Cell Genomics, Volume 4

Supplemental information

Karyotypic stasis and swarming

influenced the evolution of viral tolerance

in a species-rich bat radiation

Nicole M. Foley, Andrew J. Harris, Kevin R. Bredemeyer, Manuel Ruedi, Sebastien J. Puechmaille, Emma C. Teeling, Michael F. Criscitiello, and William J. Murphy

Figure S1: Previously unplaced assembly scaffolds contained many immune-related genes, related to the improved *Myotis myotis* **genome assembly analyzed in Figure 2.** Gray blocks depict the original chromosome-scale scaffolds from the original assembly (GCA_014108235.1). Yellow blocks represent unplaced scaffolds currently assigned to chromosomes. The yellow blocks are not drawn to scale.

Figure S3: Whole genome nuclear topologies with all 60 individuals, related to Figure 1. The tree on the left is the 50% Majority Rule tree derived from the SVDquartets analysis. The rightmost tree is the IQtree2 Maximum Likelihood with branch lengths. All bootstrap supports are 100 unless otherwise indicated.

Figure S4: Mitogenome topologies with all 60 individuals, related to Figure 1. The tree on the left is RY-coded dataset. The tree on the right is the whole mitogenome with the D-Loop removed. All bootstrap supports are 100 unless otherwise indicated.

Figure S5.

Myotis myotis recombination map, related to Figure 2. Genome-wide distribution of recombination rates inferred using ReLERNN. Rates are averaged every 2Mb in 50kb sliding windows. For illustrative purposes V1-V15 and chrX are displayed using a sliding average with a step of 50. Chromosomes V16-V25 are displayed using a sliding average with a step of 10.

Figure S6: Comparison of select chromosomes from *M. myotis* and *M. brandtii* recombination maps, related to Figure 2.

Figure S7: Genome-wide phylogenomic signal to determine the position of the whiskered bat clade, related to Figure 3. A) Genome-wide distribution of topologies shown in B). C) shows the frequency of each topology on the autosomes and X and in high and low recombining regions.

Figure S8: Genome-wide phylogenomic signal to determine the position of *M. annatessae*, **related to Figure 3.** A) Genome-wide distribution of topologies shown in B). C) shows the frequency of each topology on the autosomes and X and in high and low recombining regions.

Figure S9: Genome-wide phylogenomic signal to determine the position of *M. annectans*, **related to Figure 3.** A) Genome-wide distribution of topologies shown in B). C) shows the frequency of each topology on the autosomes and X and in high and low recombining regions.

Figure S10: Genome-wide phylogenomic signal to determine the position of *M. bechsteinii*, **related to Figure 3.** A) Genome-wide distribution of topologies shown in B). C) shows the frequency of each topology on the autosomes and X and in high and low recombining regions.

Figure S11: Genome-wide phylogenomic signal to determine the position of *M. capaccinii*, **related to Figure 3.** A) Genome-wide distribution of topologies shown in B). C) shows the frequency of each topology on the autosomes and X and in high and low recombining regions.

Figure S12: Genome-wide phylogenomic signal to determine the relationships among species in the Ethiopian clade, related to Figure 3. A) Genome-wide distribution of topologies shown in B). C) shows the frequency of each topology on the autosomes and X and in high and low recombining regions.

Figure S13: Genome-wide phylogenomic signal to determine the relationships among the major Old World Clades, related to Figure 3. A) Genome-wide distribution of topologies shown in B). C) shows the frequency of each topology on the autosomes and X and in high and low recombining regions.

Figure S14: Genome-wide phylogenomic signal to determine the relationship between *M. pilosus, M. capaccinii* and *M. laniger*, related to Figure 3. A) Genome-wide distribution of topologies shown in B). C) shows the frequency of each topology on the autosomes and X and in high and low recombining regions.

Figure S15: Genome-wide phylogenomic signal to determine the position of *M. pilosus*, **related to Figure 3.** A) Genome-wide distribution of topologies shown in B). C) shows the frequency of each topology on the autosomes and X and in high and low recombining regions.

Figure S16: Phylogenomic discordance, related to Figure 3. Topological frequency is calculated comparing the Autosomes and X and comparing low and high recombining regions. Average values of f(D), alpha and ibl per clade.

Figure S17: The f(D) statistic calculated across chromosome V3 for various species pairs, related to Figure 4. Introgression is evident along chromosome arms while low recombining pericentromeric regions are relatively devoid of signal consistent with introgression.

Figure S18: Distribution of alpha and internal branch length (ibl) in regions of high and low recombination, related to Figure 4.

Figure S19: Topology frequency on each chromosome representing within clade relationships among species present at swarming sites, related to Figure 5.

Figure S20: Topology frequency on each chromosome representing between clade relationships for *M. brandtii, M. mystacinus* and *M. alcathoe* at swarming sites, related to Figure 5.

Figure S21: Introgressed topologies with the highest f(D) values are the most enriched on microchromosomes, related to Figure 6.

Figure S22: Genes that are differentially expressed in response to viral challenges in *M. daubentonii* were among the most frequently introgressed across microchromosomes, related to Figure 6.

Figure S23: Significant overlap between introgressed genomic windows and genes that are differentially expressed in response to viral challenges in *M. daubentonii*, related to Figure 6.

Figure S24: Plots of topology block length (=number of consecutive identical topologies) along chromosomes for the red topology uniting *M. myotis* **and** *M. daubentonii*, **related to Figure 6.** A) shows topology block length along chromosome V15. B) Microchromosomes V24 and V25 also exhibit elevated topology block lengths.

Figure S25: No impact of reference bias on whole genome tests of introgression, related to Figures 4, 5 and 6. *D*-statistics and Z-scores derived from data mapped to the *M. myotis* reference genome or the *M. yumanensis* genome are highly similar indicating the absence of reference bias

Table S1: Sample Information, related to Figure 1. Voucher or sample name, source and sampling locality for each sample used in this study. Categorization of broad scale species distributions as either tropical or temperate or spanning both. Abbreviations in sample source correspond to MHNG – Natural History Museum of Geneva, FMNH – Field Museum of Natural History Chicago, ZMMU – Zoological Museum Moscow Lomonosov State University, ROM – Royal Ontario Museum, EBD –Estacion Biologica de Doñana, AGS – Antonio Guillen-Servant, CMF – Charles M. Francis, SJP – Sebastien J. Puechmaille, MR – Manuel Ruedi

Voucher or Sample Name	Species	Sequencing Sample Number	Source	Locality	Clade
M2148	latirostris	S27	MHNG 1998.057	Taïwan.	
unknown	spp.	S37	MR		New World
M941	alcathoe	S26	MHNG 1828.073	Switzerland.	whiskered
M1575	alcathoe	S49	MHNG 1970.099	France.	whiskered
M803	davidii	S5	MHNG 1807.035	Greece	whiskered
M1993	mystacinus	S20	MHNG 1991.045	Switzerland.	whiskered
FMNH151200	bocagei	S42	FMNH	Tanzania	ethiopian
MZ004	bocagei	S37	MHNG 1971.027	Mozambique.	ethiopian
FMNH172095	goudoti	S45	MR/ FMNH	Madagascar.	ethiopian
FMNH173041	goudoti	S51	MR/ FMNH	Madagascar.	ethiopian
TM39421	welwitschii	S23	MR/ Transvaal Museum	South Africa.	ethiopian
FMNH144313	welwitschii	S47	MR/ FMNH	Uganda.	ethiopian
M733	emarginatus	S13	MHNG 1807.040	Greece.	ethiopian
MZ425	tricolor	S8	MHNG 1971.030	Mozambique.	ethiopian
TM40300	tricolor	S32	MR/ Transvaal Museum	South Africa.	ethiopian
Mdas1	dasycneme	S22	MHNG 1805.052	The Netherlands.	ethiopian
M1606	laniger	S57	MHNG 1981.074	India.	asian
AG 950116.6	cf laniger	S19	AG/ SMF 86179	Laos.	asian
M629	laniger	S50	MR	Taiwan.	asian
M1637	siligorensis	S31	MHNG 1981.073	India.	asian
N194	alticraniatus	S41	MHNG 1956.089	Laos.	asian
S175154	phanluongi	S24	MR/ ZMMU		asian
CMF960418.17	pilosus	S10	CMF	Laos.	asian
M2065	pilosus	S56	MR	India.	asian
CMF960522.46	macrotarsus	S20	CMF	Borneo.	oriental
EAR122	macrotarsus	S44	MR	Philippines.	oriental
М	macropus	S55	MR	Australia.	oriental
CMF960523.40	horsfieldii	S12	CMF	Borneo.	oriental

Voucher or Sample Name	Species	Sequencing Sample Number	Source	Locality	Clade
M1551	horsfieldii	S28	MHNG 1970.049	Malaysia.	oriental
M1184	horsfieldii	S2	MHNG 1926.038	Laos.	oriental
LRH3168	browni	S39	MR	Philippines.	oriental
Mcal	capaccinii	S34	MHNG 1805.050	Italy.	oriental
AGS980326.44	montivagus	S11	AGS	Laos.	muricola
M1208	indochinensis	S17	MHNG 1926.043	Laos.	muricola
CMF960408.3	federatus	S29	CMF/ROM 106389	Laos.	muricola
M1200	annatessae	S7	MHNG 1926.044	Laos.	muricola
M1165	ater	S9	MHNG 1926.036	Laos.	muricola
M1569	muricola	S30	MHNG 1970.064	Malaysia.	muricola
M1600	muricola	S40	MHNG 1972.084	Indonesia.	muricola
M2152	secundus	S25	MHNG 1998.058	Taïwan.	muricola
CMF960406.5	annectans	\$35	CMF/ ROM 106376	Laos	muricola
M2139	frater	S21	MHNG 1998.053	Taïwan.	Large Myotis & others
M2163	soror	S15	MHNG 1998.05	Taïwan.	Large Myotis & others
M2009	bechsteinii	S18	MHNG 1991.067	Switzerland.	Large Myotis & others
M2187	daubentonii	S24	MHNG 1999.098	Switzerland.	Large Myotis & others
M301	daubentonii nathalinae	S54	MR	Spain	Large Myotis & others
M303	daubentonii nathalinae	\$52	MR	Spain.	Large Myotis & others
EBD25765	escalerai	S36	EBD	Spain	Large Myotis & others
M2096	crypticus	\$38	MHNG 1996.094	Switzerland.	Large Myotis & others
M764	nattereri	S33	MHNG 1807.049	Greece.	Large Myotis & others
MM4SA	punicus	S1	MHNG 1805.092	Italy.	Large Myotis & others
Mb203	blythii	S3	MHNG 1805.026	Kyrgyzstan.	Large Myotis & others
631D	blythii	S14	MHNG 1805.037	Switzerland.	Large Myotis & others
M867	blythii	S6	MHNG 1807.099	Greece.	Large Myotis & others
Mb3	blythii	S4	MHNG 1805.041	Spain.	Large Myotis & others
SP.C.47	blythii	S43	SJP	Iran	Large Myotis & others
SP.C.48	blythii	S48	SJP	Iran	Large Myotis & others
Mchin1	ancilla	\$53	MR	China	Large Myotis & others

Voucher or Sample Name	Species	Sequencing Sample Number	% Reference Covered	reads mapped	mean coverage
M2148	latirostris	S27	78.6	94.56%	25
unknown	spp.	S37	79.6	96.33%	12
M941	alcathoe	S26	82.1	97.68%	16
M1575	alcathoe	S49	84.4	97.44%	26
M803	davidii	S5	85	98.51%	23
M1993	mystacinus	S20	84.8	96.86%	22
FMNH144313	welwitschii	S47	83.1	95.94%	18
MZ004	bocagei	S37	84.8	97.17%	29
FMNH172095	goudoti	S45	81.5	95.22%	12
FMNH173041	goudoti	S51	84.8	96.80%	19
TM39421	welwitschii	S23	83.3	97.77%	17
FMNH151200	bocagei	S42	84	95.01%	19
M733	emarginatus	S13	86.1	98.32%	25
MZ425	tricolor	S8	85.4	97.52%	21
TM40300	tricolor	S32	86.2	98.11%	27
Mdas1	dasycneme	S22	79.5	98.70%	20
M1606	laniger	S57	85	98.78%	18
AG950116.6	laniger	S19	85.6	97.27%	23
M629	laniger	S50	85.8	98.33%	26
M1637	siligorensis	S31	84.8	97.39%	18
N194	alticraniatus	S41	86.6	98.29%	29
\$175154	phanluongi	S24	81.3	97.45%	16
CMF960418.17	pilosus	S10	85.9	98.56%	24
M2065	pilosus	S56	86.1	98.68%	27
CMF960522.46	macrotarsus	S20	83	97.69%	14
EAR122	macrotarsus	S44	83.8	96.5%	16
Μ	macropus	S55	84.5	98.84%	20
CMF960523.40	horsfieldii	S12	86.1	97.91%	25

Table S2:	Mapping	Statistics,	related to	Figure 1.	
				0	

Voucher or Sample Name	Species	Sequencing Sample Number	% Reference Covered	reads mapped	mean coverage
M1551	horsfieldii	S28	83.5	97.01%	15
M1184	horsfieldii	S2	86.6	98.16%	28
LRH3168	browni	S39	83.9	96.62%	19
Mca1	capaccinii	S34	82.2	97.98%	13
AGS980326.44	montivagus	S11	85.2	97.63%	24
M1208	indochinensis	S17	85.4	97.06%	25
CMF960408.3	federatus	S29	85.7	97.62%	27
M1200	annatessae	S7	85.1	98.17%	20
M1165	ater	S 9	85.9	98.04%	29
M1569	muricola	S30	84.9	96.57%	23
M1600	muricola	S40	84.6	94.99%	20
M2152	secundus	S25	86.7	96.75%	27
CMF960406.5	annectans	S35	82.4	97.80%	12
M2139	frater	S21	86.5	96.04%	20
M2163	soror	S15	86.4	97.90%	17
M2009	bechsteinii	S18	89.5	98.97%	27
M2187	daubentonii	S24	88.6	98.31%	20
M301	daubentonii nathalinae	S54	88.9	99.01%	23
M303	daubentonii nathalinae	S52	89	98.96%	26
EBD25765	escalerai	S36	90.5	96.94%	23
M2096	crypticus	S38	91.4	98.30%	28
M764	nattereri	S33	90.9	98.23%	24
MM4SA	punicus	S1	94.1	99.18%	20
Mb203	blythii	\$3	94.1	98.86%	23
631D	blythii	S14	94.2	98.71%	24
M867	blythii	S 6	93.5	99.35%	18
Mb3	blythii	S4	94.2	99.11%	22
SP.C.47	blythii	S43	93.3	98.64%	17
SP.C.48	blythii	S48	89.2	99.34%	17
Mchin1	ancilla	S53	93.1	98.44%	25

	HLmyoMyo	Myotismyotis_assembly_V2
# contigs	92	55
Largest contig	223369599	228434895
Total Length	2003238046	2003245946
GC%	43.11	43.11
N50	94448911	108770286
N75	74216526	79764552
L50	7	6
L75	12	12
# N's per 100kbp	1468.17	1468.56

Table S3: Quast summary of difference between the original *Myotis myotis* assembly (HLmyoMyo6) and the improved assembly (Myotismyotis_assembly_V2), related to the improved *Myotis myotis* assembly described in the main text.

Table S4: Species composition for each subclade examined in the analysis of genome-wide phylogenomic signal, related toFigure 3.

annatessae	annectans	bechsteinii	capaccinii	ethiopian	Old World Clades	whiskered	pilcaplan	pilosus
bocagei S37	soror S15	bocagei S37	bocagei S37	latirostris S27	latirostris S27 latirostris S27		bocagei S37	bocagei S37
muricola S30	frater S21	bechsteinii S18	capaccinii S34	tricolor S32	laniger S19	mystacinus S20	capaccinii S34	macropus S55
ater S9	annectans S35	daubentonii S24	macropus S55	welwitschii S23	macropus S55	alcathoe S49	laniger S19	macrotarsus S44
muricola S40	secundus S25	ancilla S53	macrotarsus S20	bocagei S37	macrotarsus S44	brandtii	pilosus S56	pilosus S56
federatus S29	muricola S30	myotis	phanluongi S24	emarginatus S13	muricola S30	bocagei S37		phanluongi S24
montivagus S11	bocagei S37	soror S15	alticraniatus S41	dasycneme S22	montivagus S11	myotis		laniger S57
annatessae S7		frater S21			myotis			
					ancilla S53			
					bocagei S37			

Table S5: Detailed breakdown of results for genome wide *D***-statistic tests, related to Figure 4.** Trees were analyzed in the format (((H1, H2), H3,) Outgroup) where the outgroup was *S. latirostris* for all tests. A Z score above 3 is considered significant.

Reference genome	<u>H1</u>	<u>H2</u>	<u>H3</u>	<u>nABBA</u>	<u>nBABA</u>	<u>Dstat</u>	<u>jackEst</u>	<u>SE</u>	<u>Z</u>
Myotis myotis	MZ004_bocagei_S37	M733_emarginatus_S13	M2187_daubentonii_S24	1791427	1511330	0.084807	0.084807	0.00079	107.3416
Myotis yumanensis	MZ004_bocagei_S37	M733_emarginatus_S13	M2187_daubentonii_S24	1711426	1427716	0.090378	0.090378	0.000843	107.2569
Myotis myotis	MZ004_bocagei_S37	M733_emarginatus_S13	myo_BROAD	1800187	1563127	0.070484	0.070484	0.00074	95.21591
Myotis yumanensis	MZ004_bocagei_S37	M733_emarginatus_S13	myo_BROAD	1733777	1460703	0.085483	0.085483	0.000746	114.6314
Myotis myotis	MZ004_bocagei_S37	M733_emarginatus_S13	M1993_mystacinus_S20	1627722	1303891	0.110462	0.110462	0.000861	128.308
Myotis yumanensis	MZ004_bocagei_S37	M733_emarginatus_S13	M1993_mystacinus_S20	1548282	1244630	0.108722	0.108722	0.000881	123.4457
Myotis myotis	MZ004_bocagei_S37	fmnh172095_goudoti_S45	M733_emarginatus_S13	2226221	1954903	0.064891	0.064891	0.001166	55.66637
Myotis yumanensis	MZ004_bocagei_S37	fmnh172095_goudoti_S45	M733_emarginatus_S13	2135239	1861688	0.06844	0.06844	0.001266	54.08118
Myotis myotis	TM40300_tricolor_S32	M733_emarginatus_S13	MZ004_bocagei_S37	1981908	2042725	-0.01511	-0.01511	0.001075	-14.0531
Myotis yumanensis	TM40300_tricolor_S32	M733_emarginatus_S13	MZ004_bocagei_S37	1895093	1963687	-0.01778	-0.01778	0.001175	-15.128
Myotis myotis	myo_BROAD	M2187_daubentonii_S24	S175154_phanluongi_S24	2058223	1844105	0.054869	0.054869	0.001072	51.19208
Myotis myotis	M2009_bechsteinii_S18	M2187_daubentonii_S24	myo_BROAD	2580187	2536752	0.008488	0.008488	0.002327	3.648049
Myotis myotis	CMF960522_46_macrotarsus_S20	M2009_bechsteinii_S18	M1569_muricola_S30	2926327	3861014	-0.13771	-0.13771	0.001369	-100.559
Myotis myotis	M2009_bechsteinii_S18	M2096_nattereri_S38	Mbrandtii	1202345	1248347	-0.01877	-0.01877	0.000794	-23.6339
Myotis myotis	M2187_daubentonii_S24	M2096_nattereri_S38	M1993_mystacinus_S20	1394982	1545713	-0.05126	-0.05126	0.000799	-64.1663
Myotis myotis	M1993_mystacinus_S20	Mbrandtii	M2096_nattereri_S38	2184190	3099853	-0.17329	-0.17329	0.002389	-72.5429
Myotis myotis	M2139_frater_S21	M2009_bechsteinii_S18	CMF960406_5_annectans_S35	2760696	3263672	-0.08349	-0.08349	0.002849	-29.3023
Myotis myotis	M1993_mystacinus_S20	M941_alcathoe_S26	Mbrandtii	2430561	2617513	-0.03703	-0.03703	0.001214	-30.496

<u>Reference genome</u>	<u>H1</u>	<u>H2</u>	<u>H3</u>	<u>nABBA</u>	<u>nBABA</u>	<u>Dstat</u>	<u>jackEst</u>	<u>SE</u>	<u>Z</u>
Myotis myotis	CMF960522_46_macrotarsus_S20	S175154_phanluongi_S24	Mca1_capaccinii_S34	3473250	4084785	-0.08091	-0.08091	0.00315	-25.6831
Myotis myotis	M941_alcathoe_S26	Mbrandtii	Mdas1_dasycneme_S22	2214338	3236368	-0.1875	-0.1875	0.00342	-54.82
Myotis myotis	M1993_mystacinus_S20	Mbrandtii	Mdas1_dasycneme_S22	2121574	3071673	-0.18295	-0.18295	0.002391	-76.5191
Myotis myotis	M733_emarginatus_S13	Mdas1_dasycneme_S22	M2009_bechsteinii_S18	2507335	2422351	0.017239	0.017239	0.001189	14.49878
Myotis myotis	M2187_daubentonii_S24	M2096_nattereri_S38	Mdas1_dasycneme_S22	1560422	1696782	-0.04186	-0.04186	0.000738	-56.7437
Myotis myotis	M733_emarginatus_S13	Mdas1_dasycneme_S22	M1993_mystacinus_S20	2131851	2029572	0.024578	0.024578	0.000942	26.09706
Myotis myotis	myo_BROAD	M733_emarginatus_S13	M1993_mystacinus_S20	2532201	2527665	0.000896	0.000896	0.001001	0.895467
Myotis myotis	M2009_bechsteinii_S18	M2187_daubentonii_S24	M2096_nattereri_S38	2621507	2579505	0.008076	0.008076	0.002248	3.592021
Myotis myotis	M629_laniger_S50	CMF960522_46_macrotarsus_S20	M2065_pilosus_S56	2361436	7045984	-0.49796	-0.49796	0.002534	-196.503
Myotis myotis	M1569_muricola_S30	M1208_indochinensis_S17	M1200_annatessae_S7	3455060	3730538	-0.03834	-0.03834	0.00132	-29.0523
Myotis myotis	M2187_daubentonii_S24	M2009_bechsteinii_S18	myo_BROAD	2536800	2581340	-0.0087	-0.0087	0.002334	-3.72829
Myotis myotis	M2139_frater_S21	M2187_daubentonii_S24	M2065_pilosus_S56	2650991	3062319	-0.07199	-0.07199	0.001695	-42.4712
Myotis myotis	M1569_muricola_S30	M1208_indochinensis_S17	CMF960406_5_annectans_S35	2093563	1918718	0.043577	0.043577	0.000709	61.43691
Myotis myotis	M2096_nattereri_S38	M2187_daubentonii_S24	M733_emarginatus_S13	1610340	1590837	0.006092	0.006092	0.000795	7.668013

Table S6: Results of the QuIBL analysis, related to Figure 4. The table shows the proportion of variation in discordant topologies explained by ILS alone or a combination of ILS and introgression. The difference in BIC estimates (delta) for each model indicates that the model with introgression and ILS (preferred at delta \geq -10) is the best fit for all relationships analyzed. Old World Clades refers to the relationship among the Muricola, Large Myotis, Asian, and Oriental clades shown in Figure 1. *pil.-cap.-lan.* refers to the relationship among *pilosus, capaccinii,* and *laniger*. Non-species trees are color-coded to correspond with data displayed in Figure 1.

Clade	non-species topology	tree	ILS	Introgression + ILS	delta
annatessae	topo002	(annatessae, (indochinensis, muricola))	0%	100%	-13383
	topo001	indochinensis, (muricola ,annatessae))	0%	100%	-17245
annectans	topo003	(annectans, (frater, muricola))	0%	100%	-995
	topo002	(frater, (annectans, muricola))	0%	100%	-3319
bechsteinii	topo002	(bechsteinii, (daubentonii, myotis))	0%	100%	-9038
	topo003	(daubentonii, (bechsteinii, myotis))	0%	100%	-9045
capaccinii	topo001	(phanluongi, (capaccinii, macrotarsus))	0%	100%	-30065
	topo002	(macrotarsus, (capaccinii, phanluongi))	0%	100%	-5825
dasycneme	topo004	(mystacinus, (alcathoe, (dasycneme, bocagei)))	0%	100%	-299
	topo002	(bocagei, (dasyceneme, (mystacinus, alcathoe)))	0%	100%	-44060
Clades	topo003	(muricola, (myotis, macrotarsus))	0%	100%	-9122
	topo001	(myotis, (macrotarsus, muricola))	0%	100%	-17445
whiskered	topo004	(alcathoe, (mystacinus, brandtii))	0%	100%	-4761

	topo006	(mystacinus, alcathoe, brandtii))	0%	100%	-4474
pil. cap. lan.	topo003	(laniger, (canaccinii pilosus))	73%	27%	33
topo	topo001	capaccinii, ((pilosus, laniger))	0%	100%	-33039
pilosus	topo001	(macropus, (pilosus, laniger))	0%	100%	-32580
	topo005	(pilosus, (macropus, laniger))	28%	72%	-174

Table S7: Studies reporting species presence at swarming sites across Europe [S2-16], related to Figure 5. Although M. myotis and M. blythii are thought to use a lekking mating behavior

Paper	Schunger et al (2004)	Dundarova (2018)	Rivers et al (2006)	Parsons et al (2003)	Piksa et al (2011)	Suba et al (2008)	Schaik et al (2015)	Bogdanowicz et al 2012	Suba et al (2011)	Glover and Altringham (2008)	Schmidbauer and Denzinger (2019)	Pocora et al (2012)	Dekeukeleire et al (2016)	Thomas and Davison (2020)	Ignaczak et al (2019)
Country	Bulgaria	Bulgaria	UK	NN	Poland	Latvia	Netherlands	Poland	Latvia	NN	Germany	Romania	Belgium and Netherlands	Wales	Poland
myotis	Х	х			Х		Х				х	х	Х		х
blythii	Х	Х													
bechsteinii	Х	х		х	х		Х					х	х	Х	х
nattereri/crypticus	х	х	х	х	х	х				х	х	х	х	х	х
daubentonii	Х	х	х	х	х	х	Х		Х	Х		х			х
brandtii	х	х	Х	х	х	х	х	х	х	х		х	Х	х	х
alcathoe	х	х			х			х							
mystacinus		х	х	х	х	х	х	х		х		х	Х	х	
emarginatus	х	х					х						х		
dasycneme					х	х	х		х				х		

Table S8: STRING enrichment analysis for an introgressed block on V15 which unites *M. myotis* and *M. daubentonii*, related to Figure 6. Enrichments are considered significant with an FDR value of ≥ 0.05 .

Category	#term ID	term description	observed gene count	background gene count	strength	false discovery rate
Molecular Function	GO:0005149	interleukin-1 receptor binding	7	17	2.04	8.6E-09
Molecular Function	GO:0070851	Growth factor receptor binding	8	138	1.19	1.2E-04
Molecular Function	GO:0005126	Cytokine receptor binding	8	264	0.9	9.0E-03
KEGG Pathway	hsa04060	Cytokine-cytokine receptor interaction	7	282	0.82	3.6E-02
Reactome Pathway	HSA-446652	Interleukin-1 family signaling	7	136	1.13	2.4E-03
Reactome Pathway	HSA- 9014826	Interleukin-36 pathway	3	6	2.12	4.6E-03

Table S9: Immunogenetic diversification mechanisms across the Tree of Life, related to Figure 6. Note that most of these mechanisms operate within the listed taxa. MHC allelic polymorphism has long been of interests to evolutionary biologists due to its function at the population level. Now adaptive immunogenetic introgression in *Myotis* bats appears to elevate such defense diversification strategies to the level of the multispecies community.

Taxa	Process	Genes Diversified	Evolutionary Facilitation	Evolutionary Mechanism Facilitation	
archaea/bacteria	adaptive anti-phage immunity	clustered regularly interspaced short palindromic repeats (CRISPR)	horizontal gene transfer	CRISPR/cas9 [S17]	
arthropods	repertoire of pattern recognition receptors	down syndrome cell adhesion molecule (DSCAM)	exon family expansion	mutually exclusive alternative RNA exon splicing [S18]	
jawless fishes	VLR repertoire diversification	variable lymphocyte receptors	copy-choice recombination	APOBEC family deaminases [S19]	
jawed vertebrates	somatic cell gene rearrangement of lymphocyte antigen receptors	immunoglobulin, T cell receptor	horizontal transposon capture	recombination activating genes (RAG) [S20]	
jawed vertebrates	antibody affinity maturation	immunoglobulin heavy and light chain variable genes	selection of controlled somatic hypermutation	activation induced cytidine deaminase (AID) [S21]	
Bovidae	ultralong cattlebody knob diversification	third complementarity determining region (CDR3) of immunoglobulin heavy chain	bias for cysteine mutation, truncations in CDR3	activation induced cytidine deaminase (AID) [S22]	
jawed vertebrates	allelic polymorphism	classical MHC antigen presentation	balancing selection, pathogen co-evolution	extreme allelic diversity in peptide binding - Population [S23]	
<i>Myotis</i> bats	tunable immunogenetic viral tolerance	interferons, antigen processing, anti-viral signaling	swarming, interspecific hybridization	adaptive immunogenetic introgression – Genus Community	

Supplementary References

- Jebb, D., Huang, Z., Pippel, M., Hughes, G.M., Lavrichenko, K., Devanna, P., Winkler, S., Jermiin, L.S., Skirmuntt, E.C., Katzourakis, A., et al. (2020). Six reference-quality genomes reveal evolution of bat adaptations. Nature 583, 578–584.
- Schunger, I., Dietz, C., Merdschanova, D., Merdschanov, S., Christov, K., Borissov, I., Staneva, S., and Petrov, B. (2004). Swarming of bats (Chiroptera, Mammalia) in the Vodnite Dupki cave (Central Balkan National Park, Bulgaria). Acta Zool. 56, 323–330.
- S3. Dundarova, H. (2018). Bat diversity in Lednitsata and Forgovskata dupka Caves: two potentially important swarming sites in Western Rhodopes Mts., Bulgaria. Acta Zool. Bulg. 70, 139–142.
- S4. Rivers, N.M., and Butlin R. K. Altringham, J.D. (2006). Autumn swarming behaviour of Natterer's bats in the UK: population size, catchment area and dispersal. Biol. Conserv. *127*, 215–226.
- Parsons, K.N., Jones, G., and Greenaway, F. (2003). Swarming activity of temperate zone microchiropteran bats: effects of season, time of night and weather conditions. J. Zool. 261, 257–264.
- S6. Piksa, K., Bogdanowicz, W., and Tereba, A. (2011). Swarming of Bats at Different Elevations in the Carpathian Mountains. Acta Chiropterologica 13, 113–122.
- S7. Šuba, J., Vintulis, V., and Pētersons, G. (2008). Late summer and autumn swarming of bats at Sikspārņu caves in Gauja National Park. Acta Univ. Latv 745, 43–52.
- S8. van Schaik, J., Janssen, R., Bosch, T., Haarsma, A.-J., Dekker, J.J.A., and Kranstauber, B. (2015). Bats Swarm Where They Hibernate: Compositional Similarity between Autumn Swarming and Winter Hibernation Assemblages at Five Underground Sites. PLoS One 10, e0130850.
- S9. Bogdanowicz, W., Piksa, K., and Tereba, A. (2012). Hybridization hotspots at bat swarming sites. PLoS One 7, e53334.
- S10. Suba, J., Vintulis, V., and Petersons, G. (2010). Body weight provides insights into the feeding strategy of swarming bats. Hystrix, the Italian 22, 1.
- S11. Glover, A.M., and Altringham, J.D. (2008). Cave selection and use by swarming bat species. Biol. Conserv. 141, 1493–1504.
- S12. Schmidbauer, P., and Denzinger, A. (2019). Social calls of *Myotis nattereri* during swarming: Call structure mirrors the different behavioral context. PLoS One 14, e0221792.
- S13. Pocora, I., Pocora, V., and Baltag, E. (2012). Swarming activity of bats at the entrance of Liliecilor cave from Rarău Mountains. Analele Științifice ale *58*, 151–158.

- S14. Dekeukeleire, D., Janssen, R., Haarsma, A.-J., Bosch, T., and Van Schaik, J. (2016). Swarming behaviour, catchment area and seasonal movement patterns of the Bechstein's bats: implications for conservation. Acta Chiropt. 18, 349–358.
- S15. Ignaczak, M., Postawa, T., Lesiński, G., and Gottfried, I. (2019). The role of autumnal swarming behaviour and ambient air temperature in the variation of body mass in temperate bat species. Hystrix *30*, 65–73.
- S16. Thomas, R.J., and Davison, S.P. (2022). Seasonal swarming behavior of *Myotis* bats revealed by integrated monitoring, involving passive acoustic monitoring with automated analysis, trapping, and video monitoring. Ecol. Evol. *12*, e9344.
- S17. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337, 816–821.
- S18. Watson, F.L., Püttmann-Holgado, R., Thomas, F., Lamar, D.L., Hughes, M., Kondo, M., Rebel, V.I., and Schmucker, D. (2005). Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874–1878.
- S19. Pancer, Z., Amemiya, C.T., Ehrhardt, G.R.A., Ceitlin, J., Gartland, G.L., and Cooper, M.D. (2004). Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180.
- S20. Hozumi, N., and Tonegawa, S. (1976). Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl. Acad. Sci. U. S. A. 73, 3628–3632.
- S21. Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T. (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (*AID*), a potential RNA editing enzyme. Cell 102, 553–563.
- S22. Wang, F., Ekiert, D.C., Ahmad, I., Yu, W., Zhang, Y., Bazirgan, O., Torkamani, A., Raudsepp, T., Mwangi, W., Criscitiello, M.F., et al. (2013). Reshaping antibody diversity. Cell 153, 1379–1393.
- S23. Zinkernagel, R.M., and Doherty, P.C. (1974). Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702.