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Supplementary Information

Model-diagnosed quarantine strength for North-Eastern US states

Figure S1 shows the application of the model to the north-eastern states of New York, New Jersey
and Illinois along with the diagnosed quarantine strength function Q(t) for these states. These
states do not show a decline in Q(t). This corresponds well to the delayed reopening and generally
stronger quarantine measures employed in the North-Eastern US states. Since Q(t) does not
decrease, these states did not show a surge in infections starting June 2020, unlike their Southern
and West-Central counterparts. The difference in these results between the North-Eastern and
Southern, West-Central states indicates two things: (a) it strengthens the validity of our proposed
model in capturing the real-time reopening scenario in different states through the evolution of the
diagnosed Q(t), and, more importantly, (b) it further validates the role played by early reopening
in reducing Q(t) and subsequently leading to a surge of new infected cases in the Southern and
West-Central US states.

Impact of early reopening on the states of Louisiana, Florida, Oklahoma,
Texas and Utah

Figure S2, S3 implements a similar analysis to study the effect of early reopening for the states
of Louisiana, Nevada, Oklahoma, Texas and Utah, as done for the states of Arizona, Nevada,
South Carolina and Tennessee. Similar to the states considered in the main text, we see that all
of these states show a decline in Q(t) starting around the time when these states were reopened.
If these states were not reopened early, a large number of infections would have been reduced as
demonstrated in Table 3 of the main text.
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Equivalence between the ODE model and the Chemical Langevin SDE
model

This analysis heavily borrows from the pioneering work done by Gillespie.1 In this section, we
will establish that the deterministic ODE model and the stochastic Chemical Langevin equation
originate from a common expression: the chemical master equation,2 and are closely linked to one
another. Following is the notation we will use, in accordance with1 We consider N compartments:
S1, S2 . . . SN and R reaction channels: R1,R2 . . .RM in a fixed volume Ω. In our case, we have
N = 4 (S, I,R,T ) compartments and R = 4 reaction channels. We denote the dynamical state of
the system at any time t as X(t) = (X1(t),X2(t) . . .XN(t)) where

• Xi(t) : total number of Si molecules (in our case: individuals) in the system.

• Propensity function aj(x)dt : probability that a reaction Rj will occur somewhere in Ω in
the next time interval [t, t+dt] for j = 1,2 . . .M .

• State change vector νj whose ith component is defined by νj,i: change in the number of Si

molecules produced by one Rj reaction for i = 1,2 . . .N , j = 1,2 . . .M . In our case νj,i = ±1.

From the definition of aj(x)dt, we can write the probability of the system being in state x
at time t + dt (we take the sum of all mutually exclusive ways either through one reaction or no
reaction in [t, t+dt]):

P (x, t + dt∣x0, t0) = P (x, t∣x0, t0)
⎡⎢⎢⎢⎣
1 −

M

∑
j=1

aj(x)dt
⎤⎥⎥⎥⎦
+

M

∑
j=1

[P (x − νj , t∣x0, t0)aj(x − νj)dt] , (1)

Taking the limit of (1) as dt -¿ 0 leads to the chemical master equation

BP (x, t∣x0, t0)
Bt

=
M

∑
j=1

[aj(x − νj)P (x − νj , t∣x0, t0) − aj(x)P (x, t∣x0, t0)] (2)

.

Macroscopic picture: Deterministic model relation to the chemical master equation:

Multiplying the chemical master equation (2) by xi and summing over all x, we obtain for the
mean of Xi(t)

d⟨Xi(t)⟩
dt

=
M

∑
j=1

νji⟨aj(X(t))⟩ (i = 1,2 . . .N) (3)

Thus, whenever fluctuations are not important, the species populations evolve deterministically
according to the following set of ordinary differential equations

dXi(t)
dt

=
M

∑
j=1

νjiaj(X(t)) (i = 1,2 . . .N) (4)

(4) is the basis for the classical SIR epidemiological equations, and we see how they evolve from
the chemical master equation (2).

dS

dt
= −β S(t) I(t)

N
(5)

dI

dt
= β S(t) I(t)

N
− (γ +Q(t)) I(t)

= β S(t) I(t)
N

− (γ +NN(W,U)) I(t) (6)

dR

dt
= γI(t) + δT (t) (7)

dT

dt
= Q(t) I(t) − δT (t) = NN(W,U) I(t) − δT (t). (8)
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The ODE system used in the present study shown in (5-8), is of the form (4).

Microscopic picture: Stochastic Simulation Algorithm and its relation to the master
equation:

Another consequence of the master equation (2) is the existence and form of the next-reaction
density function p(τ, j∣x, t), which is defined as

• p(τ, j∣x, t)dτ = probability that given X(t) = x, the next reaction in Ω will occur in [t+ τ, t+
τ + dτ ], and will be an Rj reaction

Since ∑j aj(x)dt is the probability that some reaction occurs in the time interval dt, the prob-
ability that a time interval τ is spent without any reaction occuring is given by the exponential
distribution: Exp(∑j aj(x)τ). Thus, we obtain for p(τ, j∣x, t)

p(τ, j∣x, t) = aj(x)Exp(
M

∑
k=1

ak(x)τ) (0 ≤ τ < ∞; j = 1,2 . . .M) (9)

(9) is the basis for the stochastic simulation algorithm in which Monte-Carlo techniques are used
to construct unbiased realizations of the process X(t). A typical algorithm for stochastic simulation
of this kind, is the Gillespie Algorithm3 which can be viewed as a discrete space continuous time
Markov jump process, with exponentially distributed jump times.

Chemical Langevin Equation: Bridging the gap between macroscopic and microscopic
models:

Let the state of the system X(t) at the current time t be xt. Let Kj(xt, τ) be the number of Rj

reactions that occur in the time interval [t, t+dt]. Thus, the number of Si molecules in the system
at time t + τ will be

Xi(t + τ) = xti +
M

∑
j=1

Kj(xt, τ)νji (i = 1,2 . . .N) (10)

1 approximated Kj by imposing the following conditions

• Condition 1: No propensity function change This condition requires τ to be small
enough so that none of the propensity functions aj(x) change noticeably. The propensity
functions then satisfy

aj(X(t′)) ≈ aj(xt) ∀t ∈ [t, t + τ],∀j ∈ [1,M] (11)

Due to this condition, Kj(xt, τ) will be a statistically independent Poisson random variable
Pj(aj(xt), τ). Thus (10) simplifies to

Xi(t + τ) = xti +
M

∑
j=1

νjiPj(aj(xt), τ) (i = 1,2 . . .N) (12)

• Condition 2: Large number of reaction occurrences: This condition requires τ to
be large enough so that the expected number of occurrences of each reaction channel Rj in
[t, t + τ ] is much larger than 1. Thus

⟨Pj(aj(xt), τ)⟩ = aj(xt)τ ≫ 1, ∀j ∈ [1.M]. (13)

This condition enables us to approximate each Poisson variable Pj(aj(xt), τ) by a normal
random variable with the same mean and variance.

Thus, (12) further simplifies to

Xi(t + τ) = xti +
M

∑
j=1

νjiNj(aj(xt)τ, aj(xt)τ) (i = 1,2 . . .N) (14)
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where N(m,σ2) denotes the normal random variable with mean m and variance σ2. Using
N(m,σ2) = m + σN(0,1), denoting the time interval τ by dt and the unit normal random
variable Nj(0,1) as Nj(t), we obtain

Xi(t+ dt) =Xi(t) +
M

∑
j=1

νjiaj(X(t))dt+
M

∑
j=1

νjia
1/2
j (X(t))Nj(t)(dt)1/2 (i = 1,2 . . .N) (15)

(15) can be written as a stochastic differential equation as

dXi(t)
dt

=
M

∑
j=1

νjiaj(X(t)) +
M

∑
j=1

νjia
1/2
j (X(t))Γj(t) (16)

where Γj(t) are temporally uncorrelated, statistically independent Gaussian white noise pro-
cesses.

(16) is the Langevin equation, and it derives from the master equation provided that Condi-
tion 1 and Condition 2 are satisfied.

The Langevin equation (16) form of the ODE system (5-8) leads to the stochastic differential
equation used in the current study

dS = −[β S(t) I(t)
N

]dt −
¿
ÁÁÀ[β S(t) I(t)

N
]dW1(t) (17)

dI = [β S(t) I(t)
N

− γI(t) −Q(t)I(t)]dt +
√

β S(t) I(t)
N

dW1(t) −
√
γI(t)dW2(t) −

√
Q(t)I(t)dW3(t)

(18)

dR = [γI(t) + δT (t)]dt +
√
γI(t)dW2(t) +

√
δT (t)dW4(t) (19)

dT = [Q(t) I(t) − δT (t)]dt +
√
Q(t)I(t)dW3(t) −

√
δT (t)dW4(t) (20)

In (17), Wi(t) ∼ N(0, t) is a normally distributed random variable with mean zero and variance t
or dWi(t) ∼ N(0, dt). It should also be noted that each Wi(t) represents an independent Brownian
motion.

Comparison of the macroscopic, microscopic and Langevin SDE model for our study

Figure S4a shows that the microscopic Stochastic Simulation Gillespie Algorithm and the ODE
model presented in Equation (6-9) in the main text show a good agreement with each other.
Figure S4b shows the comparison of the Chemical Langevin SDE model shown in (17) ran for 1000
trajectories and the ODE model; which also show a good agreement. Thus, we have shown the
equivalence between the microscopic, macroscopic and the Chemical Langevin model for our study.
This equivalence allows us to add fluctuating components to the standard deterministic SIR model
as shown in (17) and quantify the uncertainty resulting from these fluctuations.

Model specifications for each state

Table S1 shows the Model Mean Absolute Percentage Error (MAPE), epochs needed for conver-
gence and number of parameters optimized for the different states considered.

Parameter Inference: Gaussian Process Residue Model

In order to validate the robustness of the model and the uniqueness of the parameters recovered by
the model, we consider a Gaussian Process residue model for uncertainty quantification. Gaussian
Processes have emerged as a useful tool for regression, classification, clustering and uncertainty
quantification.4,5
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Figure S1: For the states of New York, New Jersey and Illinois, figure shows: (a, c, e) Model recovery of
infected and recovered case count trained until 14 July, 2020. (b, d, f) Quarantine strength function as
discovered by our trained model

Table S1: Mean Absolute Percentage Error (MAPE) values are shown along with the number of epochs
required for and the number of parameters optimized, for all states considered.

State Model MAPE Epochs Parameters
optimized

1. Arizona 5.4% 105 54
2. Florida 18.7% 105 54
3. Louisiana 12% 125 54
4. Nevada 3.14% 185 54
5. Oklahoma 7.9% 125 54
6. South Carolina 11.7% 125 54
7. Tennessee 6.9% 125 54
8. Texas 10.4% 245 54
9. Utah 3.79% 125 54
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(d) Louisiana
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(g) Oklahoma
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Figure S2: For the states of Louisiana, Nevada and Oklahoma: (a, d, g) Model recovery of infected and
recovered case count as of 14 July, 2020. (b, e, h) Quarantine strength function as discovered by our
trained model (with reopening). This is shown along with the quarantine strength function which we use
to simulate strict quarantine without reopening after stay-at-home order was imposed. (c, f, i) Estimated
infected count if strict quarantine and lockdown measures were followed without reopening as compared
to the values corresponding to the actual early reopening scenario.
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(a) Texas
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(d) Utah
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Figure S3: For the states of Texas and Utah: (a, d) Model recovery of infected and recovered case
count as of 14 July, 2020. (b, e) Quarantine strength function as discovered by our trained model (with
reopening). This is shown along with the quarantine strength function which we use to simulate strict
quarantine without reopening after stay-at-home order was imposed. (c, f) Estimated infected count
if strict quarantine and lockdown measures were followed without reopening as compared to the values
corresponding to the actual early reopening scenario.
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Figure S4: (a) Comparison of the microscopic Stochastic Simulation Gillespie Algorithm and the ODE
model presented in Equation (6-9) in the main text. (b) Comparison of the Chemical Langevin SDE
model shown in (17) ran for 1000 trajectories (5%and95% quantiles are shown) and the ODE model.
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Figure S5: [Gaussian Process Residue Regression Model] Gaussian Process residue model fitted to the
infected case count shown for Arizona.

In the present study, we fit a Gaussian Process regression model between the error resulting from
the best fit model and the infected data. For the prior over the function space, we use a mean of
zero and variance described by a Squared Exponential Kernel with a lengthscale of 1 and a signif-
icantly high signal standard deviation of O(104) which allows for noisy estimates of the posterior.
Such a fitted model for the infected count for a region under consideration (Arizona), is shown
below in figure S5. Subsequently, we sample 500 error residues from this model and superimpose
them on the best fit predictions to simulate 500 samples of the infected case count data. Finally, we
apply our model described on these 500 samples of data, and recover the parameters Q(t), β, γ, δ
from each of them.
Figures S6, S7 shows the inferred parameters for 500 realizations of the Gaussian process residue
model superimposed on the best fit model prediction applied to all states considered, and shown
for (a) the quarantine strength function Q(t), (b) the contact rate β and (c) the recovery rate γ+δ.
It can be seen that for all realizations, Q(t) is seen to follow a similar behaviour, which lies close
to the best fit model prediction. In addition, the inferred histograms for the contact rate β and
the recovery rate γ + δ show a peak which is close to the best fit model prediction. This further
validates the robustness of the model for other regions considered and strengthens the uniqueness
of the parameters recovered by the model. A total of 12 million iterations (60000 iterations for
each realization of the Gaussian process residue model × 500 realizations) were performed on the
MIT Supercloud cluster to generate parameter histograms for each state considered.

Model validation: Calculation of the effective reproduction number

Following a previous study,6 we define the Covid spread parameter as follows:

Cp(t) = [ β

Q(t) + γ + δ ]S(t)/N (21)

where S(t) is the susceptible population and N is the total population. This definition of the
Covid spread parameter Cp(t) is equivalent to the effective reproduction number Reff(t) in the
context of the QSIR model. We included both γ, δ in the definition of Cp(t) since both these
parameters eventually contribute to the recovered population and we wanted to include effects of
both. Another viable option to define Cp(t) could be to just use γ in the denominator of Cp(t).

Figure S8 shows the comparison of the Covid spread parameter, as defined in Equation 21 with
and without reopening for all US states considered in the present study. For all the states, we can
see that without reopening, a diminished effective reproduction number is seen, indicating moving
in the right direction of halting the infection spread.

8



Arizona

0.200 0.225 0.250 0.275 0.3000

10

20

30

40

50

60
: Gaussian Process inference
: Best fit

0.005 0.010 0.015 0.020 0.025 0.0300

500

1000

1500
+ : Gaussian Process inference
+ : Best fit

Utah

0.076 0.078 0.080 0.082 0.084 0.086 0.0880

200

400

600

800
: Gaussian Process inference
: Best fit

0.05 0.10 0.15 0.20 0.250

20

40

60

80

100
+ : Gaussian Process inference
+ : Best fit

0 25 50 75 100
Days post 500 infected

0.0

0.2

0.4

0.6

0.8

1.0

Q(
t)

Q(t): Gaussian Process inference
Q(t): Best fit estimation

South Carolina

0.06 0.08 0.10 0.12 0.140

50

100

150

200
: Gaussian Process inference
: Best fit

0.5 0.0 0.5 1.0 1.5 2.0 2.50.0

0.5

1.0

1.5

2.0
+ : Gaussian Process inference
+ : Best fit

Texas

0.12 0.13 0.14 0.15 0.16 0.17 0.180

100

200

300

400

500
: Gaussian Process inference
: Best fit

0.06 0.08 0.10 0.12 0.140

50

100

150

200

250

300

350
+ : Gaussian Process inference
+ : Best fit

Figure S6: [Parameter Inference for US states] Inferred parameters for 500 realizations of the Gaussian
process residue model superimposed on the best fit model prediction applied to the region considered for
demonstration, and shown for (a) the quarantine strength function Q(t), (b) the contact rate β and the
recovery rate γ + δ. A total of 12 million iterations were performed on the MIT Supercloud cluster to
generate parameter histograms for one state.
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Figure S7: [Parameter Inference for US states] Inferred parameters for 500 realizations of the Gaussian
process residue model superimposed on the best fit model prediction and shown for the quarantine strength
function Q(t) (left column), the contact rate β (middle column) and the recovery rate γ + δ (right column)
for the US states considered in the present study. A total of 12 million iterations were performed on the
MIT Supercloud cluster to generate parameter histograms for each region.
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(a) Arizona (b) Nevada (c) South Carolina

(d) Florida (e) Louisiana (f) Oklahoma
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Figure S8: The comparison of the effective reproduction number, as defined in Equation 21 with and
without reopening, shown for all US states considered in the present study

To further validate the Covid spread parameter variation and its relation to the effective re-
production number, we compare the variation in Cp to the Reff obtained through a prominent
Covid-19 forecasting model used by the CDC, USA.7,8 For all of the 9 states which we considered,
the time at which an upsurge is seen in Cp due to early reopening corresponds very well to the
exact time at which an upsurge is seen in Reff .7,8 In addition, we show the comparison between
Cp values estimated from our study and Reff values obtained from7,8 from reopening till one
month post that; in table S2. For the states of Arizona, Nevada, Louisiana, Florida, Texas and
Tennessee, these values lie close to each other. This further validates the results of our study and
the quantitative metrics derived therein.
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Region Cp range Reff range
(Our study) (Ref.7)

Arizona 1.1 − 1.4 1.15 − 1.3
Florida 1 − 1.1 1.07 − 1.64
Nevada 1.05 − 1.5 1.19 − 1.5

Louisiana 0.7 − 1 0.88 − 1.62
Texas 0.6 − 0.7 1.08 − 1,3

Tennessee 0.5 − 0.65 0.97 − 1.07
Table S2: Cp and Reff value ranges from reopening till one month post that, for 6 states considered in
our study; lie close to each other.
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