031 human cCREs in JmC 15. These sets of genomic intervals were analyzed for 
functional term enrichment of linked genes using the GREAT tool, v.4.0.4 (McLean et al. 2010), 
using the "Basal plus extension" option to associate genomic regions with genes, choosing the 
default proximal = 5 kb upstream and 1 kb downstream but limiting the extension to 100 kb 
rather than the default of 1000 kb. The table lists the top 20 Mouse Phenotype terms ordered by 
the FDR q-value; the fold enrichment is also given. Enriched terms from the Human Phenotype 
ontology also were associated with the blood cell types in which the JmCs were enriched, but 
those terms were not as precise as the ones from the Mouse Phenotype ontology. 
 

 

Enrichment of JmCs assigned to cCREs in gene loci  

Related to main Figure 4D. 

We calculated the enrichment of JmC assignments of cCREs at gene loci (TSS +/-50kb) in both 

species. For each 𝐺𝑒𝑛𝑒!, the enrichment of 𝐽𝑚𝐶# is defined as follows:  

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡!,#

=	
I𝐺𝑒𝑛𝑒!_𝐽𝑚𝐶#_𝑐𝐶𝑅𝐸23,-4 + 1K × I𝐺𝑒𝑛𝑒!_𝐽𝑚𝐶#_𝑐𝐶𝑅𝐸56378 + 1K

I𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐺𝑒𝑛𝑒!_𝐽𝑚𝐶#_𝑐𝐶𝑅𝐸23,-4 + 1K × I𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐺𝑒𝑛𝑒!_𝐽𝑚𝐶#_𝑐𝐶𝑅𝐸56378 + 1K
 

where the 𝐺𝑒𝑛𝑒!_𝐽𝑚𝐶#_𝑐𝐶𝑅𝐸23,-4/,6378 is the number cCRE assigned to 𝐽𝑚𝐶# at the 𝐺𝑒𝑛𝑒! 

locus in human or mouse, the 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐺𝑒𝑛𝑒!_𝐽𝑚𝐶#_𝑐𝐶𝑅𝐸23,-4/56378 is the expected number of 

cCRE assigned to 𝐽𝑚𝐶# at the 𝐺𝑒𝑛𝑒! locus in human or mouse by random chance. 
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Enrichment of trait-associated SNPs in the joint metaclusters (JmCs) 

We sought to determine the enrichment of trait-associated SNPs in the subsets of VISION 

cCREs based on activity within groups of cell types, i.e., the joint metaclusters (JmCs). We re-

analyzed the blood trait-associated variants by running sLDSC with fifteen separate 

annotations, each annotation defined by a JmC, to see if the trait heritability was enriched in any 

JmCs. Running these annotations through the same pipeline described above (see section 

“Enrichment of genetic variants for blood cell related traits in the VISION human cCRE 

collection”), we obtained estimates of the enrichment of each JmC in the heritability of each of 

587 traits. 

 

We found five JmCs with significant results at a 5% FDR (Supplemental Fig. S16). The cCREs 

more active in erythroid and megakaryocytic cells, i.e., those in JmCs 10 and 2, were 

significantly enriched for heritability of several blood traits, including many related to erythroid 

cells. Several of the enrichments were for cCREs in JmCs 1 and 4, which are active across all 

cell types examined and are themselves highly enriched for proximal regulatory regions such as 

promoters (Supplemental Fig. S15A). While this result may suggest that many blood-trait 

associated variants were in proximal regulatory regions of genes with active epigenetic marks 

broadly present across blood cells, more study is needed to establish such a relationship. One 

caveat is that the large number of cCREs in JmCs 1 and 4 makes it more likely for them to 

overlap with any feature, and thus the large overlap with proximal regulatory regions could be 

separable, at least in part, from the overlap with trait-associated variants. Many of the JmCs 

showed no significant enrichment, perhaps reflecting a reduced power for JmCs comprising 

fewer cCREs. 
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Supplemental Figure S16. Enrichment of SNPs associated with blood cell traits from UK 
Biobank in VISION cCREs. Results of the JmC sLDSC analysis where each set of cCREs 
within a JmC was considered as a separate annotation. The plot lists a trait on the x-axis if any 
JmC had a significant enrichment for it. The labels for these traits are maroon for blood count 
traits, purple for blood biochemistry traits, and black for non-blood related traits. The plot lists 
the JmC on the y-axis. For a given JmC and trait combination, a dot is plotted if and only if there 
was an observed significant enrichment for that combination. Size of the dot reflects the 
significance of the enrichment, and the color of the dot reflects the size of the enrichment itself. 
Negative enrichments are colored gray. Panels separate the sex in which the GWAS analysis 
was performed for each trait. 
 

Comparisons of cCREs clusters based on esRP, chromatin accessibility, and H3K27ac 

for distinguishing among cell types 

Based on prior work, it was expected that some cCRE clusters would be distinctive for individual 

cell types. The JmCs based on esRP scores tended to contain cCREs active in groups of cell 

types in a lineage (e.g., lymphoid cells) rather than in individual cell types. We investigated 

whether this apparent loss of specificity was a result of the metric used for clustering or whether 

it resulted from combining previously distinctive clusters.  
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First, we generated joint metaclusters of the cCREs using the procedure illustrated in 

Supplemental Fig. S14 but using the signals in each cCRE for ATAC-seq or for H3K27ac in 

each cell type as the input for clustering. The patterns of the single or integrative (esRP) signals 

across cell types had broad similarities, with some JmCs composed of cCREs with high signal 

across all cell types and other JmCs more distinctive to related groups of cell types 

(Supplemental Fig. S17). None of the three signal sources showed a superior ability to 

distinguish among individual cell types.  

 

Supplemental Figure S17. Joint metaclusters 
of cCREs based on three different input 
signals. The metaclusters were combinations of 
shared robust clusters (see Supplemental Fig. 
S13) generated by a series of k-means 
clusterings using as input the esRP scores 
(top), ATAC-seq signal (middle) or H3K27ac 
signal (bottom) of cCREs in each cell type. The 
mean signal for the cCREs in each metacluster 
in each cell type was indicated by the intensity 
of red color in the heat map. 
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We then examined the larger number of shared robust clusters (SRCs) generated though this 

clustering pipeline for each input signal. For all three input signals, the SRCs had clusters of 

cCREs that were distinctive for individual cell types (Supplemental Fig. S18). For example, 

esRP-based SRCs 9:37 and 12:54 (JmCid:SRCid) distinguished cCREs active in T cells from 

those in NK cells, and SRCs 5:5 and 5:52 distinguished cCREs active in B cells from those 

active in CLPs. The ATAC-seq SRCs 6:80 and 9:36 were distinctive for cCREs active in MON, 

while SRC 6:93 was distinctive for B cells. Similarly, the H3K27ac SRCs 5:74 and 10:45 were 

distinctive for cCREs active in MON, while SRCs 5:78 and 10:90 were distinctive for B cells. We 

conclude that clusters of cCREs based on any of the three signals could be distinctive for 

individual cell types when a sufficiently large number of clusters were considered. 

 
Supplemental Figure S18. Shared robust clusters of cCREs based on three different input 
signals. The shared robust clusters (SRCs) were generated by a series of k-means clusterings 
using as input the esRP scores (left), ATAC-seq signal (middle) or H3K27ac signal (right) of 
cCREs in each cell type (see Supplemental Fig. S13). The SRCs were clusters of cCREs found 
frequently in multiple rounds of k-means clustering that also contained cCREs from both mouse 
and human. The mean signal for the cCREs in each SRC in each cell type was indicated by the 
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intensity of red color in the heat map. Each row was labeled by the joint metacluster assignment 
followed by the SRC assignment, i.e., JmCid:SRCid. 
 
Self-organizing maps 

A complementary approach to systematic integration of epigenetic features or RNA data across 

cell types is to build self-organizing maps (SOMs) such that each map unit contains elements 

(cCREs or genes) with similar profiles (epigenetic or expression) across cell types, and units 

with similar collections of profiles are close to each other in the SOM. We built DNA and RNA 

SOMs for the human VISION data (Jansen et al. 2019). To build DNA SOMs, the ChIP-seq and 

ATAC-seq data over all the cCREs were trained on a 60x90 SOM using the SOMatic package 

(https://github.com/csjansen/SOMatic). This approach yielded 160 different metaclusters, each 

of which represents a collection of cCREs with a similar signal profile across each cell type and 

experiment (Supplemental Fig. S19A). An RNA SOM was built by training a 40x60 SOM on the 

expression profiles of genes across cell types (Supplemental Fig. S19B), which generated 21 

metaclusters, each of which contained genes with similar expression profiles across cell types. 

These SOMs can be viewed interactively at the server at http://usevision.org. 

 

Supplemental Figure S19. Self-organizing maps of DNA-based data and RNA-based data. 



 

56 

 

Enrichment for transcription factor binding site motifs in joint metaclusters of cCREs 

We used the Maelstrom tool in the GimmeMotifs suite (v0.17.1) to identify motifs that are 

differentially enriched across JmCs (Bruse and van Heeringen 2018). In contrast to previous 

analyses in which all cCREs active in a specific cell type or those that are distinctive for a cell 

type were examined (e.g., Neph et al. 2012; Vierstra et al. 2020), our search for motif 

enrichment in the JmCs examined not only sets of cCREs that are distinctive for a lineage, but 

also sets of cCREs with a broader distribution of activity. We first labeled all cCREs according to 

their JmC membership. We then ran separate Maelstrom analyses on human and mouse cCRE 

sets to find enrichment of motifs in GimmeMotif’s default “gimme.vertebrate.v5.0.pfm” collection 

of non-redundant clustered vertebrate motifs derived from the Cis-BP database (Weirauch et al. 

2014). Maelstrom’s --filter-cutoff parameter was set to the default value of 0.8, which has the 

effect of filtering redundant motif enrichment results based on scores across the input sets. We 

filtered out motifs that did not achieve a Maelstrom Z-score of at least 4 in any JmC. We then 

combined results across human and mouse (which required running Maelstrom again for each 

species using the --no-filter option to fill in Z-scores for motifs that were found in one species but 

not the other). Heatmaps were constructed using the Python seaborn package (Waksom 2021) 

and motif logos were plotted using WebLogo3 (Crooks et al. 2004). Putative TF names were 

associated with each motif by examining the identities of Cis-BP motifs that were clustered into 

the relevant non-redundant motifs within the GimmeMotifs non-redundant set, and by matching 

enriched motifs against mouse and human motifs from Cis-BP (v.2.0) using STAMP (v.1.0) 

(Mahony and Benos 2007) with arguments “-cc PCC -align SWU”. 
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Binding of CTCF to cCREs in JmCs: species similarities and differences 

The enrichment of TFBS motifs for CTCF and ZBTB7A presented some potential exceptions to 

the sharing of motifs across species. The cCREs in JmC 8 showed the expected strong 

enrichment for these motifs in both human and mouse, with little enrichment for binding site 

motifs of other TFs (main Fig. 4E). These cCREs had modest regulatory impact, as estimated 

by esRP scores, across most cell types, suggesting the hypothesis that cCREs in JmC 8 may 

consist of CTCF-bound sites that are not involved in gene activation. Indeed, examination of 

ChIP-seq results showed that the cCREs in JmC 8 were enriched for CTCF occupancy in both 

mouse and human and for overlap with loop anchors (Supplemental Fig. S20A and B). In 

contrast, the cCREs in several JmCs were enriched for CTCF and ZBTB7A motifs only in 

mouse (e.g., JmCs 12, 7, and 10) or only in human (e.g., JmCs 11 and 13; see main Fig. 4E). In 

these JmCs, the cCREs were also enriched for binding sites for other TFs, with those other 

motifs enriched in the cCREs from both species. The frequency of occupancy by CTCF in the 

cCREs in these latter JmCs corresponded well with the enrichments for the motifs, with JmCs 

with greater enrichment for CTCF motifs in human also more enriched for CTCF occupancy in 

human, and vice versa for mouse (Supplemental Fig. S20A). These observations lent support to 

the suggested species-specificity. A parallel analysis of the cCREs in human and mouse JmCs 

by the multi-label discriminative motif-finder SeqUnwinder (Kakumanu et al. 2017) also 

uncovered enrichment of some motifs that apparently systematically vary in 

enrichment between mouse and human cCREs, but the magnitude of enrichment was limited 

(Supplemental Fig. S21).  
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Supplemental Figure S20. Overlap of cCREs in joint metaclusters with DNA segments bound 
by CTCF and with loop anchors. (A) Enrichment for overlap of cCREs in JmCs for occupancy by 
CTCF. Extensive data on CTCF occupancy in many blood cell types were recorded in our cCRE 
db, and we used its query capacity to find the numbers of cCREs in each JmC (human and 
mouse separately) that were bound by CTCF, according to the ChIP-seq results compiled in the 
VISION project. These numbers were listed in the indicated column, along with percentage of 
cCREs that overlap and an estimated enrichment for overlap (colored cells, red for higher 
enrichment), determined by dividing by the percentage of all cCREs that are bound by CTCF. 
The final column summarizes the results on motif enrichment from main Fig. 4E. (B) Enrichment 

A. Enrichment of cCREs in each JmC for overlap with CTCF occupancy, normalized for total 
overlap of cCREs with CTCF occupancy 

 Human Mouse  

JmC 
Nmbr 
cCREs 

Nmbr 
ovlp 
CTCF 

% 
cCREs 
ovlp 
CTCF 

(%ovlp 
JmC) / 
(%ovlp 
all) 

Nmbr 
cCREs 

Nmbr 
ovlp 
CTCF 

% 
cCREs 
ovlp 
CTCF 

(%ovlp 
JmC) / 
(%ovlp 
all) 

CTCF and 
ZBTB7A motif 
enrichment 

1 27,814 11,186 40.2 1.39 12,824 7,627 59.5 1.30 neither species 
4 17,138 7,292 42.5 1.47 14,857 8,583 57.8 1.26 a little in human 

12 8,272 1,812 21.9 0.76 2,542 1,436 56.5 1.23 H < M 
9 11,352 3,284 28.9 1.00 1,054 439 41.7 0.91 H < M 
8 18,078 7,473 41.3 1.43 6,865 4,962 72.3 1.58 H = M 

10 15,416 3,051 19.8 0.68 3,503 2,053 58.6 1.28 H < M 
2 15,461 2,470 16.0 0.55 4,311 1,547 35.9 0.78 neither species 
5 12,402 3,623 29.2 1.01 3,387 1,896 56.0 1.22 H < M 
3 18,416 3,048 16.6 0.57 7,693 1,246 16.2 0.35 neither species 

15 17,031 1,653 9.7 0.34 4,217 1,138 27.0 0.59 neither species 
7 9,249 2,619 28.3 0.98 5,097 2,791 54.8 1.20 H < M 

11 5,503 2,114 38.4 1.33 9,411 2,731 29.0 0.63 H > M 
14 8,015 2,557 31.9 1.10 2,656 1,336 50.3 1.10 H > M 
6 9,612 2,768 28.8 0.99 9,914 3,064 30.9 0.68 neither species 

13 6,583 3,093 47.0 1.62 7,753 3,118 40.2 0.88 H > M 
All 200,342 58,043 29.0 1.00 96,084 43,967 45.8 1.00  

 
B. Overlap of cCREs for CTCF occupancy, loop anchors, and TAD boundaries, for those in 
groups of JmCs that differ in the species distribution of enrichment for CTCF motifs 

JmC 

Nmbr 
cCREs, 
both 
species 

Nmbr 
ovlp 
CTCF 

Nmbr 
ovlp 
loop 
anchors 

Nmbr 
ovlp 
TAD 
bnd 

% ovlp 
CTCF 

% ovlp 
loop 
anchors 

% ovlp 
TAD 
bnd 

Distribution 
of motif 
enrichment 

8 24,943 12,435 4,318 2,335 49.85 17.31 9.36 H = M 
12, 9, 10 42,139 12,075 5,212 3,496 28.66 12.37 8.30 H < M 

13, 14 25,007 10,174 2,914 2,039 40.68 11.65 8.15 H > M 
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for overlap of cCREs in JmCs for loop anchors and TAD boundaries. This analysis was 
conducted on the groups of JmCs that differ in the species distribution of enrichment for CTCF 
motifs. Abbreviations in both panels: JmC = joint metacluster, Nmbr = number, ovlp = overlap, 
bnd = boundaries, H = human, M = mouse. 
 

 

Method for SeqUnwinder 

We used the SeqUnwinder multi-label discriminative motif finder to discover de novo motifs 

associated with each JmC and to search for motifs that were potentially constitutively 

differentially enriched across species. We first gave every cCRE two labels: their JmC 

membership and their species of origin. We then filtered out sequences that were larger than 

1kbp and randomly selected 50,000 sequences from the remaining set. We then provided these 

doubly-labeled sequences to SeqUnwinder (v.0.1.5) (Kakumanu et al. 2017) and ran analysis 

using the following options: --threads 8 --win 200 --mink 4 --maxk 5 --r 10 --x 3 --a 200 --

hillsthresh 0.1 --memesearchwin 16 --minsubclass 150. Heatmaps were again constructed 

using the Python seaborn package (Waksom 2021) and motif logos were plotted using 

WebLogo3 (Crooks et al. 2004). Putative TF names were associated with each SeqUnwinder-

discovered motif by matching against mouse and human motifs from Cis-BP (v.2.0) using 

STAMP (v.1.0) (Mahony and Benos 2007) with arguments “-cc PCC -align SWU”. 
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Supplemental Figure S21. 
Discriminatory motifs 
discovered by SeqUnwinder. 
This multi-label 
discriminative motif-finder 
can deconvolute 
contributions of the esRP 
pattern from the contributions 
of the species in the motif 
enrichment patterns. The first 
15 columns show motif 
enrichments in each of the 
joint metaclusters of cCREs, 
and the last two columns 
show motifs that were 
enriched specifically in each 
of the two species. As shown 
toward the bottom of the 
matrix, these species-
specific motifs were primarily 
a GC-rich motif that was 
systematically enriched in 
human cCREs and a TGTG-
repeat motif enriched in 
mouse cCREs. The 
magnitude of enrichment of 
these motifs was limited. 
These apparently species-
specific motifs can serve as 
the basis for more detailed 
studies in the future. 
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Small differences in the number of cCREs in the structure and function conserved 

category (SF cCREs) 

The sets of cCREs conserved both in interspecies sequence alignments and inferred function 

as regulatory elements (SF cCREs, main Fig. 5A) were expected to have the same numbers of 

cCREs in both human and mouse. While the numbers were quite similar, they were not 

identical. We discovered “breakage” of a cCRE in one species into multiple cCREs in the other 

species was a contributor to this apparent discrepancy (Supplemental Fig. S22). The most 

common splits were one cCRE being divided into two cCREs in the other species. Such a split 

could reflect a gap in the interspecies alignment or an evolutionary separation into two elements 

in the other species.  

 

Supplemental Figure S22. Frequencies at which a single cCRE in one species was split into 
multiple cCREs in the other species during the liftOver procedure.  
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Comparison of magnitude of chromatin accessibility in orthologous cCREs in human and 

mouse blood cells 

The sets of SF cCREs presented the opportunity to examine whether orthologous, presumptive 

regulatory elements were involved in similar regulatory processes in both species. We reasoned 

that the level of chromatin accessibility would reflect the role and frequency of utilization of an 

element, and we used the accessibility signal as a proxy for regulatory role. We found that SF 

cCREs in analogous cell types in human and mouse showed a substantial positive correlation in 

ATAC-seq signal strength (Supplemental Fig. S23), with Pearson’s correlation coefficients 

ranging from 0.52 to 0.67. This result indicated that the SF cCREs may be playing similar 

regulatory roles in both species. 

 

Supplemental Figure S23. ATAC-seq signal strength comparisons across species.  The signal 
strengths for chromatin accessibility for SF cCREs (conserved both in sequence and inferred 
function) were represented by the maximum normalized ATAC-seq signal across replicates in 
each cell type. Two-dimensional density plots were generated for the signal strength for 
chromatin accessibility of SF cCREs in analogous cell types between mouse and human, and 
the correlation coefficients were used to estimate the similarities of the signal strength in those 
cCREs. Quantile normalization was applied to make the distribution of ATAC-seq signals 
comparable between the two species. In general, the signal strength of chromatin accessibility 
of SF cCREs were positively correlated in analogous cell types between mouse and human. 
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Profiles of epigenetic states in the three evolutionary categories of cCREs in human and 

mouse blood cells 

To investigate whether any epigenetic states occurred more frequently in one of the three 

evolutionary categories of cCREs, we determined the fraction of cCREs in each epigenetic state 

in the various cell types for cCREs in each evolutionary category in human and in mouse. We 

focused on eight cell types, specifically hematopoietic stem and progenitor cells (human HSC 

and mouse LSK), CMP, GMP, MEP, erythroblasts (ERY), B cells, CD4+ T cells and CD8+ T 

cells, that were considered analogous between human and mouse. All had replicated epigenetic 

datasets on human (for a total of 16 biosamples), and two had replicated datasets in mouse (10 

biosamples). The cCREs in each evolutionary category were assigned to a single dominant 

epigenetic state in each cell type (and replicate), and the distribution of epigenetic states on 

cCREs was computed. Because the full set of human cCREs was about twice the size of the set 

of mouse cCREs, a selection of 96,084 human cCREs based on the strongest mean ATAC-seq 

signal across all cell types was used for comparison (Supplemental Fig. S24A, B). Epigenetic 

states associated with promoter function were prevalent in the SF-conserved cCREs in both 

human and mouse, notably states 14 (PA), 15 (PNA), and 19 (PN) (Supplemental Fig. S24C). In 

contrast, greater proportions of epigenetic states associated with enhancers were assigned to S 

cCREs and N cCREs in human and mouse, such as states 4 (E1) and 5 (N) (Supplemental Fig. 

S24D). States associated with transcription were also common in the S and N categories of 

cCREs. State 13 (CN), associated with CTCF binding and chromatin accessibility, was common 

in all three categories, but notably higher in SF cCREs (Supplemental Fig. S24E). The 

distributions of epigenetic states were quite similar between the S-conserved and nonconserved 

cCREs across cell types and between species. These results indicated that the stringency of 

conservation of cCREs was related to their inferred function, with the cCREs conserved in 

sequence and inferred function associated with promoter-like states. This association led to the 
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hypothesis that many SF cCREs were promoters, and this hypothesis was supported by the 

analyses presented in the main text, Fig. 5B.  

 

 

Supplemental Figure S24. Epigenetic state profile comparisons of cCREs across evolutionary 
categories and between human and mouse. (A) Proportions of 25 epigenetic states in eight 
analogous cell types between mouse and human for three evolutionary categories. The top 
96,084 Human cCREs were selected to match the total number of mouse cCREs based on 
maximum averaged ATAC-seq signal strength across cell types. The proportions for the full list 
of human cCREs were shown in (B). Examples of the percentages for promoter-related (C), 
enhancer-related (D), and CTCF-binding-related (E) epigenetic states in three evolutionary 
categories among eight analogous cell types between mouse and human.  
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Impact of cCRE location relative to the transcription start site (TSS) of genes on 

conservation scores 

The differences in distributions of phyloP scores were interpreted as reflections of differing 

levels of evolutionary constraint on cCREs in the three evolutionary categories. However, the 

positions of cCREs relative to strongly conserved elements such as coding exons can influence 

the phyloP score because the DNA sequence alignments used in computing the phyloP scores 

are impacted by positions of aligning DNA segments relative to highly conserved sequences 

(King et al. 2007). Specifically, the local alignments were built by extensions from initial high-

scoring matches, and those initial matching segments were frequently in coding exons 

(Schwartz et al. 2003). Previous work has shown that the fraction of predicted cCREs with 

sequences that align between mammalian genomes was impacted by masking the coding 

exons when constructing the whole genome alignment (King et al. 2007). To investigate the 

potential impact of this effect, we computed the distribution of distances from the transcription 

start site (TSS) of genes both for cCREs and for randomly chosen matched genomic intervals 

(Supplemental Fig. S25). The distributions of distances showed considerable overlap, but the 

distribution for cCREs had a higher peak close to the TSS compared to the random intervals. 

The distributions were significantly different, and thus we cannot exclude an effect of position 

relative to the TSS on the distributions of phyloP scores. However, this effect does not rule out 

an impact of evolutionary constraint on the phyloP scores, which are themselves derived from a 

statistical model that includes phylogenetic inferences. 
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Supplemental Figure S25. Distributions of distances from the TSS of the nearest protein-
coding gene for cCREs and for randomly selected matched genomic intervals. Distributions of 
distances within a 100 kb interval on each side of the TSS are shown for cCREs and random 
intervals for (A) human and (B) mouse. The distributions were significantly different between 
cCREs and random intervals (p-value < 2.2^-16 by a two-sample Kolmogorov-Smirnov test).  
 

Given that the distance from the TSS could have some impact on the phyloP scores, we 

computed the distribution of these scores after partitioning the cCREs in each evolutionary 

category into those that are proximal to the TSS (+/- 1kb) or distal (all other cCREs). For all 

three evolutionary categories, the distribution of phyloP scores was higher for the proximal than 

for the distal elements. However, even focusing on the distal elements, the distribution of phyloP 

scores is still highest for SF cCREs, followed by S cCREs, and lowest for the N cCREs 

(Supplemental Fig. S26). 
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Supplemental Figure 
S26. Distributions of 
maximum phyloP scores 
for human cCREs in the 
three evolutionary 
categories partitioned into 
proximal or distal groups. 
The asterisks (*) mark 
comparisons that were 
significant (p-value < 2.2^-
16 for all except N proximal 
vs random, which has 
p=0.0017) by a Welch two 
sample t-test. The phyloP 
scores for N distal were 
significantly less than 
those for random intervals. 

 

 

Correlation between human and mouse of gene expression levels in blood cell types 

 

Supplemental Figure S27. Distribution of correlations of RNA levels for protein-coding genes 
across blood cell types between human and mouse. The correlations for the GATA1/Gata1 
genes and for other closely linked genes are marked with a vertical line.  
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Comparison of epigenetic state landscapes between human and mouse blood cells 

To compare the epigenetic state landscapes of blood cells between human and mouse, we 

computed a correlation based on those state profiles. First, we constructed a vector of values 

for the epigenetic states across the 15 blood cell types that are analogous for both human and 

mouse. Specifically, we started with the epigenetic states assigned to each 200bp bin in the 

human and mouse genomes, based on the IDEAS joint modeling across species. Those states 

provided a quantitative profile of the eight epigenetic features used in the modeling 

(Supplemental Fig. S28A). Thus, for each 200bp bin, a vector was constructed, comprised of 

the eight values for epigenetic features in the state assigned to a cell type, for all 15 cell types. 

This process produced a vector of 120 (i.e., 8x150) values (Supplemental Fig. S28B). Second, 

we computed the correlations across those vectors in mouse and human, comparing all 200bp 

bins across a locus in human with all 200bp bins across the orthologous locus in mouse. This 

local, all versus all comparison gave an estimate of the similarity in epigenetic landscapes 

across species (Figure 6B). Note that genomic sequence is not included in this comparison. 

 

 

Supplemental Figure S28. Computation of a correlation between epigenetic state landscapes 

of human and mouse blood cells. 
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Decomposition of the correlation matrix of epigenetic states using nonnegative matrix 

factorization (NMF) 

Method for NMF 

To uncover the underlying structure of the correlation matrix of epigenetic states across cell 

types and to discern relationships between different genomic regions in both human and mouse, 

we applied Nonnegative Matrix Factorization (NMF) to decompose the correlation matrix. NMF 

is a dimensionality reduction technique that can efficiently decompose a non-negative matrix 

into two lower dimensional matrices. Specifically, given an m-by-n correlation matrix, R0, where 

'm' represents the number of genomic bins around the target gene in humans and 'n' represents 

those around the orthologous target gene in mouse, we first converted the correlation matrix R0 

to a non-negative correlation matrix R by setting all non-positive values in R0 to a small value of 

1x10-10. This modified matrix, R, was then decomposed into two matrices - an m-by-k matrix (A) 

and an n-by-k matrix (B), such that R approximates the product of A and the transpose of B (R ≈ 

ABT). The matrices A and B were learned by using the multiplication update rules presented by 

Lee and Seung (1999). For the number of factors in NMF, we chose a value of 6 based on the 

'elbow' method, which corresponds to the inflection point on the plot of the Bayesian Information 

Criterion (BIC) versus number of factors K (Supplemental Fig. S29).  

 

Supplemental Figure S29. Determination of 
the number of factors used in NMF. The x-
axis represents the range of numbers of 
factors tested in various NMF iterations, and 
the y-axis plots the BIC score for each 
iteration. The number of factors chosen 
equals 6 (black dashed line), which 
corresponds to the "elbow" point where the 
BIC score curve starts to plateau. 
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Each of the six NMF factors captured a distinct, non-overlapping set of epigenetic features 

associated with a particular process in gene expression or regulation (Supplemental Fig. S30). 

 

Supplemental Figure S30. Profile of each of the six factors from NMF, highlighting difference 
processes contributing to each factor. 
 

 

To identify genomic regions with high loading to each NMF factor, we employed a Z-score 

based method. One NMF factor k is associated with two NMF loading score vectors: Sk,human is 

the k-th column of the matrix A, which includes the NMF loading scores to factor k for all 

genomic bins near the target gene in human, and Sk,mouse is the k-th column of the matrix B, 

which includes the NMF loading scores to factor k for all genomic bins near the target gene in 

mouse. We first smoothed the Sk,human and Sk,mouse vectors using the loess function in R (with a 

“span” parameter set at 0.03) to mitigate noise. Subsequently, we implemented two approaches 

to pinpoint genomic bins with a high loading to this NMF factor: 

 



 

71 

FDR adjusted Z-score based approaches without background gene set adjustment 

We first applied a two-round Z-score process to pinpoint genomic bins with a high loading to this 

NMF factor. For the Sk,human (or the Sk,mouse) vector, we first transformed it into its corresponding 

Z-score vector and associated p-values (round 1). Given our assumption that bins contributing 

to a particular NMF factor should exhibit significantly higher Z-scores relative to other bins, we 

recalculated the Z-scores for all bins (round 2). This was achieved by excluding those bins with 

round 1 Z-score p-values < 0.01 during mean and variance calculations. Following this, we 

further adjusted the round 2 p-values by using the False Discovery Rate (FDR), and those 

genomic bins with FDR < 0.1 were selected as bins that have significantly higher loading to the 

NMF factor k. This procedure was independently done in both human and mouse for each NMF 

factor. As a result, for both human and mouse, we identified a set of genomic bins that have 

significantly higher loadings to the NMF factor k. We further define the two sets of genomic 

regions in human and mouse as the peak regions exhibiting common cross cell type epigenetic 

state patterns (positive regulatory dynamics for GATA1/Gata1 gene loci) between the two 

species.  

 

NMF factors in human and mouse capture a similar set of epigenetic features across cell types 

In this analysis, we interpreted the regions within the same Non-negative Matrix Factorization 

(NMF) factors as genomic regions in the two species that show highly similar cross-cell type 

epigenetic state patterns. To validate this interpretation, we computed the average correlation 

between the regions with high loading scores of each pair of the NMF-factors across the two 

species. Specifically, we first selected genomic bins that exhibit high NMF loading scores 

(exceeding the 90th percentile) as representative bins for each factor in each of the species. 

Then, for a pair of the NMF-factors, factor-i and factor-j, the correlation between the two species 

was computed as the average correlation of epigenetic states across cell types between the 

representative bins of factor-i in human and the representative bins of factor-j in mouse. As 
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illustrated in Supplemental Fig. S31, each NMF factor in human (each column) exhibits one of 

the highest average correlations against the same NMF factor in mouse (each row). We 

conclude that the NMF factors capture a similar set of epigenetic state patterns in each species.   

 

 

Supplemental Figure S31. The 
average correlation matrix between 
human NMF factors and mouse NMF 
factors. Each entry in the matrix shows 
the average of Pearson’s correlation 
coefficients of epigenetic states across 
cell types between the representative 
(high scoring) bins of factor-i in human 
and the representative bins of factor-j 
in mouse. 
 

 

FDR adjusted Z-score based approaches with background gene set adjustment 

Some of the cross-cell-type epigenetic state patterns are more commonly shown across the 

genome, and thus the previous approach is likely to identify some of these patterns as false 

positive discoveries that would be found in comparisons of random loci. To reduce the impact of 

this issue, we refined our approach by incorporating a background gene set adjustment. 

Specifically, we began with calculating the correlation matrix between human-target gene and 

mouse-target gene (Rhuman-tar-vs-mouse-tar) and decomposing this correlation matrix into two NMF 

matrices (Rhuman-tar-vs-mouse-tar ≈ ABT). Next, instead of directly converting the A matrix's Sk,human 

vectors into Z-scores using mean and variance from the A matrix, we revised our method to 

include an initial selection of 100 random mouse genes. For each of 100 randomly selected 
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mouse genes, we calculated its correlation matrix with the human-target gene, denoting each as 

one of the background correlation matrices (Rhuman-tar-vs-mouse-bg-i). We then decomposed the 

Rhuman-tar-vs-mouse-bg-i using NMF, keeping the A matrix constant as derived from the original 

correlation matrix between human-target gene and mouse-target gene decomposition (Rhuman-tar-

vs-mouse-bg-i ≈ ABbg-i
 T). Subsequently, for each Sk,human vector, we computed the corresponding Z-

score vector and associated p-values. The mean and variance for these calculations were 

derived from all 100 Sk,mouse-bg-i vectors. The Z-scores were then converted to p-values, which 

were then adjusted using the FDR. Genomic bins with an FDR < 0.1 were identified as having 

significantly higher loading scores to the NMF factor k. The same analysis was also done for the 

B matrix to identify genomic bins with significantly higher loading scores to all NMF factors in 

mouse. In summary, this approach mitigated the false positive discoveries for the cross-cell-type 

pattern that are commonly presented across the genome in this analysis. The effectiveness of 

this bias reduction is demonstrated in Supplemental Fig. S33, as presented in the next section 

“False discovery rate in finding related elements using NMF of correlation matrices of epigenetic 

states”. 

 

Robustness of epigenetic patterns captured by NMF factors 

We found that the identification of the patterns characteristic of factors 3 and 6, discovered 

using k=6 for NMF, was robust to the choice of k. The factors identified using k ranging from 4 

to 9 included factors with patterns similar to those of factors 3 and 6 (from k=6), as shown in 

Supplemental Fig. S32A. Using high values of k (15 and 20) decomposed these patterns into 

multiple factors (Supplemental Fig. S32B) but using these high values for k was not supported 

by the BIC analysis (Supplemental Fig. S29). 
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Supplemental Figure S32. The patterns discovered for NMF factors 3 and 6 are robust to the 
choice of k. The intensities of signals for the NMF factors from decomposition of the correlation 
matrix for interspecies comparisons of epigenetic states along the region around the human 
GATA1 gene (see main Figure 6) are shown for various values of k used in NMF. The factors 
corresponding to factor 3 and factor 6 (discovered using k=6) are labeled in the results for each 
value of k. (A) Results for using k from 4 to 9. (B) Results for using k=15 and k=20. 
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False discovery rate in finding related elements using NMF of correlation matrices of 

epigenetic states 

Statement of the problem 

Having shown that comparisons of the epigenetic landscape between species can reveal 

elements with similar roles in regulation, even in the absence of genomic sequence alignment, 

we wanted to estimate the frequency at which these interspecies correlations of epigenetic 

states across cell types would lead to false discovery. The question of what constitutes a false 

positive in this context is challenging. A major complication is the well-established association of 

certain histone modifications with particular processes in gene regulation and expression. Those 

processes may not show gene specificity, as illustrated by the presentation on NMF factor 6 in 

Fig. 6 F and G, in which a common function of transcriptional elongation across most cell types 

is assigned to two different intervals in the same 100kb region, specifically downstream of 

GATA1 and the HDAC6 gene. Of course, one expects to find a high correlation in the epigenetic 

states across cell types between any genes – orthologous or non-orthologous - in which the 

H3K36me3 modification is left during elongation in most cell types. Such a case points to a 

common mechanism of expression or regulation across most cell types. The interesting new 

discovery in the state correlation and NMF decomposition was that some NMF factors reveal 

specificity in regulating the same gene or regulating genes with a similar cell type-specific 

expression profile. In considering the issue of false discovery, the pertinent question is whether 

the epigenetic comparisons reveal a common function with some specificity. To investigate this 

issue of potential false discovery, we examined the correlation matrices between cross-cell type 

epigenetic state profiles of one human locus and those from multiple non-orthologous loci in 

mouse, under the assumption that elements with high correlations at non-orthologous loci were 

candidates for false discovery. When evaluating the results, we distinguished between two 

related goals. The initial goal was (1) to find tissue-specific regulatory elements that regulate a 

particular pair of orthologous genes between species. Our examination of epigenetic state 



 

76 

correlations across cell types in non-orthologous loci led to the articulation of a second goal, 

which was (2) to reveal genomic elements that appear to be involved in a common function as 

tissue-specific regulatory elements. The estimate of false discovery rate differs depending on 

the stated goal. 

 

In the following presentation, we began with a broad assessment in which all discovery between 

non-orthologous loci was considered a “false positive” (using goal 1 of finding regulatory 

elements for orthologous genes), which in turn led to an improvement in the method used for 

calling peaks in the NMF factors. We then assessed some of the signals driving the apparent 

“false discoveries”, focusing on factors with specificity for regulation in erythroid and 

megakaryocytic cells. Finally, we show that an apparent “false discovery” (by goal 1) in a non-

orthologous locus was actually pointing to a previously unrecognized genomic region with 

multiple hallmarks of erythroid regulation, and hence it is a candidate for a true discovery by the 

criterion of goal 2, i.e., finding tissue-specific regulatory elements.  

 

Analytical approach 

As an approach to systematically evaluating false discoveries, we examined the epigenetic state 

correlation matrices between orthologous and non-orthologous loci. We compared the 

epigenetic states across cell types between the human GATA1 gene locus and four mouse loci, 

the orthologous Gata1 gene locus and three non-orthologous loci. For the non-orthologous 

comparisons, we chose the locus containing Cd4 because that gene is expressed specifically in 

CD4+ T-cells, the locus containing Rps19 because that gene is expressed ubiquitously in all the 

cell types examined, and the locus containing Slc4a1 because that gene is specifically 

expressed in erythroid cells and may reveal some elements with an erythroid regulatory 

component in common with those identified in comparisons of the human GATA1 and mouse 

Gata1 loci. The distinct expression patterns of genes in these three non-orthologous loci should 
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provide a diverse basis for comparison. We found that certain regions within the locus 

containing the human GATA1 gene exhibit ed high state correlation with these non-orthologous 

mouse loci, with correlation coefficients in a range similar to those for the comparison with the 

orthologous mouse locus (panels A-D of Supplemental Figure S33). We then applied NMF to 

decompose the correlation matrices and reveal the NMF factors contributing to the high 

correlations (panels E-H). In this decomposition, we fixed the human GATA1 locus factor matrix 

to be the one obtained from the human GATA1 locus and mouse Gata1 locus NMF 

decomposition and only updated the factor matrix for each of the non-orthologous loci. 

 

Initial statistical results 

We used FDR-adjusted Z-score p-values to identify specific intervals within these mouse loci 

that correlate highly with each 200 bp bin of the human GATA1 locus (panels I-L). The state 

correlations associated with NMF factors 2, 3, 4, and 6 passed the threshold for several 

genomic bins, and thus these genomic intervals contributed to statistical discovery in this 

analysis. In contrast, the state correlations associated with NMF factor 5 had relatively low 

correlation coefficients, and no genomic intervals passed the FDR threshold for highly 

correlated elements (panels I-L) in any of the loci. NMF factor 1 largely captured the background 

correlations, none of which passed the threshold for highly correlated.  

 

These results showed that, if one included all the windows in non-orthologous loci with 

significant state correlations as “false positives” (all the intervals in panels J-L), then many 

discoveries were “false” by goal 1, approaching the number of “true positive” discoveries in the 

orthologous comparisons. To estimate the false-discovery rate for GATA1-Gata1 comparisons, 

we assigned all the genomic intervals in the mouse Gata1 locus with high correlation (panel I) 

as “true positives” and those in non-orthologous loci with high correlation as “false positives” 

(panel J, K, and L). The false discovery rates from this initial estimate were indeed high, even 
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for NMF factors 3 and 4 that are associated with erythroid-megakaryocytic specific activation 

(panel Q). 

Supplemental Figure S33. Assessment of false and true discovery by epigenetic state 
comparisons at orthologous and non-orthologous loci.  
(A-D) The state correlation matrices between human GATA1 locus and four mouse loci, which 
were approximately 100kb regions containing the genes Gata1 (orthologous to human GATA1, 
panel A), and three non-orthologous genes Cd4, Rps19, and Slc4a1 (panels B-D). The 
epigenetic state landscapes from the joint human-mouse IDEAS model in 15 cell types are 
shown along the axes, along with gene annotations. (E-H) The factor matrices of the four 
correlation matrices after NMF decomposition. (I-P) The mouse genomic intervals identified as 
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having significantly high correlation scores within each of the NMF factors. Panels I-L show the 
result from the initial approach, which used the mean and standard deviation of the same gene 
locus to establish the background for the Z-score and FDR calculations. Panels M-P show the 
result based on the mean and standard deviation determined from a diverse set of loci for the 
background. (Q and R) The FDR of identified mouse genomic intervals with high epigenetic 
state correlations in the Gata1 locus based on NMF factors 3 and 4 relative to the three 
comparison, non-orthologous loci. (Q) The top panel is the result based on the mean and 
standard deviation of the same gene locus (initial method). (R) The bottom panel is the result 
based on the mean and standard deviation of the diverse set of loci for the background (refined 
method). 
 

Refinement of the criterion for discovery 

These initial results suggested that incorporating epigenetic state correlations between non-

orthologous loci could improve our approach to finding highly correlated intervals. Our initial 

method relied solely on the state correlation matrix between the human GATA1 locus and one 

specific mouse target locus for the Z-score calculation, and we refined the method to 

incorporate the state correlation matrices between the human GATA1 locus and multiple other 

mouse loci. The examination of a diverse set of loci was expected to provide a more robust 

estimate of the background correlations. First, we randomly selected 100 loci of about 100kb 

surrounding different mouse genes to use as background loci and generated the correlation 

matrices between the human GATA1 locus and these mouse background loci. Then, we 

decomposed the correlation matrices by NMF, again fixing the human GATA1 locus factor 

matrix as the one obtained from the human GATA1 locus and mouse Gata1 locus NMF 

decomposition, and only updating the factor matrix for each of the background loci. Next, we 

used the output of the factor matrices from the 100 background loci to establish a background 

mean and standard deviation for recomputing the Z-score for the factor matrices for the 

foreground gene loci (Gata1, Cd4, Rps19, Slc4a1). In this refined approach, we selected the 

genomic intervals based on the 10% false discovery rate relative to the 100 background genes.  

 



 

80 

The impact of this refinement is evident in panels M-P and panels Q vs. R. This refined 

approach had little impact on the “true discovery” in the orthologous comparisons (compare 

panels I and M), but it did exclude much of the “false discovery” at the Cd4 locus (compare 

panels J and N) while increasing the discovery at the Slc4a1 locus (compare panels L and P), 

which was expected to have some regulatory elements similar to those at the Gata1 locus. We 

note that the “false discovery” at the Rps19 locus was not strongly impacted by the refined 

approach. This recalibration of the background reduced the estimated false discovery rate for 

comparisons between the human GATA1 locus and the mouse Cd4 locus (compare panels Q 

and R); this estimated rate for NMF factor 3 was reduced from about 0.4 to about 0.1 while the 

estimated FDR for NMF factor 4 was reduced from about 0.6 to almost zero. The limited impact 

on the estimated false discovery rate for NMF factors 3 and 4 for comparisons with the Rps19 

locus and the increased rate for comparisons with the Slc4a1 locus appear to reflect erythroid 

and megakaryocytic gene regulatory regions, and thus they could be considered “true 

discovery” by goal 2 (finding tissue-specific regulatory elements), as explained in the next 

subsection.  

 

Biochemical interpretations and a candidate for true discovery in a non-orthologous locus 

The statistical analysis using a simple rule for distinguishing “true” from “false” positives gave a 

low estimate for a false discovery rate for comparison with one non-orthologous locus (panel R), 

but several discoveries at the non-orthologous loci Rps19 and Slc4a1 remained or were 

enhanced by the refined approach to finding strongly correlated genomic intervals. A deeper 

examination of the biochemical signatures and epigenetic features driving these correlations 

improved the interpretation of apparent “false” discoveries (by goal 1) and led us to propose that 

many appeared to be discoveries of tissue-specific regulatory elements, and hence would be 

considered “true” discoveries by goal 2.  
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The state correlations driven by NMF factors 3 and 4 were of particular interest because they 

were associated with gene activation specifically in erythroid and megakaryocytic cells 

(Supplemental Fig. S30), just like the GATA1 gene that was in the center of the human locus 

used in all the comparisons. The non-orthologous locus containing Cd4 has no genes 

expressed specifically in erythroid cells, and the epigenetic state landscape, displayed along the 

vertical axis of panel B, does not show any regions with an erythroid or megakaryocytic pattern 

of active states. Most of the genomic intervals with correlations associated with NMF factors 3 

and 4 were no longer considered discoveries when the multiple random gene background was 

adopted for the FDR-adjusted Z score p-value (panel N). In contrast, the gene Slc4a1 is 

abundantly expressed specifically during late erythroid maturation, which was reflected in the 

pattern of active epigenetic states only in erythroid cells (y-axis of panel D). Thus, we thought 

we might see regulatory regions for Slc4a1 to have a signal for factors 3 and 4, despite the fact 

that this gene is not expressed in megakaryocytes, whereas the reference gene (GATA1) is 

expressed in both erythroid and megakaryocytic cells. Indeed, the mouse Slc4a1 gene and 

surrounding regions showed state correlations associated with NMF factors 3 and 4 (panel H), 

but none passed our initial FDR threshold for highly correlated elements (panel L). However, the 

refined approach revealed several highly correlated elements for NMF factors 3 and 4 (panel P). 

These elements (indicated on panel P) correspond to regulatory regions demonstrated 

experimentally to regulate expression of the mouse Slc4a1 gene (Fox et al. 2020). Thus, while 

the estimated false discovery rate for NMF factors 3 and 4 are high (about 0.5 and 0.4, 

respectively) for comparing the human GATA1 and mouse Slc4a1 loci, we would argue that 

most of these discoveries at the non-orthologous locus can be considered “true” discoveries of 

erythroid regulatory elements (goal 2). 

 

The discovery of elements with high correlations associated with NMF factors 3 and 4 in the 

comparison between the human GATA1 and mouse Rps19 loci were initially puzzling. We had 
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chosen this locus to represent one with genes commonly expressed in all the cell types 

examined, and indeed the epigenetic state landscape reflects the common expression of genes 

Arhgef1 and Rprs19, with active promoter states (red) and transcriptional elongation states 

(green) for all cell types included (y-axis of panel C). The elements with highly correlated 

epigenetic states and associated with NMF factors 3 and 4 were located in a different part of the 

locus, between the genes Gm9844 and Gm5893 (indicated on panel O). Although these genes 

are not known to be expressed specifically in erythroid or megakaryocytic cell types, the 

epigenetic state pattern in this region showed states associated with enhancers (yellow) and 

promoters (red), with a strong signal in the erythroid and megakaryocytic cells. To obtain further 

experimental evidence as to whether this region could contain elements with a potential role of 

regulation in erythroid and/or megakaryocytic cell types, we examined the occupancy profile of 

transcription factors and co-activators active these two cell types in mouse. The transcription 

factors GATA1 and TAL1 are major regulators of gene expression in erythroid and 

megakaryocytic cells, and we found that multiple sites within this region were shown by ChIP-

seq to be bound by these transcription factors in erythroid cells, and a different site was bound 

by them in megakaryocytic cells (Supplemental Fig. S34). These sites bound by GATA1 and 

TAL1 in erythroid cells were also bound by the co-activator EP300 and the chromatin modulator 

BRD2. Thus, we infer that the “false” discovery (by the goal 1 criterion of all discovery at non-

orthologous loci being false, panel R of Supplemental Fig. S33) actually pointed to a previously 

unrecognized region with a plausible potential regulatory role specifically in erythroid and 

megakaryocytic cells, which would be a “true” discovery by goal 2. 

 



 

83 

 

Supplemental Figure S34. A candidate for a discovery of a potential element regulating 
expression in erythroid and/or megakaryocytic cells based on correlations of epigenetic states at 
non-orthologous loci. The 101kb mouse genomic locus containing the Rps19 gene is shown 
with (top to bottom) the epigenetic state assignments from the joint human-mouse IDEAS model 
in 15 blood cell types, the VISION cCREs, the gene annotations, and ChIP-seq profiles for 
occupancy by the cofactor EP300 in an erythroid tissue (fetal liver) and two cell lines (erythroid 
MEL and B-cell derived CH12), an HA-tagged form of the chromatin modulator BRD2 in an 
erythroid cell line model (G1E-ER4+E2), the transcription factors GATA1 and TAL1 in several 
erythroid or megakaryocytic cell tissues or cell lines, and the structural protein CTCF in several 
erythroid tissues or cell lines and CH12. Abbreviations include: fl = fetal liver, MK = 
megakaryocyte, ERY = erythroblast. The red rectangle encompasses the region with chromatin 
signatures of epigenetic features associated with erythroid and megakaryocytic regulation. 
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Much of the high state correlation was contributed by epigenetic states around genes expressed 

or regulated by a shared process across many cell types. For example, NMF factor 5, which is 

dominated by the polycomb mark H3K27me3, accounted for much of the high correlation of 

states between the ERAS and PCSK1N genes in the human GATA1 locus and the non-

orthologous mouse loci containing Cd4 (almost all the genes except Mlf2), Rps19 (the Dmrtc2 

and Gm4881 genes), and Slc4a1 (the Rundc3a gene and some intergenic intervals) 

(Supplemental Fig. S33). These intervals with polycomb-modified chromatin across most cell 

types clearly contributed to the state correlations (panels B-D) and NMF factor 5 (panels F-H)). 

Another example is NMF factor 6, which is dominated by the elongation mark H3K36me3. 

Factor 6 accounted for additional correlations of epigenetic states around the HDAC6 gene in 

the human GATA1 locus with specific genes in the non-orthologous loci, such as the Mlf2 gene 

in the Cd4 locus and the Arhgef1 gene in the Rps19 locus. Similarly, genomic intervals with 

states associated with active promoters across all cell types (NMF factor 2) were found in the 

orthologous and non-orthologous comparisons. We interpret these correlations accounted for by 

NMF factors 5, 6, and 2 as reflecting the common functions across cell types of polycomb-

mediated repression of some genes (factor 5) elongation of transcription at expressed genes 

(factor 6), or active promoters (factor 2). We would argue that these apparent “false” discoveries 

(by the criterion of all discovery at non-orthologous loci being false) actually indicated a 

discovery of regulation or expression by these common functions broadly across cell types. 
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Effectiveness of interspecies sequence alignment and epigenetic state correlation for 

regulatory element discovery 

Statement of the issue 

By utilizing chromatin accessibility and epigenetic state annotation in blood cells in our VISION 

project, we have predicted cCREs without regard to their sequence conservation between 

species (human and mouse). The collection of VISION cCREs provided an opportunity to 

estimate how much true discovery will be missed by focusing only on genomic elements in 

which the DNA sequence aligns between species. Given that regulatory elements have been 

discovered in transposable elements that are found only in human (or only in mouse), it is 

apparent that some regulatory elements would be missed by requiring interspecies sequence 

alignments. We wanted to use the VISION cCRE collection to assess how large the impact 

could be.  

 

Approach to analysis 

Under the assumption that the true discovery of our interspecies analysis lies in identifying 

specific DNA elements with regulatory functions demonstrated experimentally, we used a large, 

almost comprehensive collection of short DNA elements shown to be active in a robust assay 

for elements that regulate reporter gene expression as a proxy for the true discovery. Agarwal et 

al. (2023) used an enhanced lentivirus massively parallel reporter assay (lentiMPRA) to test 

over 200,000 DNA segments for activity in boosting or reducing gene expression after 

integration into three different cell lines. We focused on the results from K652 cells, in which all 

promoters for protein coding genes and a close to comprehensive set of candidate enhancers 

(based on DNase-seq peaks from ENCODE), along with many controls, were tested in forward 

and reverse orientations. The activities of each construct in the lentiMPRA library were reported 

as mean activity scores, which incorporated results from multiple barcoded constructs for each 

DNA fragment and running the assay in triplicate. A total of 87,186 lentiMPRA constructs 
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produced scores that were interpreted as reflecting an element active in this assay, i.e., the 

mean of the activity scores for the three replicates passed a threshold (-0.117) that corresponds 

to an FDR of 5%. Those active scores were generated from a set of 57,061 elements, reflecting 

the fact that some elements were active in both orientations. 

 

A larger fraction of elements active in lentiMPRA are in chromatin with a non-quiescent state 

than are in DNA segments that align between human and mouse. 

That collection of 57,061 elements shown to be active in at least one orientation in the 

lentiMPRA in K562 cells can be considered a proxy for a ground truth to ascertain the impact 

and efficacy on true discovery of (a) requiring that DNA sequences align between human and 

mouse and of (b) requiring an epigenetic state or esRP score in K562 cells indicative of activity 

in expression or regulation. For each of the active elements, we determined whether the human 

DNA sequence aligned with the mouse genome assembly using the liftOver tool. We found that 

34,434 (60.8%) had an aligning sequence in the mouse genome, but the remaining 22,627 

(39.2%) elements did not align to mouse. These results show that requiring sequence alignment 

will miss a large portion (about 40%) of elements active in lentiMPRA. 

 

In contrast, about 87% of the active elements were in an epigenetic state in K562 cells 

indicative of dynamic chromatin modifications and accessibility. We determined the dominant 

epigenetic state in K562 cells (from our joint IDEAS modeling) for 56,663 elements; this slightly 

smaller set does not include almost 400 active elements that are located regions of human 

genome to which large numbers of sequencing reads map (high signal regions or blacklisted 

regions). The epigenetic states were aggregated into those with histone modifications, CTCF 

binding, and/or nuclease accessibility, which we termed non-quiescent states, in contrast to the 

low signal quiescent state. As tabulated below, almost 87% of the active elements were in a 

non-quiescent state. After aggregating active elements by whether their states are associated 
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with gene activation, repression, or transcriptional elongation, we found that 82.5% of the active 

elements were in states associated with gene activation.  

 

Category Number of elements Percent 

Non-quiescent state 49,145 86.7 

Quiescent state 7,518 13.3 

States associated with gene activation 46,770 82.5 

States associated with gene repression 1,713 3.0 

States associated with transcriptional elongation 662 1.2 

 

Since a greater proportion (86.7%) of the active elements are in dynamically active chromatin 

than are in sequences that align between human and mouse (60.8%), one can make more true 

discoveries by including sequences that do not align between human and mouse in the 

predictions of CREs. These results are summarized graphically as panel D of main Figure 5. 

 

Elements active in lentiMPRA are more highly enriched in DNA intervals with high cross-cell 

type correlations in epigenetic state with and without DNA sequence alignment to mouse 

To verify whether our method, which is predicated on correlations derived from cross-cell type 

epigenetic state patterns, can effectively identify 'true discovery' DNA elements, we applied it to 

analyze the lentiMPRA results around 30 genes. These genes were selected based on their 

high or specific expression in K562 cells, while including some genes not expressed in K562 

cells, such as Cd4. We divided a 100kb interval centered on the transcription start site (TSS) 

into 200bp windows, giving 501 windows (250 windows on each side of the window containing 

the TSS) for of each of the 30 different genes.  Each window was placed into one of four distinct 

groups, which were defined as having: (1) both high cross-cell-type epigenetic state pattern 
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correlation (sufficient to be called as a peak in an NMF factor from the epigenetic state 

correlation matrix) and sequence conservation between human and mouse, as established by 

liftOver between the two genome assemblies (S&C); (2) high cross-cell type epigenetic state 

pattern correlation only (C); or (3) interspecies sequence conservation only (S). All remaining 

windows were placed into the fourth category, Other. For the DNA windows in each of these 

four categories, we calculated the enrichment of the intersection between the group region set 

and the collection of 57,061 active DNA elements based on lentiMPRA.  

 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡!,# =	
:&'(,*,+,,-./*0%12;74

<
3*,+

3*,/&/4,
×
3*,,-./*0%12,

3*,/&/4,
×:*,/&/4,;74>

, 

 

where 𝑁6?7,!,#,@84A!5*BC is the number of 200bp windows that intersect with both 𝑁@84A!5*BC peak 

regions and group-j regions in the 100kb window round the TSS of gene-i, 𝑁!,# is the number of 

200bp bins that intersect with group-j regions in the 100kb window around the TSS of gene-i, 

𝑁!,@84A!5*BC is the number of 200bp bins that intersect with lentiMPRA peak regions in the 100kb 

window around the TSS of gene-i, 𝑁!,A6A-@ is the total number of 200bp bins in the 100kb window 

around the TSS of gene-i, and 𝑠𝑛 is an added small number to avoid zeros in the denominator. 

As shown in Supplemental Fig. S35A, the S&C group and C group have significantly higher 

enrichment (pairwise Wilcoxon test p-value < 0.05).  

 

We then delved deeper to understand why the regions that are conserved in sequence but not 

called as peaks in the epigenetic state correlation (S) showed lower enrichment. One 

hypothesis was that these regions might predominantly be located in transcribed regions. To 

investigate this, we assessed the enrichment of these four sets in DNA regions exhibiting high 

H3K36me3 signals in K562 cells (IDEAS states 2 and 8). Supplemental Fig. S35B illustrates our 
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findings: as anticipated, the sequence-only conserved regions (S) show a notable enrichment in 

these specific areas. 

 

In conclusion, our findings show that, for the four categories examined, DNA regions exhibiting 

both sequence conservation and high similarity in cross-cell-type epigenetic state patterns are 

more likely to function as true regulatory elements. In cases where only one of these criteria is 

met, the regions with a high similarity in the cross-cell-type epigenetic state patterns tend to be 

more enriched in regulatory function, as revealed by lentiMPRA assays. The observed low 

enrichment in the lentiMPRA intersections for regions with only sequence conservation implies 

that these intervals are less likely to be involved in gene regulation, while their enrichment for 

the H3K36me3 modification associated with elongation indicates that they are frequently 

transcribed.  

  

Supplemental Figure S35. The enrichment of regulatory elements and regions of 
transcriptional elongation in four categories of DNA windows defined by sequence alignment 
between human and mouse and by high correlation of epigenetic state profiles between human 
and mouse orthologous genes. (A) The enrichment of experimentally determined regulatory 
elements from lentiMPRA results in K562 cells. (B) The enrichment of DNA regions labeled as 
being in IDEAS epigenetic states associated with transcriptional elongation (H3K36me3) in 
K562 cells. Each box plot gives a summary of the distribution of enrichment values for the 30 
genes for the indicated feature (lentiMPRA active in A and H3K36me3 state in B) and category 
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of DNA windows. The categories are (S&C) both high cross-cell type epigenetic state pattern 
correlation and sequence alignment between human and mouse, (C only) high cross-cell type 
epigenetic state pattern correlation only, (S only) interspecies sequence alignment only, and 
(Others) all remaining windows. In the box plots, the line in the box indicates the median, and 
the whiskers extend to 1.5 times the interquartile range. 
 

Enrichment of cCREs in the three evolutionary categories for specific JmCs in the 

vicinity of orthologous genes 

The comparison of epigenetic state profiles across cell types also provided a means to 

categorize cCREs across species that did not require a match in the underlying genomic DNA 

sequence. We used that information to identify cCREs that may be playing a similar role in 

regulation in both species despite their lack of conservation in DNA sequence. Specifically, we 

hypothesized that most cCREs regulating expression of orthologous genes would show a 

similar epigenetic profile across cell types in both species, regardless of whether the element 

was conserved in sequence. We leveraged the membership of each cCRE in the joint 

metaclusters (JmCs) determined in human and mouse because those JmCs reflect the inferred 

activity (deduced from epigenetic states) of the cCREs across cell types, reasoning that most 

cCREs regulating a given gene would be in one of the JmCs found frequently in the locus. 

Orthologous loci in mouse and human were defined as 100 kb genomic DNA intervals centered 

on the TSS of a gene with an identical name in the two species. Within these orthologous loci, 

we calculated the enrichment of each joint metacluster (JmC) in the collection of cCREs and 

assessed whether each individual cCRE was a member of the enriched JmC (Supplemental 

Fig. S36). Thus, each cCRE was assessed both for its evolutionary history, which relied on DNA 

sequence alignments, and its regulatory potential deduced from epigenetic state profiles, which 

did not rely on DNA sequence alignments. The cCREs in these orthologous loci were assigned 

to a subdivision of the conservation categories; the cCREs in JmCs enriched for a specific 

orthologous locus were labeled SF+, S+, and N+, whereas those not in enriched JmCs were 

labeled SF, S, and N cCREs (Supplemental Fig. S36C). Using this approach, one can deduce 
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that even cCREs in non-aligning genomic regions, such as the one upstream of Gata1, have 

epigenetic state profiles suggestive of a role in regulation of the orthologous gene 

(Supplemental Fig. S36D). Inclusion of the JmC enrichment along with the evolutionary 

categories increased the correlation between the esRP scores of cCREs and the expression of 

their inferred target genes (Supplemental Fig. S36E). The increase in correlation was observed 

for cCREs in all three evolutionary categories, including the species-specific N category, 

consistent with our hypothesis of common epigenetic profiles across cell types for relevant 

regulatory elements regardless of evolutionary category. These JmC enrichments provided an 

opportunity to delve into assessment of potential functions across species even in regions of the 

genome that no longer align between species. 
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Supplemental Figure S36. Enrichment of epigenetic states in orthologous loci. (A) 
Categorization of cCREs using liftOver between human and mouse for conservation of 
sequence (S) and cCRE calls in human and mouse for conservation of inferred function (F). (B) 
A proxy for analogous function is a similar epigenetic pattern across cell types, which was 
captured as membership in the same joint metaclusters (JmCs) in human and mouse. The 
JmCs enriched in cCREs in each gene region (TSS+/-50kb) were determined, and then the 
cCREs were assessed for membership in the enriched JmCs. The JmC assignment for each 
cCRE does not change as windows are centered on different genes, but enrichment for that 
JmC can change. (C and D) JmC enrichment tracks of cCREs at the human GATA1 and mouse 
Gata1 gene loci. A “+” sign assigned to a cCRE indicates that the JmC to which it belongs was 
enriched at the GATA1/Gata1 gene locus. (E) The correlation between the cCRE’s esRP score 
and the target gene expression level. The results for each set of cCREs are shown as box plots 
summarizing the distribution of correlations observed for all loci with orthologous protein-coding 
genes. The cCREs in each evolutionary category were separated into those that are members 
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of the JmCs enriched for a gene locus (indicated by a +) or those that are not (labeled SF, S, 
and N). 
 

The enrichment threshold required to consider a JmC enriched in the vicinities of an orthologous 

gene pair (Supplemental Fig. S36 B-D) was determined based on the distribution of FDR 

adjusted p-values of the Z scores for the computed enrichments of all JmC enrichment for all 

gene pairs (Supplemental Fig. S37). Those enrichment scores were converted to Z-scores, and 

the FDR-adjusted p-values were computed from the distribution of Z-scores. The JmC 

enrichment of 2.27 was chosen as the threshold based on the FDR adjusted Z-score p-value = 

0.1. 

 

 

Supplemental Figure S37. The 
histogram of JmC gene pair 
enrichment scores relative to JmCs in 
all protein coding genes. The black 
line represents the enrichment 
threshold for defining JmC-gene 
pairs. 
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CODE ACCESS 

Scripts and code used in the analyses in this paper are provided as two zipped directories in the 

Supplemental Material: scripts_for_GR2023_analysis for the joint IDEAS modeling and most 

other analyses, and cre_heritability for the sLDSC analysis. These scripts and code are also in 

two GitHub repositories: https://github.com/guanjue/Joint_Human_Mouse_IDEAS_State for the 

joint human-mouse IDEAS pipeline and https://github.com/usevision/cre_heritability for the 

sLDSC analysis. 
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