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Supporting Materials and Methods

Construction of 96-Channel Headstage and Surgery. The 96-channel headstage
system contains two independently movable arrays (targeting bilateral CA1), each
comprised of 48 channels, in a stereotrode format (1-2). Our ultralight headstage has
three 36-pin connector array positioned in parallel (see Fig. 6). A bundle of 24 pieces of
polyimide tubing was glued to each of two independently movable screw nuts located on
the microdrive base. Each stereotrode was constructed by twisting a folded piece of 25
µm H-Formvar wire and was thread through one of the polyimide tubes. After every
stereotrode has been inserted into separate tubes, the twisted ends of the wires were cut to
a length that extended three-four millimeter beyond the end of the polyimide bundle. The
free end of each stereotrode (insulation has been removed) was wrapped around adjacent
connect pins. To enhance conduction, each wrapped connector pin was individually
coated with silver paint. A reference wire (magnet wire, 0.01 mm2, Belden Electronic
Division, Richmond, IN) was soldered to the four pins on ends of each connector array.

Wild-type B6BCA/J mice were given continuous access to food and water in their cages.
Mice were handled for several days before surgery to minimize the potential stress of
human interaction. On the day of surgery, the mouse was anesthetized with i.p. injection
of 60 mg/kg ketamine (Bedford Laboratories, Bedford, OH) and 4 mg⋅kg Domitor (Pfizer
Animal Health, New York). The mouse head was immobilized in a stereotaxic frame, and
his eyes were coated with sterile ocular lubricant to maintain moisture. After the hair
removal, Betadine solution was applied to the skin surface, and an incision was made
along the midline of the skull. The positions for the two bundles (2.0 mm lateral to
bregma and 2.3 mm posterior to bregma on the both right and left sides, respectively)
were then measured and marked. After four holes were drilled in the corners of a
rectangular array, small screws were secured in each of these holes and fixed with dental
cement. Holes for the two stereotrode bundles were then drilled, and dura was removed
carefully. The stereotaxic apparatus was then used to lower the stereotrode bundles into
the mouse’s cortex. The gap surrounding the stereotrodes was filled with softened
paraffin, and the headstage was stabilized with dental cement. The reference wire
attached to the two posterior head screws was then soldered to the reference wire affixed
to the connector pin arrays of the headstage, and copper mesh was wrapped around the
entire headstage to protect the wires from potential damage. The mouse was then aroused
with an injection of 2.5 mg/kg Antisedan and returned to his home cage.

In Vivo Recording and Spike Sorting. The mouse was allowed to recover for several
days before advancing the electrodes. The connector pin arrays on the headstage were
then attached to preamplifiers with extended cables to allow for the monitoring of
neuronal signals by using the 96-channel Plexon system. A helium-filled mylar balloon
was tied to the cables to completely relieve the weight of the 96-channel cables, thereby
enabling the mouse to move freely (see Fig. 6). The stereotrode bundles were advanced
slowly toward the hippocampal CA1 area, in daily increments of about 0.07 mm, until the



tips of the stereotrodes had reached the CA1 region, as deduced from an assessment of
field potential and neuronal activity patterns.

We have recorded the ensemble activity of a large number of individual neurons during
several behavioral states. The recorded spike activities from those neurons were
processed as follows: first, the spike waveforms and their associated time stamps for each
of 96 channels were stored in data files by using Plexon (Dallas) system format (*.plx).
The artifact waveforms were removed, and the spike waveforms were aligned at their
minimum values in using OFFLINE SORTER 2.0 software, because the waveforms are more
tightly clustered in principal component space when the waveforms are aligned around
their minimum values. Then, the Plexon system data files (*.plx) were converted to
Neuralynx system format (*.nst) and spike sorted with the MCLUST3.0 program (David
Redish, University of Minnesota). This program permits classification of
multidimensional continuous data; its cluster splitting feature (KLUSTAKWIK 1.5, Gyorgy
Buzsaki, Rutgers, the State University of New Jersey) yields superior accuracy in
comparison to the other available spike-sorting software and is therefore particularly
suitable for spike sorting of hippocampal signals.

Principal component analysis was used to extract defining features from the spike wave
shapes that are used as part of the input for the MCLUST3.0 spike-sorting program. The
first two principal components, as well as the peak height, valley value, FFT, and total
energy of spike waveform parameters, were calculated for each channel, then units were
identified and isolated in high-dimensional space by using an autoclustering
(KLUSTAKWIK 1.5) method (3-4). After autoclustering, the clusters containing nonspike
waveforms were deleted by using the KLUSTAKWIK Selection function, and then the units
were further isolated by using a manual cluster-cutting method in MCLUST. Only units
with clear boundaries and <0.5% of spike intervals within a 1-ms refractory period are
included in the present analysis. If the clusters cannot remain stable for 6 h, the entire
units are excluded from further analysis. An example of the spike sorting of six stable
individual units recorded in one of our experiments is shown in Fig. 7. On occasions, up
to 14 stable units were recorded, as illustrated in Fig. 8. The good separation of these
units is evident from the measurements of L-ratio and isolation distance (5) (see Figs. 7C
and 8B). At the end of experiments, the mouse was anesthetized, and a small amount of
current was applied to four channels in the headstage to mark the positioning of the
electrode bundle. Histological staining with 1% cresyl echt violet was used to confirm the
electrode positions.

Startle Episodes. We used three startle protocols: (i) A sudden air blow to the animal’s
back [termed air blow, 200 ms, 10 psi (1 psi = 6.89 kPa)]; (ii) A sudden drop of the
animal inside a small elevator (termed elevator drop, vertical freefall height: 40 cm); and
(iii) A sudden shake-like cage oscillation (termed shake, 200 ms; 300 rpm, Thermolyne
Vortex CM37615, Fisher Scientific). The startle stimuli were delivered unexpectedly to
freely behaving mice by using computer programs that provide precise mechanical
control of an air valve, suspension rope, and a vortex machine. The air tube was attached
to the recording cable in such a way the air blow was consistently delivered to the
animal’s neck. To assess startle-response properties of individual neurons, each type of



startle was delivered seven times at random intervals varying between 1 and 5 min.
Environmental context-specificity was investigated by delivering air blows to mice in
either a red bucket (30 cm in diameter) or a blue open box (30 × 35 cm) and also by
dropping the mice inside of either a plastic bottle (15 cm in diameter) or a small black
box (15 × 15 cm). The activity of large numbers of single CA1 neurons was monitored
and recorded throughout the startle sessions (4-6 h in total), which were typically
preceded by at least 10-20 min of a baseline resting period.

Although a significant proportion of the simultaneously recorded CA1 cells did not
respond to any of the startle stimuli, a subset of these CA1 cells exhibited significant
changes in firing rates. In general, based on their temporal response duration, the startles
triggered dynamical changes that can be generally divided into four major firing modes:
transient increase, transient decrease, prolonged increase, and prolonged decrease (see
Fig. 10). The transient changes were as short as 250 ms or less, whereas the prolonged
increases lasted up to 40 s in duration.

Measurement of Startle Memories. We used the conditioned place preference test (6) to
measure the formation and retention of startling episodic memories in mice. The mice
were handled and habituated before experiments. On the training day, the mice were
allowed to freely explore the environment of a two-compartment conditioned place
preference apparatus (20 × 40 × 20 cm) for 3 min (pretraining). Both proximal and distal
cues were available in the room. The amount of time spent in each chambers were
recorded. During the 10-min conditioning period, a sudden air blow was delivered
whenever the mouse visited one of the randomly assigned compartment (termed air-blow
compartment). The other unconditioned compartment is designated as the safe
compartment. The retention of place conditioning memory was measured 3 h later, after
training, by returning the mice to the place conditioning environment for 3 min. The time
spent (sec) in the safe compartment was measured and used as a place preference index
before and after training. An equal time spent in both compartments (90 s) would
therefore indicate no preference toward either compartment. The formation of startle
memories in mice, as indicated as its tendency to spend more time in the safe
compartment, is shown in Fig. 9.

Data Analysis. Preprocessing. In our data analysis, we only include single units that
were both clearly separated and remained stable for at least 6 h; units that failed to meet
these criteria were excluded from further analysis. Firing frequencies (f) were evaluated
in two 500-ms time bins immediately after the event start. This evaluation yields a
sampling of seven points for each startle type. The 35 time intervals preceding the
complete set of startle events were used to compute the population responses that define
rest state. Each neuron response was defined by the formula:

( ) ( )preprenstartlepostn ffffR +−= − 0, , where f0 (2-3 Hz) is the global mean response
frequency of putative excitatory neurons across the recorded neural population in an
animal, excluding high firing-rate interneurons (cut off at 20 Hz) and fpre is the base firing
rate (computed from samples of firing rates in the 500-ms time bins before startle
stimuli). This transformation emphasizes significant changes in firing patterns for units
with both low- and high-baseline firing rates. Effectively, changes in responses of low-



firing units are proportional to absolute firing rate changes, whereas changes in responses
of high-baseline units are proportional to the relative changes.

Multiple Discriminant Analysis (MDA). For each startle type, we use six of its seven
repetitions as training data (30 data points were also selected from 35 rest epochs), and
we use the remaining events to create a test set. A matrix of mean responses during rest
and startle states are then computed, and a threshold criterion is used to exclude the
neural features of unresponsive neurons. This procedure leads to a sparse between-class
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population responses triggered by the ith startle type. In the cases analyzed here, the
eigenvalue decomposition always produces at most N – 1 nonzero eigenvalues, hence it
follows that the dimension of encoding subspace is also N – 1. For example, the first step
of the discriminant analysis uses four classes (rest, air blow, drop, and shake), yielding a
three-dimensional encoding subspace, whereas the subsequent context MDAs produced
two-dimensional subspaces for discriminating their corresponding three categories (rest,
air blow A, air blow B, and rest, drop A, drop B, respectively).

Encoding subspace. We fit the low-dimensional startle representations with multivariate
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point in the low-dimensional space, m is the center of startle cluster, |Σ| and Σ–1 are the
determinant and inverse of the covariance (scatter) matrix Σ. In some cases (encountered
in data sets from mouse C and D), the first element on the main diagonal of the
covariance matrix Σ was disproportionately larger than the subsequent ones. This
difference was compensated by slightly incrementing all diagonal elements in Σ
(Tikhonov regularization, see ref. 8). The use of Gaussian probability distributions allows
us to compute the probability Pij that startle event i belongs to category j. After
computing all such probabilities, soft class memberships were assigned based on
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representations (see Table 1), a collection of 10 test data points (5 random startle points
for air blow A, air blow B, drop A, drop B and shake, as well as their corresponding 5
rest samples) was used to cross-validate the predictive power of models constructed by
using all other points (training). Average performances for class prediction were obtained
by repeating MDA 1,000 times with random partitioning into training and test points. We
noted that, in general, the prediction performance is correlated with the number of startle-
responsive cells in the data sets.



Hierarchical clustering. To examine the structure of the neuronal population
representation, the thresholded mean responses (R < 0.3 in first 500-ms time bin) of all
neurons to the various startles were clustered by using a standard hierarchical clustering
algorithm. The steps used by this agglomerative procedure are the following: initially
each response vector is defined as a single cluster. The closest clusters are merged into a
new cluster, and its mean is recomputed. This step is then repeated and the nearest-
neighboring groups (based on the position of their centers) are successively merged until
they eventually form a single group. At each intermediate step, two clusters are aligned
and linked at their best matching endpoints forming a larger group, preserving their
internal ordering while allowing for flipping. The hierarchical tree structure thus obtained
can be displayed by using the dendrogram MATLAB (Mathworks, Natick, MA) function. 

Principal Component Analysis (PCA). To further investigate the nature of the startle
representation, we looked at the low-dimension encoding subspace generated by PCA.
For our data, this space is determined by the first few eigenvectors of the total scatter
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original data set (this scatter matrix is different from the one created by MDA, because in
this case, the training data are not partitioned into different classes). By definition, the
resulting eigenvectors are orthogonal, therefore, they account for an independent source
of variance. Because of its unsupervised nature, PCA can be used to identify and extract
the information embedded in the network firing patterns. We use hierarchical clustering
to determine the four startle clusters (step 1) and three context clusters (two additional
steps) to be fitted with Gaussian distribution. Performance comparison with the MDA-
based projections is then made under the same set of assumptions (see Encoding
Subspace section).

The prediction power of the PCA method is assessed by using the same classification
method and cross-validation used with MDA, thus allowing direct comparison between
these two statistical techniques (see Fig. 11 and Table 2). It is noteworthy that the MDA
method generally yields superior pattern separation and more accurate prediction than
PCA method. This finding is consistent with the fact that MDA is better suited to
maximally identify features for discriminating between classes, whereas PCA is more
oriented to finding the defining features of each class (potentially finding features that are
common across classes, consequently reducing the discriminating power of the low-
dimensional encoding subspace) (7). Therefore, we choose to use MDA as the primary
method for analyzing our data. 

Remapped Neural Clique Responses by Using a Matrix Inversion Step. To translate
the population responses into a startle-selective encoding coordinate system, we mapped
the cluster centers onto corners of a hypercube in a “clique-space,” where each axis
corresponds to the expected responses of a particular clique. This geometrical operation
involves a reorientation of the main axes of the low-dimensional encoding subspace. The
mapping matrix M was calculated by using: BCM *1−=  , where C is the matrix
containing the cluster centers, C–1 is its inverse, and B contains the new coordinates of
these centers (e.g., [1,1,0,0], [1,0,1,0], and [1,0,0,1] for the air blow, drop, and shake,



respectively). More explicitly, the mapping M that converts the centers of air-blow, drop
and shake representations along the x, y, and z axes (see Fig. 3A) into the general-startle,
air, drop and shake codes (see Fig. 5A) is given by:
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Context codes were computed in a similar way.

To investigate in detail the temporal dynamics of the instantaneous projections in the
clique-based subspace, we smoothed the firing rates of all units with Gaussian filters
(

22 2/)(2/1)( σπ spikettetG −−= , width σ = 100 ms). Integration of different unit contributions
is done by using the weight distribution from multiple discriminant analysis (MDA) times
the remapping M, obtaining the responses shown in Fig. 5A. However, simple summation
of these responses yields similar results, as illustrated in Fig. 13. Furthermore, the
temporal scales of this summation process indicate that encoding robustness can still be
achieved at time scales as low as 20-30 ms, indicating that the cospiking within neural
cliques can serve as a network mechanism to overcome the response variability of
individual neurons. 

Mathematical Description of the Neural Clique Activation Function. The responses
of the individual member neurons Rn(t) are being linearly summed by using the remapped
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Event classification, by the neural clique activation codes, can now be achieved by means
of evaluating a simple threshold function h. Consequently, the dynamical state of the
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Extended Discussion

A central issue in the study of neural coding in the brain is the response variability of
individual neurons (9-11). This variability at the level of individual neurons has posed a
major challenge for understanding how the brain achieves its real-time encoding and
decoding of behavioral experiences. A traditional way to deal with this issue is to average



the response of an individual neuron over many repetitions and trials. Although it allows
the identification of event-related neural response, this practice of data averaging
unfortunately loses crucial information regarding real-time neural coding functions. Here,
we have combined the high-density in vivo recording technique with experimental
designs (by using a set of startling episodes as a means) and investigated how the brain
achieves its the network-level real-time encoding of behavioral experiences. Particularly,
we asked the following three questions: (i) how are a variety of startling episodes
represented at the CA1 network level? (ii) How does the CA1 network-level encoding
overcome the response variability of individual neurons and achieve its robust real-time
neural representation? and (iii) What are internal structures underlying the real-time CA1
network-level encoding?

Consistent with the knowledge that neurons in the hippocampus can respond to various
external inputs (e.g., place field running, odor stimulation, or to corneal air puffs during
nictitating membrane responses conditioning, etc.) (12-19), we find that a given type of
startling episode triggers distinct and collective firing changes in many CA1 neurons.
Because our study only included animals in which a significant portion of recorded cells
(in dorsal hippocampus) were responsive to startling episodes, and also considering that
the majority of hippocampal cells remained silent (20), we think that the actual
percentage of responsive cells in the hippocampus are likely to be much lower than the
one estimated from the four mice presented here. Nonetheless, based on the temporal
dynamics, spike discharges of these neurons can be generally classified into four distinct
firing modes: transient increase or decrease and prolonged increase or decrease.
Moreover, CA1 cells exhibit a variety of response-tuning properties: some responded to
several or all types of startling stimuli, whereas others showed extremely high specificity
toward one specific type of startling stimulus. Interestingly, we also find that the firing
patterns of some CA1 cells are critically dependent on the spatial environments in which
the startling event occurs, thereby demonstrating that CA1 cells indeed encode startling
episodes with both “what” and “where” information.

To seek out the network-level encoding patterns underlying the neural representation of
startling episodes, we applied a set of statistical pattern classification tools to the data sets
(7). It is evident that approaches such as peri-event histograms and cross-correlation
methods are not suitable for dealing with the high-dimensionality of the large data sets.
Thus, it is necessary to apply statistical pattern classification tools to reduce high-
dimensionality of the data and to extract the underlying neural information from the
ensemble activities. We focused on distinguishing intrinsically meaningful factors in the
hippocampal network encoding, by identifying a highly informative low-dimensional
subspace among the firing patterns of responsive neurons by using both MDA and PCA
methods. These two methods not only provide for a mathematical classification of neural
ensemble patterns but also allows their direct visualization. More importantly, it allowed
us to analyze the underlying structure of episodic representations from the complex high-
dimensional activity patterns of simultaneously recorded neurons.

Furthermore, the use of the MDA dimensionality-reduction method allows not only
reliable classification but also permits the dynamical monitoring of the temporal



evolution of firing patterns in the low-dimensional encoding subspace. Although the
instantaneous projections spent most of the time within the rest cluster, we have found
that the dynamical trajectory also exhibited brief excursions in the immediate aftermath
(seconds to minutes) of startle episodes (see Fig. 12 for a reactivation after a drop
episode). Previous studies with correlation-based analysis report the heightened firing
correlation between overlapping place cells during sleep (17, 21). Our dynamical
decoding technique described here allows direct visualization of spontaneous, immediate
reactivations in the awake-behaving state whose trajectory were directed toward the
cluster representing the preceding startle. The observed intervals between a spontaneous
reactivation and the initial activation (or between reactivations) were up to minutes,
thereby ruling out the possibility that they were due to oscillatory sampling artifacts
within the sliding window (of only 1-s width). The consistently smaller magnitude of the
reactivation trajectories has also allowed a reliable distinction between “internally” vs.
“externally” driven patterns. We hypothesize that these spontaneous reactivations may
reflect the immediate postlearning fixation of memory traces (22).

Our combined applications of hierarchical clustering and sequential MDA enabled us to
further identify discrete sets of functional coding units in the CA1 network. We find that
the individual neurons within the same neural clique exhibit tight “collective cospiking”
temporal dynamics that allow the neural clique to overcome the variability of single
neurons for achieving real-time encoding robustness. Moreover, it is conceivable the
dynamical state of the downstream neural clique activation can be assessed by applying
biological threshold function (23) (see also Fig. 14). In addition to their increased
robustness, neural cliques as coding units are less vulnerable to the death of one or a few
neurons and may exhibit graceful degradation should such conditions occur. Currently we
do not know how the individual neurons that comprise a functional coding clique are
precisely connected at the anatomical level or how their memberships and firing
properties are modulated by NMDA receptor-mediated synaptic plasticity (24-27). We
also do not know to what extent they reflect a “hard-wired” response to the external
sensory and/or emotional aspects of the events. The occurrence of postevent reactivations
of these ensemble patterns (in the absence of the external sensory inputs) suggests that at
least part of these ensemble activities could be associated with certain mnemonic aspects
of episodic experiences.

Our additional mapping of the encoding subspace into one where the startle
representations can directly correspond to neural clique activity patterns has further
translated the ensemble activity into a set of useful network-level activation codes. This
mathematical transformation allows us to convert the collective activity patterns of neural
clique assembly into unique and efficient digital codes. These activation codes are also
consistent with the idea that the activity state of a neural clique can be monitored by a
downstream neuron or group of neurons based on a biologically plausible activation
function (23). More importantly, the real-time activation codes of clique assemblies can
conceivably form universal internal representations across different individuals (and even
different animal species) to categorize similar cognitive events. We note that although the
classification of startle events can be reliably achieved by using a minimal number of
response-specific cliques, the prevalence of the multiresponsive neural cliques (e.g.,



general startle, drop/shake, etc.) suggests that CA1 cells play a crucial role in binding
multimodal cortical information and, perhaps, even in processing cognitive abstraction
and generalization (28-29).

The existence of hippocampal neural cliques suggests that the information representation
and processing in the brain are achieved in real time by coordinated activities of neural
cliques within multilayered neural circuits that span from sensory and motor control areas
up to higher association and cognition areas. In this sense, the functions implemented by
neural cliques at each layer depend on the specializations and functionalities of
corresponding anatomical components of the nervous systems.

In conclusion, we have identified and visualized the network-level encoding patterns and
postevent immediate processing of startling episodic experience in the CA1 region of the
hippocampus. We have identified network-level functional coding units in the CA1
region, and we found that the individual members within each clique fired tightly
together, cospiking in close temporal proximity during startling episodes. The cospiking
of the neural clique members allows the cliques to overcome the response variability of
individual neurons and thereby to achieve real-time network encoding of startling
episodic experiences. The activation patterns of these coding units can be translated into a
set of concise digital codes for universal representation and categorization of discrete
behavioral episodes across different animals. Therefore, the “neural clique cospiking”
principle provides a plausible network-level basis by which the nervous systems are built
on to achieve real-time neural coding and processing of behavioral information.
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