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TRAILS: tree reconstruction of ancestry using incomplete lineage sorting

1. INTRODUCTION

The main idea behind TRAILS is to extend the HMM in Mailund et al. [1] to accommodate one more

species. The resulting model includes time discretization over a speciation tree with three species and an

outgroup, while incorporating information about the topology of gene trees, similarly to CoalHMM [2, 3].

This supplementary material describes TRAILS in depth. Subsections 2.1 to 2.3 describe the continuous-

time Markov chains with one, two and three lineages, respectively, necessary for the calculation of the

transition probability matrix, while subsection 2.4 provides a short perspective on how TRAILS could be

extended to accommodate more than three species. Section 3 provides an overview of the state space

of the discrete-time Markov chain after dividing the coalescent space into discretized time intervals.

Section 4 describes how to calculate the transition probability matrix, and section 5 explains how to

compute the emission probabilities. Section 6 describes how the model is parameterized by population

genetics parameters and how the optimization is performed, while section 7 shows how TRAILS handles

missing data in the calculation of the likelihood. Section 8 provides a short tutorial on how to run

TRAILS in python. Finally, section 9 describes the runtime of the model, and section 10 analyzes how

the model parameters are correlated. Figures were plotted using the tidyverse [4], glue [5], GGally

[6], ggthemes [7] and PhaseTypeR [8] packages in R version 4.2.1 [9].

2. CONTINUOUS-TIME MARKOV CHAINS

2.1. Species A

Let A, B and C be present-day species, where, backwards in time, A and B are grouped first in

the species tree, such that ((A,B),C); (Fig A). In present day, all three species will have a sequence of

nucleotides corresponding to a chromosome. We can approximate the coalescent with recombination of

these samples by assuming that the process is Markovian, so the coalescent can be modelled using only

two consecutive sites.

Focusing on species A, we will start with two linked sites, which are sampled at present. Going

backwards in time, the two sites can stay linked, or, instead, they can recombine and sit in different

chromosomes, each with their own genealogical history. After recombining, the two sites can coalesce

back into the same chromosome. This coalescent with recombination process can be modelled using

a one-sequence continuous-time Markov chain (CTMC), which has two possible states (Fig B). The
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underlying transition rate matrix QA summarizes the CTMC,

QA =

−γA γA

ρA −ρA

 , (1)

where γA and ρA are the coalescent rate and the recombination rate in species A, respectively. In

this CTMC, state 1 corresponds to the unlinked state, while state 2 represents the linked one (Fig B).

Equation (1) can also be visualized as a color-coded matrix, as showed in Fig C. Grey indicates the

diagonal entries, which are calculated as the negative of the sum of the off-diagonal entries in the

corresponding row.

𝜏!"

𝜏!"#

𝑸𝐀𝐁𝐂

𝑸𝐀𝐁

𝑸𝐀 𝑸𝑩

𝑸𝑪

A B C

Fig A: Species tree of the speciation process of three species (A, B and C). τAB and τABC correspond to the speciation
times, measured, backwards in time, as time since the present. The transition rate matrices for the CTMCs are
also plotted in the part of the species tree that are used. These are three 2 × 2 matrices for the one-sequence
CTMCs (QA,QB,QC), a 15 × 15 matrix QAB for the two-sequence CTMC, and a 203 × 203 matrix QABC for the
three-sequence CTMC.

Following standard formulas for CTMCs, the probability of observing either of the two states of the

one-sequence CTMC at time τAB can be calculated as the probability matrix exp(τABQA). The first row

of this 2 × 2 probability matrix represents the probability of being in each state at time τAB given that we

start in state 1. Conversely, the second row represents the same, but given that the CTMC starts in state 2.

Because the chain always starts in the linked state, the probabilities of being in each state at time τAB in

the one-sequence CTMC are given by the vector π′
A = πA exp(τABQA), where πA = (0, 1) is the vector

of starting probabilities. Species B will follow a similar one-sequence CTMC, only with possibly different

γB and ρB, and transition rate matrix QB. Thus, species B will also yield a vector of end probabilities π′
B.
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1 2

Fig B: States of the CTMC of the coalescent-with-recombination process between two sites for a single sequence.

2.2. Species AB

After reaching τAB, species A and B are mixed together. Forwards in time, this would correspond to a

speciation event, where A and B become isolated. Backwards in time, the coalescent with recombination

process can then be modelled using a two-sequence CTMC, similar to that described in Mailund et al. [1].

This CTMC has 15 different states (Fig D), which correspond to all possible combinations of linked and

recombined sequences for two left sites and two right sites. The corresponding transition rate matrix

QAB can be consulted in Fig E, where γAB and ρAB are the coalescent rate and the recombination rate,

respectively.

1

2

1 2
To state index

From
state
index

Event type

Coalescent

Recombination

Fig C: Transition rate matrix for the CTMC of the coalescent-with-recombination process between two sites for a
single sequence. A coalescent event happens with rate γA (in pink), while a recombination event happens with rate
ρA (in green).

Note that QAB has a block-like structure, where some coalescent events prevent the return to previous

states (see Fig E). These events happen when two sites of different origin (one from A and one from B)

reach their common ancestor. This type of coalescence is irreversible, in the sense that the two sequences

coalesce and will now have a shared ancestral history. The other kind are coalescent events that place

the left and right sites on the same chromosome, such as the one described for the one-sequence CTMC

in subsection 2.1. This type of coalescence is reversible, meaning that recombination can separate the left

and the right site into different chromosomes, thus unlinking their genetic history.

A way to more easily identify the blocks created by reversible and irreversible coalescent events is to

define sets of states ω. If no irreversible coalescent has happened at either side (i.e. left and right sites),

then that state belongs to the set ω00, where 0 represents no coalescent. If instead species A and B have
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coalesced at the left site, then that state belongs to the set ω30, and if species A and B have coalesced

only at the right site, then that state belongs to ω03. The reason for the 3 subscript of ω30 and ω03 is

that species A is assigned the number 1, while species B is assigned the number 2, so when these two

coalesce, then 1 + 2 = 3 (see Fig F for an explanatory diagram). Finally, if both the left and the right sites

have coalesced, then that state belongs to ω33. In fact, the two states in ω33 are the absorbing states of

this two-sequence CTMC (states 14 and 15 in Fig D).

1 2 3 4

5 6 7

8 9 10 11 12 13

14 15

ω00

ω30 ω03

ω33

Fig D: States of the CTMC of the coalescent-with-recombination process between two sites for two sequences. The
states are grouped by ω sets. Refer to Fig F for an explanation of the colors and shapes.

Similar to the one-sequence CTMC, the probability of observing each of the 15 states given that we

start in either of them can be calculated using exp((τABC − τAB)QAB). Now, unlike for the one-sequence

CTMCs where the chain could only start from a single state, i.e. πA = (0, 1), we will have starting

probabilities for each state πAB based on the mixing of the end probabilities of the two one-sequence

CTMCs, π′
A and π′

B. More specifically, πAB is calculated by multiplying the end probabilities each of the

entries of the two one-sequence CTMCs. All in all, after running the two-sequence CTMC for a time of

τABC − τAB, the end probabilities can be calculated using π′
AB = πAB exp((τABC − τAB)QAB).

2.3. Species ABC

Finally, the second speciation event is reached at time τABC. Backwards in time, this can be modelled

as a three-sequence CTMC, containing 203 states (Fig G). Again, these states correspond to all possible

combinations among three linked and unlinked sequences. Similar to the two-sequence CTMC, the

three-sequence case also includes irreversible coalescent events which generate a block-like structure

in the transition rate matrix QABC (Fig H). As with the two-sequence CTMC, these blocks define sets
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Fig E: Transition rate matrix for the CTMC of the coalescent-with-recombination process between two sites for two
sequences. A coalescent event happens with rate γAB (in pink), while a recombination event happens with rate ρAB
(in green). The state indices in the left and bottom axes can be consulted in Fig G. The right and top axes represent
sets of states ω, which define the block-like structure of the transition rate matrix. Transitions with rates equal to
zero are shown in white.

of states, here denoted Ω with subscripts again specified as in Fig F. The three-sequence CTMC also

includes two absorbing states in the set Ω77, where all three sequences have coalesced at both sides

(states 202 and 203 in Fig G and Fig H). All the Ω sets and their correspondence to the states of the

Fig F: Diagram showing the different representations of sites used throughout this report. Colored circles represent
uncoalesced sites, while triangles represent sites where at least one coalescent has happened. The numerical
representation of each of the sites can be used to define the sets of states ω.
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CTMC are shown in Fig G.

196 197 198 199 200 201

202 203

184 185 186 187 188 189 190 191 192

193 194 195

169 170 171 172 173 174 175

176 177 178 179 181 182 183180

155 156 157 158 159 160 161 166 167 168162 163 164 165

141 142 143 144 145 146 147 151 152 153 154148 149 150

127 128 129 130 131 132 133 136 137 138 139 140134 135
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Fig G: States of the CTMC of the coalescent-with-recombination process between two sites for three sequences. The
states are grouped by Ω sets. Refer to Fig F for an explanation of the colors and shapes.
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The starting probability vector πABC for the three-sequence CTMC can be calculated by mixing the

end probabilities of the two-sequence CTMC, or π′
AB, and the end probabilities of a one-sequence CTMC

for the last species C, or π′
C. Similarly to how π′

A and π′
B are calculated, π′

C = πC exp((τAB + τABC)QC),

where πC = (0, 1) is the vector of starting probabilities. The transition rate matrix QC is parameterized

by the coalescent rate γC and the recombination rate ρC.

We can calculate the probability of observing any of the 203 states of the three-sequence CTMC at a

given time point t using π′
ABC(t) = πABC exp(tQABC). In any case, as t tends to infinity, the probability

vector will be concentrated on the two absorbing states of the CTMC, states 202 and 203 in which

both sites have experienced two (irreversible) coalescent events and reached their most recent common

ancestor.
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Fig H: Transition rate matrix for the CTMC of the coalescent-with-recombination process between two sites for three
sequences, or QABC. A coalescent event happens with rate γABC (in pink), while a recombination event happens
with rate ρABC (in green). The state indices in the left and bottom axes can be consulted in Fig G. The right and top
axes represent sets of states Ω, which define the block-like structure of the transition rate matrix. Again, transitions
with rates equal to zero are shown in white.
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It is of note to observe that the three-sequence CTMC contains states where only one coalescent has

happened at either side. Focusing at a certain site, this first coalescent could have happened during

the two-sequence CTMC, and, thus, the only possible tree is ((A,B),C). This tree follows the species tree

(Fig A), and it will be referred to as V0 (Fig I). However, if no coalescence has happened at a site, then

any pair of sequences can coalesce first, since sequences A, B and C are all mixed in the three-sequence

CTMC. This means that trees such as ((A,C),B) or ((B,C),A) can also be generated in addition to ((A,B),C).

These three trees of deep coalescent will be referred to as V1 if the tree follows the species tree topology

(i.e. the ((A,B),C) tree), V2 for ((A,C),B), and V3 for ((B,C),A). V2 and V3 are incongruent with the species

tree, meaning that their topologies are different from Fig I. The proportion of sites that follow either of

these two topologies is known as incomplete lineage sorting, or ILS for short.

ILS is a well-documented source of gene tree incongruence, and it is an obstacle for phylogenetic

reconstruction. However, ILS also holds valuable information about the speciation process. In fact, the

amount of ILS increases with the ancestral effective population size (Ne) between speciation events,

and decreases the longer the time between speciation events is (τABC − τAB). The exact formula for

the expected proportion of ILS is Pr(discordant topology) = 2
3 exp(−T/Ne), where T = τABC − τAB is

measured in number of generations and Ne is the haploid effective population size. Intuitively, if Ne is

large, then there is a higher chance that at least one site or lineage does not coalesce between the two

speciation times. Moreover, if the speciation events happen in quick succession, then lineages will not

have time to coalesce within the speciation times, and more sites will escape coalescing before τABC.

Since ILS fragments are informative about the demography of the samples, modelling ILS enables the

estimation of these population genetics parameters along the speciation process.

V0 V1 V2 V3

A B C

𝜏!"

𝜏!"#

𝑡$
Topologies of deep coalescence ILS topologies

Fig I: The four possible topologies that can arise during the speciation process of three species (A, B and C).
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2.4. Beyond three species

The procedure for building CTMCs is not in principle limited to three species. One could calculate

the transition rate matrix for a CTMC with any number of lineages n. However, the number of states

of the CTMC quickly explodes (see Table A), since it follows the even entries of the Bell number series.

The number of states is given by the Bell numbers because each state can be thought of as a possible

configuration of a set with 2n elements, corresponding to all sites and lineages involved in the CTMC. A

group of such elements correspond to either the left and the right site being in the same chromosome,

or to two sites at either the left or the right side having coalesced. The state space of the CTMC is then

defined as all possible partitions of the elements. As a result of this, the state space quickly increases, and

these large matrices can only be used directly for small values of n, since handling them often involve

matrix inversions, multiplications and exponentiations, which are computationally intensive.

However, the information about the coalescent with recombination held in these matrices could

potentially be mined with the help of some workarounds. For example, as shown in Fig E and Fig H, the

states of the rate matrices are organized in a block-like structure, and some of the states show symmetries.

For specific applications, these large matrices can be reduced by merging states together. For example,

for the two-sequence CTMC, we might be interested to drop the information about the origin of the

lineages, and instead only keep track of whether there is a coalescent at either of the two sites, regardless

of the labeling of the lineages. This is conceptually the same as removing the colors in Fig D. In this

situation, the state space is reduced from 15 states to just 8, by appropriately merging equivalent states

and adjusting their transition rates. The same could be done with the states in the three-sequence CTMC

(Fig G), which would reduce the state space from 203 to just 31, or for a four-sequence CTMC, which

would decrease the number of states from 4,140 to only 108. For the current application, however, the

labeling of the lineages needs to be kept since it is important for modelling ILS, so the full state space is

maintained.

Another property of these matrices is that they are extremely sparse, especially as n increases. For

example, 26.2% of the entries in the rate matrix for the two-sequence CTMC are non-zero (Fig E). For the

three-sequence CTMC (Fig H), this proportion decreases to 3.2%, and, for a four-sequence CTMC, it is

only 0.2%. Understanding the sparsity of these matrices could help reduce the computational burden

by choosing the most optimal analytical procedures for costly operations such as matrix inversion or

exponentiation.

In any case, if one is interested in obtaining the transition rate matrices for an arbitrary number of

sequences, they can be computed using a similar approach as that described in this supplementary
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material. After enumerating the full state space using the Bell number series, we can encode each state

in such a way that computing the valid transitions requires minimal bookkeeping. In this manuscript,

we propose encoding the states using minimally superincreasing integers to represent all uncoalesced

and coalesced sites with a unique numeric identifier (see Fig F). One can then use an iterative approach

to build the transition rate matrix by checking whether transitions through coalescence or recombi-

nation are allowed between pairs of states, and updating the numeric labels accordingly. We include

an R script that employs this strategy to compute the transition rate matrix, which can be found in

the accompanying GitHub repository under https://github.com/rivasiker/trails_paper/

tree/main/state_space_exploration. We note, however, that the current implementation is

only computationally feasible for a limited number of sequences (n ≤ 5)

n Number
of states

Proportion of
non-zero entries

1 2 100%
2 15 26.2%
3 203 3.2%
4 4,140 0.2%
5 115,975
6 4,213,597
7 1.91 × 108

8 1.05 × 1010

9 6.82 × 1011

10 5.17 × 1013

100 6.25 × 10275

1000 1.24 × 104349

Table A: The number of states and proportion of non-zero entries in the rate matrix for a CTMC with n lineages.

3. THE STATE SPACE OF THE DISCRETE-TIME MARKOV CHAIN

As shown in the previous section, the speciation process can be described as a series of interconnected

CTMCs. However, inferring population genetics parameters in continuous time is challenging. We

can instead define a discrete-time Markov chain (DTMC), where the states correspond to three-leaved

phylogenetic trees with two irreversible coalescent events. The coalescent times are allowed to happen

at any point within the limits of distretized time intervals along the speciation tree. The transition

probability matrix of this DTMC can then be used as the transition matrix of a hidden Markov model

(HMM), where the observed states are the nucleotides of a three-way genome alignment (and an

outgroup). The emission probabilities of the HMM will, then, be defined by the mutation rate and a

nucleotide substitution model. This HMM can thus be used to estimate the underlying population

genetic parameters along the speciation process. This sort of discretization is a common feature of

applied coalescent HMMs. Note, this means that precise transition rates (which depend on the actual
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coalescence times) are replaced with bin-averaged transition rates. We expect better inferences if time is

divided more finely, but adding more bins increases the computational burden.

The phylogenetic trees that constitute the states of the DTMC are conditioned by the path taken

by the three sequences involved. For the sake of simplicity, let’s assume that both the two-sequence

CTMC and the three-sequence CTMC are divided into 3 discrete time intervals, or nAB = nABC = 3.

Then, let’s imagine that, at a certain site, species A and species B coalesce within the 3rd interval of the

two-sequence CTMC, and, later, that AB lineage coalesces with species C within the 2nd time interval of

the three-sequence CTMC, generating a ((A,B),C) or V0 topology (Fig J). This certain state of the DTMC

will be referred to as V02
3. Generally, then, all possible combinations of V0 states can be referred to as V0y

x ,

where the subscript x represents the time interval in the two-sequence CTMC where the first coalescent

has happened, and the superscript y represents the time interval in the three-sequence CTMC where the

second coalescent has happened. In total, there are nAB × nABC different V0 states.

V0!" V1#" V2#" V3#"

𝜏!"

𝜏!"#

𝑡$

𝑡%

𝑇$

𝑇%

𝑡&

Fig J: The hidden states of TRAILS. This figure shows four of the 27 possible hidden states for when nAB = nABC = 3.
In this figure, and in the rest of the figures of this report, the first coalescent is always plotted as an empty rectangle
within an interval, meaning that the coalescent is allowed to happen at any point within the interval. The same goes
for the second coalescent, which is in turn represented as a filled rectangle. Note that t0 = 0.

Additionally, if the first coalescent does not happen between τAB and τABC, then both the first and

the second coalescents must happen deep in the species tree during the three-sequence CTMC. If the

tree still follows the ((A,B),C) or V1 tree, the first coalescent event happens in the 1st time interval of

the three-sequence CTMC, and the second coalescent event happens in the 2nd time interval, then that

state will be referred to as V12
1 (Fig J). Again, more generally, all possible combinations of V1 states

can be be represented by V1y
x , where the subscript x is the time interval in the three-sequence CTMC

where the first coalescent has happened, and the superscript y is the interval in the three-sequence

12
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CTMC where the second coalescent has happened. Similarly, V2y
x and V3y

x also holds for all ((A,C),B)

and ((B,C),A) trees, respectively (Fig J). Note that sometimes x = y, so for the states of deep coalescent

(V1, V2, and V3), both the first and the second coalescent can happen within the same time interval.

Therefore, there are nABC + (nABC
2 ) possible combinations for each deep coalescence state. All in all, there

are nAB × nABC + 3 ×
[
nABC + (nABC

2 )
]

possible V0, V1, V2 and V3 states in total for the DTMC. As an

example, all the 27 states for nAB = nABC = 3 can be found in Fig K.

Fig K: All 27 possible hidden states when nAB = nABC = 3. The states are colored by topology.

4. THE TRANSITION PROBABILITY MATRIX

4.1. The general case

To calculate the transition probability matrix of the DTMC, we need to consider the path taken

by every pair of states, since each entry of the transition matrix is the probability of changing to the

genealogy of the right-hand site R given that the left-hand site follows a certain genealogy L. Instead of

calculating conditional probabilities, we can compute the joint probability matrix, where each entry is

13
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the joint probability of the left-hand site following an L genealogy, and the right-hand site following a R

genealogy, or Pr(L, R). In fact, we can easily convert the joint probability to conditional probability and,

thus, to the probabilities in the transition matrix, knowing that Pr(L, R) = Pr(L)× Pr(R |L).

In general, the joint probability can be calculated by obtaining the probability of observing either

of the two absorbing states of the three-sequence CTMC (Ω77) conditioned on the path taken, i.e.

conditioned on L and R. This can generally be calculated using matrix exponentiation and choosing the

states that are allowed at the beginning and end of each discretized time interval.
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Fig L: Paths and transitions. This figure shows 8 of the 729 possible combinations of L and R when nAB = nABC = 3.
The lowercase omegas (ω) at the left-hand side of each tree show the set of possible states that are allowed at
the beginning and end of each time interval in the two-sequence CTMC, while the uppercase omegas (Ω) at the
right-hand side show the same for the three-sequence CTMC. The names for the interval limits marked by red
horizontal lines can be consulted in Fig J.

As an example, let’s assume that nAB = 3 and nABC = 3, and that the left site follows a L = V01
2

tree, while the right site follows a R = V12
1 tree (Fig L, panel A). If we focus first on the two-sequence

CTMC between the two speciation events, we can calculate the probability matrix at the end of the

1st interval as exp((t1 − τAB)QAB). However, given the fact that neither the left site nor the right site

have coalesced within this first interval, only a subset of the states of the CTMC are allowed, namely

those where no coalescent has happened at either side. Thus, we can get a sub-matrix by choosing the

right row and column indices of exp((t1 − τAB)QAB), such that exp((t1 − τAB)QAB) [ωtot;ω00], where

ωtot = (1, 2, ..., 15) indicates that the CTMC can start from any of the 15 states, and ω00 is a vector of

indices of the 7 states where no coalescence has happened yet, which correspond to the states where the
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CTMC can finish at the end of the 1st interval. Additionally, t1 is the time at which the 1st interval ends

(refer to Fig J for the interval times). The first and second vectors inside square brackets following a

matrix represent, respectively, the row indices and the column indices to be kept for a desired sub-matrix.

Afterwards, the left site coalesces in the 2nd interval, while the right site remains uncoalesced. In this

case, the probability sub-matrix will be exp((t2 − t1)QAB) [ω00;ω30], where ω30 is a vector containing

the indices of the CTMC states where the coalescent has happened on the left-hand site, and t2 is the

time at which the 2nd interval ends. The 30 subscript of ω30 means that species A (tagged with the

number 1) and species B (tagged with the number 2) coalesce, so then 1 + 2 = 3 at the left-hand site (see

the diagram in Fig F). A subscript of 0 means that no coalescent has happened yet, in this case referring

to the right-hand site.

Similarly, since no coalescent events happen within the 3rd interval, the probability sub-matrix for

this interval can be calculated as exp((τABC − t2)QAB) [ω30;ω30]. All in all, in order to get the final

probability sub-matrix PAB(L, R) of observing a certain ω30 state at time τABC given that we start in

each of the states ωtot, and assuming that the left and right sites follow a L = V01
2 and R = V12

1 tree,

respectively, we need to multiply all the probability sub-matrices. Thus,

PAB(L = V01
2, R = V12

1) =

= e(t1−τAB)QAB [ωtot;ω00] e(t2−t1)QAB [ω00;ω30] e(τABC−t2)QAB [ω30;ω30] ,

which is a |ωtot| × |ω30| probability sub-matrix. In a more general way,

Z(Q, t,ω) =
n−1

∏
i=1

e(ti+1−ti)Q [ωi;ωi+1] , (2)

where Q is the transition rate matrix, t is the vector of time intervals of size n, and ω is the vector of n

vectors of state indices for each of the interval cutpoints given a certain path for the left and the right sites.

For our specific example, PAB(L = V01
2, R = V12

1) = Z(Q, t,ω), where Q = QAB, t = (τAB, t1, t2, τABC)

and ω = (ωtot,ω00,ω30,ω30) (refer to Fig D to consult exactly which states are included in each of

the elements of ω). By careful choice of ω, we can calculate PAB(L, R) for any combination of L and R

using eq. (2).

In order to obtain the end probability vector for each combination of L and R, namely π′
AB(L, R), we

need to multiply the starting probability vector of the two-sequence CTMC, πAB, with the probability

matrix, such that π′
AB(L, R) = πABPAB(L, R). As described above in subsection 2.1, we can calculate the

starting probability vector of the two-sequence CTMC (πAB) by running one one-sequence CTMCs per
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species A and B, and combining their end probabilities.

Similar to the two-sequence CTMC, we can also use eq. (2) for the three-sequence case, such that the

probability sub-matrix for a certain combination of L and R follows PABC(L, R) = Z(Q, t,ω). Keeping

the example above, namely when L = V01
2 and R = V12

1 (see Fig L, panel A), Q = QABC, which is the

203 × 203 transition rate matrix of the two-sequence CTMC, t = (τABC, T1, T2), where T1 and T2 are the

end times of the 1st and 2nd discretized time intervals (see Fig J for the times), and ω = (Ωtot, Ω33, Ω77).

For the latter, Ωtot = (1, 2, ..., 203), which represents the whole state space of the three-sequence CTMC,

Ω33 is the vector of indices of possible end states after the 1st time interval, where only states where

sequences A and B have coalesced at both the left and the right sides are allowed, and Ω77 is the vector

of size 2 corresponding to the two absorbing states, which are the states where all three sequences have

coalesced at both sites (refer to Fig G to consult which states are included in each Ω set).

The joint probability of L = V01
2 and R = V12

1 can then be calculated as Pr(L = V01
2, R = V12

1) =

πABCPABC(L, R)e, where πABC is a vector of size 203 with the starting probabilities of the three-sequence

CTMC obtained by mixing the end probabilities of the two-sequence CTMC (π′
AB) and the end proba-

bilities of the one-sequence CTMC for species C (π′
C). e is simply a column vector of ones of size 2, i.e.

(1, 1)T , signifying that the joint probability is the sum of being in either of the absorbing states at the end

of the appropriate interval.

4.2. Multiple coalescents within the same time interval

In many cases, Pr(L, R) = πABCPABC(L, R)e, as described above. However, some combinations of L

and R require further calculations. For example, when nAB = nABC = 3, if L = V01
2 and R = V12

2, the

first and the second coalescents of the right site happen within the same discretized time interval (Fig L,

panel B). When this is the case,

Pr(L = V01
2, R = V12

2) =

πABC(L, R) e(T1−τABC)QABC [Ωtot; Ω70]
∫ T2

T1

e(s−T1)QABCA70,73e(T2−s)QABC ds [Ω70; Ω77] e,

where A70,73 is a rate matrix of instantaneous transitions. This means that all entries in A70,73 where the

starting state is within Ω70, and the end state is within Ω73 equal to the value in the corresponding entry

in QABC, while all other values equal to 0.

The integral of the equation above can be calculated using Van Loan’s approach [10]. Let G(t) =
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∫ t
0 e(t−s)QAesQ ds. We can construct a matrix C, such that

C =

Q A

0 Q

 , (3)

where 0 is a matrix of zeros of the same size as Q (or A). Following Van Loan [10],

etC =

F (t) G(t)

0 F (t)

 , (4)

where F (t) = etQ. Therefore, we can compute the matrix integral of interest, G(t), by taking the

sub-matrix of size |Q| in the upper right corner of etC .

Van Loan’s method is also useful for calculating the joint probability of the left and the right topology

when more than two coalescents happen within the same time interval. This can happen, for example,

when nAB = nABC = 3, L = V02
2 and R = V12

2, such that the 2nd coalescent at the left site and both the

1st and the 2nd coalescents at the right site happen within the 2nd interval of the three-sequence CTMC

(Fig L, panel C). In this case, the integral will be of the form

G(t) =
∫ t

0

∫ s

0
e(t−s)QA1e(s−r)QA2erQ dr ds,

which can also be calculated following Van Loan [10]. In fact, this same method can also be used to

calculate triple integrals of the form

G(t) =
∫ t

0

∫ s

0

∫ r

0
e(t−s)QA1e(s−r)QA2e(r−w)QA3ewQ dw dr ds,

that arise when all four coalescents happen within the same interval, for example, when L = R = V12
2

(Fig L, panel D).

For some combinations of L and R, there is an additional level of complexity, since several paths

need to be considered. For example, when nAB = nABC = 3, L = V02
2 and R = V12

2 (Fig L, panel C), the

integral part needs to consider 5 different paths:

• 30 → 33 → 73 → 77

• 30 → 33 → 37 → 77

• 30 → 70 → 73 → 77

• 30 → 73 → 77

17
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• 30 → 33 → 77

These can be computed separately, and then summed over to calculate the joint probability of L and R.

The number of paths to be considered can quickly increase, especially when all coalescents happen in the

same time interval. The current implementation of the algorithm uses all available cores to parallelize

these calculations.

4.3. The deepest time interval

All the equations described above can only be used when the intervals when coalescents happen

have finite time limits. This poses a problem when coalescents happen within the last time interval,

since its upper limit is infinity. A workaround can be devised by knowing that the CTMC is absorbing,

so once the last interval is reached, absorption within the interval is guaranteed to occur.

If a single coalescent event happens within the last interval, as is the case for L = V01
2 and R = V13

2

when nAB = nABC = 3 (Fig L, panel E), then Pr(L, R) = πABCZ(Q, t,ω)e, where Q = QABC, t =

(τABC, T1, T2), ω = (Ωtot, Ω70, Ω73), and e is a column vector of ones of size |Ω73|. In other words, we

avoid the last interval by knowing that all states that have coalesced in previous intervals to any of the

Ω73 states will eventually coalesce to one of the two absorbing states Ω77 within the last interval given

enough time, since that is the only path they can take. We can also arrive to this conclusion by looking at

the block structure of QABC (Fig H).

If, instead, two coalescent events happen within the last interval, then we need to calculate integrals

of matrix exponentials with an infinite upper limit. For example, when nAB = nABC = 3, L = V01
2 and

R = V13
3 (Fig L, panel F),

Pr(L, R) = πABCZ(Q, t,ω)
∫ ∞

0
e(t−s)QABCA70,73 ds [Ω70; Ω73] e,

where Q = QABC, t = (τABC, T1, T2), ω = (Ωtot, Ω70, Ω70), and e is a column vector of ones of size

|Ω73|. Looking at the integral, we can see it is of the form

∫ ∞

0
esQA ds =

∫ ∞

0
esQ dsA = −(Q)−1A.

This equation cannot be computed if Q = QABC, because QABC is a singular matrix. However, we can

compute it if Q = Q′
ABC, where Q′

ABC is a sub-matrix of QABC without the two absorbing states. Using

this sub-intensity matrix makes sense, since, in fact, we are only interested in the coalescents that have
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happened before the last coalescent, and all those states will eventually coalesce to the absorbing states

given enough time.

If instead of two there are three coalescents happening on the last interval, as is the case for L = V03
2

and R = V13
3 when nAB = nABC = 3 (Fig L, panel G), then we will need to compute a double integral of

the form

∫ ∞

0

∫ s

0
e(s−r)QA1erQA2 dr ds =

∫ ∞

0

∫ s

0
e(s−r)QA1erQ dr dsA2 =

∫ ∞

0
G(s) dsA2.

In order to compute G(s), we can use [10] by calculating C following eq. (3), where A = A1 and

Q = Q′
ABC. Then, following eq. (4), we obtain a matrix exponential exp(tC) that depends on time.

Integrating such exponential, we get

∫ ∞

0
esC ds = −(C)−1 =

F
∫ ∞

0 G(s) ds

0 F

 ,

where its upper-right sub-matrix of size |Q′
ABC| equals to the integral of interest, and F = −(A1)

−1.

Following a similar procedure, we can also compute the triple integral needed when all coalescents

happen within the last interval, for example, when nAB = nABC = 3 and L = R = V13
3 (Fig L, panel H).

These integrals are of the form

∫ ∞

0

∫ s

0

∫ r

0
e(s−r)QA1e(r−w)QA2ewQA3 dw dr ds =

=
∫ ∞

0

∫ s

0

∫ r

0
e(s−r)QA1e(r−w)QA2ewQ dw dr dsA3 =

∫ ∞

0
G(s) dsA3.

Note that, as explained in the previous section, some combinations of L and R will have more than

one possible path, so in order to compute their joint probability, we need to calculate the probability of

each path separately, and then sum these probabilities.

5. THE EMISSION PROBABILITIES

5.1. The observed states

The states of the DTMC describe the marginal genealogical histories of the sequences. However,

these states cannot be observed directly. Instead, each of the states will produce site patterns with

different probabilities based on the genealogy they follow. Thus, the states of the DTMC can be used

as the latent states of a hidden Markov model (HMM), and the nucleotide patterns as the observed
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states. The observed states will thus correspond to columns along a 4-way genome alignment, with

three species and an outgroup. In the absence of missing data, the number of possible observed states

can be calculated as the number of combinations of the four possible nucleotides (A, C, G, T) for four

sequences, which amounts to 44 = 256.

5.2. The substitution model

In order to calculate the probability of emitting each of the 256 site patterns given a certain hidden

state, we must choose a mutational model. In TRAILS, the substitution model is Jukes-Cantor [11],

which assumes an equal mutation rate for all nucleotide changes, and thus predicts equal frequencies of

1/4 for the each of the four nucleotides at equilibrium. The resulting transition rate matrix Q is then

parameterized by a single quantity µ:

Q =
µ

4



−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3


.

The parameter µ is a re-scaling of the mutation rate ν, such that µ = 4
3 ν. The transition probability matrix

given at a certain time u can therefore be computed as

P (µ, u) = euQ =
1
4
+

1
4

e−uµ



3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3


.

We can observe that there are only two possible transition probabilities, namely

Pij(µ, u) =


1
4 + 3

4 e−uµ, if i = j

1
4 − 1

4 e−uµ, if i ̸= j
(5)

The above equation can thus be used to calculate the conditional probability of observing a certain

nucleotide b at time u, given a starting nucleotide a at time 0, i.e., Pr(b | a).

20



TRAILS: tree reconstruction of ancestry using incomplete lineage sorting

5.3. One coalescent event

As long as the genealogy of a hidden state follows a non-coalescing lineage, eq. (5) can be used to

calculate the transition probability. However, there are parts of the hidden state genealogies that involve

more than a single lineage, which happens at time intervals where coalescents between multiple lineages

are allowed to happen. There are two different instances of this, either there is a single coalescent event,

and two lineages merge into one (Fig M), or there are two coalescent events in a single interval, and

three lineages merge into one (Fig N).

t

u

a

d

c

b

Fig M: Diagram for an interval of length t with a single coalescent event at time u. a, b, c and d represent nucleotides
at different lineages and times.

For the case where a single coalescent happens, there are two initial lineages with nucleotides a and

b at time 0, respectively, which they coalesce and segregate as a single lineage until observing a certain

nucleotide c at time t (Fig M). Let’s assume the coalescent event happens at time u, such that we can

record the observed nucleotide d at the time of coalescent. By fixing the values of a, b, c, d and u, we can

calculate their joint probability given a as

Pr(b, c, d, u | a) =
(

euQ
)

ad

(
euQ

)
bd

(
e(t−u)Q

)
dc

e−u∫ t
0 e−vdv

.

By integrating over all possible values of u, we get

Pr(b, c, d | a) =
∫ t

0
Pr(b, c, d, u | a)du =

1
1 − e−t

∫ t

0
e−u

(
1
4
+ αe−uµ

)(
1
4
+ βe−uµ

)(
1
4
+ γe−(t−u)µ

)
du,
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where

α =


3/4, if a = d

−1/4, if a ̸= d
β =


3/4, if b = d

−1/4, if b ̸= d
γ =


3/4, if c = d

−1/4, if c ̸= d

This equation can be solved using Wolfram Mathematica [12] and can be consulted at https://github.

com/rivasiker/trails_paper/tree/main/emission_probability_formulas.

Finally, we can calculate the joint probability of observing nucleotides b and c given a by summing

over all possibilities for d, i.e.,

Pr(b, c | a) = ∑
d

Pr(b, c, d | a). (6)

t

v

u
a b c

e

f

d

Fig N: Diagram for an interval of length t with a two coalescent events at times u and v. a, b, c, d, e and f represent
nucleotides at different lineages and times.

5.4. Two coalescent events

Similarly, we can calculate the same formulas for when two coalescent events happen within the same

interval. In this case, there are three different lineages at time 0, with nucleotides a, b and c, respectively.

The first coalescent event will happen at time u between the a and b lineages, and afterwards, the second

coalescent will happen at time v with the remaining lineage c (Fig N). The single final lineage will

last until time t. The nucleotide recorded at time u is e, while that recorded at the time of the second

coalescent v is f .
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Again, by fixing the values of a, b, c, d, e, f , u and v, we can calculate their joint probability given a as

Pr(b, c, d, e, f , u, v | a) =
(

euQ
)

ae
(euQ)eb

(
euQ

)
e f

(
e(v+u)Q

)
f c

(
e(t−v−u)Q

)
f d

3e−3ue−(v−u)

k
,

where k = 1+ 0.5e−3t − 1.5e−t, which is calculated from the convolution of two exponential distributions

of rates 1 and 3. Similarly as before, we can integrate over all possible values of v and u, such that

Pr(b, c, d, e, f | a) =
∫ t

0

∫ t

u
Pr(b, c, d, e, f , u, v | a) dv du =

=
3
k

∫ t

0

∫ v

0
e−3ue−(v−u)

(
1
4
+ αe−uµ

)(
1
4
+ βe−uµ

)(
1
4
+ γe−(v−u)µ

)(
1
4
+ δe−vµ

)(
1
4
+ ϵe−(t−v)µ

)
du dv,

where

α =


3/4, if a = e

−1/4, if a ̸= e
β =


3/4, if b = e

−1/4, if b ̸= e
γ =


3/4, if e = f

−1/4, if e ̸= f

γ =


3/4, if c = f

−1/4, if c ̸= f
ϵ =


3/4, if d = f

−1/4, if d ̸= f

This equation can also be solved using Wolfram Mathematica [12] and can also be consulted at https://

github.com/rivasiker/trails_paper/tree/main/emission_probability_formulas.

Subsequently, we can calculate the join probability by summing over all values of e and f :

Pr(b, c, d | a) = ∑
e

∑
f

Pr(b, c, d, e, f | a). (7)

5.5. Piecing everything together

Using eqs. (5) to (7), we can calculate the Jukes-Cantor emission probabilities of all the hidden states.

Each hidden state will have the three species involved in the ILS phenomenon (A, B and C), and an

outgroup D, which is diverged enough from the rest of the species that no ILS can be observed. For all

deep coalescent states (V1j
i , V2j

i and V3j
i) where the first and the second coalescent happen at the same

time interval (i.e., i = j), then the joint probability for a certain combination of nucleotides (see labels in
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Fig O left) is given by

Pr(a0, a1, b0, b1, c0, c1, abc0, d0) =

= Pr(a0) · Pr(a1 | a0) · Pr(b1, c1, abc0, | a1) · Pr(b0 | b1) · Pr(c0 | c1) · Pr(d0 | abc0),

Here, Pr(a0) is the starting probability for observing each nucleotide, which in the Jukes-Cantor model

corresponds to 1/4, since all nucleotides are assumed to be equal in probability. Subsequently,

Pr(a0, b0, c0, d0) = ∑
a1

∑
b1

∑
c1

∑
abc0

Pr(a0, a1, b0, b1, c0, c1, abc0, d0).

Alternatively, for all V0 states and for all deep coalescent states where the two coalescent events

happen at different time intervals, then the joint probability for a combination of nucleotides (see labels

in Fig O right) can be computed as

Pr(a0, a1, b0, b1, ab0, ab1, c0, c1, abc0, d0) =

= Pr(a0) · Pr(a1 | a0) · Pr(b1, ab1 | a1) · Pr(b0 | b1) · Pr(ab0 | ab1) · Pr(c1, abc0 | ab1) · Pr(c0 | c1) · Pr(d0 | abc0),

and, subsequently,

Pr(a0, b0, c0, d0) = ∑
a1

∑
b1

∑
ab0

∑
ab1

∑
c1

∑
abc0

Pr(a0, a1, b0, b1, ab0, ab1, c0, c1, abc0, d0).

All these formulas are similar in nature to Felsenstein’s tree-pruning algorithm [13], but some of the

conditional probabilities are calculated by integrating over all possible coalescent events rather than

fixing the tree node to a certain value.

6. MODEL PARAMETERIZATION AND OPTIMIZATION

The transition and emission probabilities of TRAILS are parameterized by the speciation times, the

ancestral effective population sizes, and the recombination rate. Given a sequence of observed states,

these parameters are optimized so that the resulting model has the largest likelihood, thus performing

parameter estimation.

Some of the parameters of the model are always fixed to ease the optimization. For example, the

number of discretized time intervals between speciation events (nAB) and the number of intervals in deep

coalescence (nABC) are always kept fixed. On top of that, some other parameters are always optimized,
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a0 b0 c0

a1 b1 c1

abc0

d0

a0 b0 c0

a1 b1

ab0

ab1 c1

d0

abc0

Fig O: The two possible tree configurations for the emission probabilities, with labelled nucleotides at different time
points.

such as the time between speciation events (t2, in generations), the time from the end point of the second-

to-last interval to the speciation time of the outgroup (tupper, in generations), the (haploid) effective

population size of the time between speciations and in deep coalescent (NAB and NABC, respectively),

and the recombination rate (r, in crossovers per site per generation). We note that tupper, which is only

used to calculate the emission probabilities, provides an upper bound for coalescent events to occur

between species A, B and C before they can coalesce with the outgroup. An assumption of the model is

that the divergence between the outgroup and the rest of the species is large enough so that the majority

of coalescent events have already happened before reaching the speciation event with the outgroup.

Additionally, we must specify the times from present to their corresponding speciation events. If

the tree is ultrametric (in number of generations) and, thus, all lineages are sampled at time 0, then

only one more parameter should be optimized, namely, the time from present to the first speciation

event (t1, in number of generations). This model is termed the ultrametric model. If instead each species

has its own time, we would need one for each of the species, so the time from present to the first

speciation event for A and B (tA and tB, respectively), and the time from present to the second speciation

event for C (tC). The time from present to the third speciation event for the outgroup is calculated

as ((tA + tB)/2 + t2 + tC)/2 + t3, where t3 is the time from the second speciation event to the third

speciation event, which can be calculated from NABC and tupper. This model is called the non-ultrametric

model, and a diagram of it can be found in Fig 2A.

The mutation rate µ cannot be optimized together with the other parameters, because the same

transition and emission probabilities can be computed by rescaling the parameters. In order to avoid

this non-identifiability of the model, the mutation rate is fixed to a value of 1. Accordingly, all other

parameters must be rescaled by the real mutation rate µ, such that all times and effective population
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sizes are multiplied by the mutation rate (t′ = tµ and N′ = Nµ), and the recombination rate is divided

by the mutation rate (r′ = r/µ).

The rescaled parameters are then optimized following a bound-constrained algorithm that can

be user-specified (Nelder-Mead [14, 15], L-BFGS-B [16, 17], Powell [18], or TNC [19]), where the cost

function is the log-likelihood of the model.

7. LIKELIHOOD CALCULATION AND MISSING DATA

Following standard HMM theory [20, 21], we can use the forward algorithm to calculate the likelihood

of the model given the data. To do so, we need to calculate first the transition probability matrix A, the

emission probability matrix B, and the vector of starting probabilities π. For a given sequence o of n

observations (in the case of TRAILS, the columns along a four-way genome alignment of length n), the

forward algorithm can be implemented recursively as such:

1. Initialization: α1 = πB(o1).

2. Recursion: αi = αi−1AB(oi), for i ∈ (1, ..., n − 1).

3. Termination: L(θ | o) = P(o | θ) = αne.

Here, αi is the vector recording the probability of being at a certain hidden state after seeing the first i

observations, B(oi) represents the column in the emission probability matrix corresponding to the state

emitted at the i’th observation, and e is a column vector of ones of size n. In practice, this algorithm is

implemented in the log-space to avoid underflow.

In the absence of missing data, all oi observations correspond to one of the 256 possible emitted states,

and the forward algorithm can be applied as described above. If instead, oi contains missing information

for all of species, i.e., if the observation is NNNN, the algorithm can be applied by substituting B(oi)

with e.

Additionally, we can also observe partially missing data, where not all 4 sequences have missing

information. For example, observations such as AAAN, ANAN, or ANNN are three of 54 − 44 − 1 = 368

possible observations containing partially missing data. In such cases, each of the observations oi

correspond to a set of emitted states z, e.g., AAAN could only be AAAA, AAAC, AAAT or AAAG.

Instead of substituting B(oi) with e and losing information, we can instead substitute it with ∑j B(zj)

for all zj ∈ oi. In the case of having only one missing nucleotide, there are only 4 possible zj states (as

in the example above). For two missing nucleotides, there are 42 = 16 possible zj states, and for three
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missing nucleotides, this number corresponds to 43 = 64. In fact, the same formula can be used when

all four nucleotides are missing, since ∑j B(zj) would correspond to summing over all of the columns

(44 = 256) in the emission probability matrix B, which yields a vector of ones.

In the current implementation of TRAILS, gaps are treated as missing data. It should be noted that a

position in the alignment containing all gaps should be filtered out before using the sequence as input

for the HMM.

8. IMPLEMENTATION

All the functionality described here is implemented in a python package called trails, which

can be downloaded and installed from pip (https://pypi.org/project/trails-rivasiker),

and the source code can be browsed on GitHub (https://github.com/rivasiker/trails). The

calculation of the transition and emission probability matrices is paralellized using ray [22]. Additionally,

pandas [23] and numpy [24] are used for pre- and post-processing of the matrices. MAF alignment

files are parsed using biopython [25]. Bound-constrained optimization algorithms are implemented in

SciPy [26]. When possible, custom functions are njitted using numba [27] to boost performance.

Using the trans_emiss_calc from the trails package, one can calculate the transition and

emission probability matrices in python by specifying the desired demographic parameters:

from trails.optimizer import trans_emiss_calc

from trails.cutpoints import cutpoints_ABC

n_int_AB = 3

n_int_ABC = 3

mu = 2e-8

N_AB = 25000*2*mu

N_ABC = 25000*2*mu

t_1 = 240000*mu

t_2 = 40000*mu

t_3 = 800000*mu

t_upper = t_3-cutpoints_ABC(n_int_ABC, 1/N_ABC)[-2]

t_out = t_1+t_2+t_3+2*N_ABC

r = 1e-8/mu

transitions, emissions, starting, hidden_states, observed_states = trans_emiss_calc(

t_1, t_1, t_1+t_2, t_2, t_upper, t_out,

N_AB, N_ABC, r, n_int_AB, n_int_ABC)

If the alignment data is stored in a MAF file, then it can be parsed into trails using the maf_parser

function:
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from trails.read_data import maf_parser

# The underlying species tree should be (((sp1,sp2),sp3),out);

# These names should match the species names in the MAF file

sp_lst = ['sp1', 'sp2', 'sp3', 'out']

observed = maf_parser('chr1.maf', sp_lst)

If the alignment data is split up into different alignment blocks in the MAF file, the resulting parsed

alignment will also contain all those split blocks.

We can calculate the likelihood of the model given the data using the loglik_wrapper function:

from trails.optimizer import loglik_wrapper

loglik = loglik_wrapper(transitions, emissions, starting, observed)

If the data is split into several alignment blocks, then the log-likelihood will be calculated indepen-

dently for each block, i.e., the HMM will be re-initialized in each block. The overall log-likelihood (the

cost function) will be the sum of the log-likelihood of all the blocks.

Finally, the optimizer function conveniently wraps all this together to perform numerical opti-

mization given the data and using a specified bound-constrained algorithm. The bounds are specified

using a python dictionary, which contains a list for each of the optimized parameters with the initial

value, the lower bound and the upper bound. This dictionary should be supplied in the optim_params

argument. Moreover, the fixed parameters, which in this case are the number of intervals between the

two speciation events (nAB) and the number of intervals deep in time (nABC), are also specified using a

dictionary, and supplied in the fixed_params argument. The results are saved on a csv file specified

by the path in res_name. Finally, the optimization method is specified using the method argument.

All together:

dct = {

't_1': [t_1, t_1/10, t_1*10],

't_2': [t_2, t_2/10, t_2*10],

't_upper': [t_upper, t_upper/10, t_upper*10],

'N_AB': [N_AB, N_AB/10, N_AB*10],

'N_ABC': [N_ABC, N_ABC/10, N_ABC*10],

'r': [r, r/10, r*10]

}

dct2 = {'n_int_AB':n_int_AB, 'n_int_ABC':n_int_ABC}

res = optimizer(

optim_params = dct,

fixed_params = dct2,

V_lst = observed,

res_name = 'results.csv',

method = 'L-BFGS-B'

)
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Alternatively, if the speciation tree is not ultrametric, the dictionary for optim_param can also

contain independent speciation times for species A, B, and C, in which case all those will be optimized:

dct = {

't_A': [t_1, t_1/10, t_1*10],

't_B': [t_1, t_1/10, t_1*10],

't_C': [t_1+t_2, (t_1+t_2)/10, (t_1+t_2)*10],

't_2': [t_2, t_2/10, t_2*10],

't_upper': [t_upper, t_upper/10, t_upper*10],

'N_AB': [N_AB, N_AB/10, N_AB*10],

'N_ABC': [N_ABC, N_ABC/10, N_ABC*10],

'r': [r, r/10, r*10]

}

dct2 = {'n_int_AB':n_int_AB, 'n_int_ABC':n_int_ABC}

res = optimizer(

optim_params = dct,

fixed_params = dct2,

V_lst = observed,

res_name = 'results.csv',

method = 'L-BFGS-B'

)

The underlying functions are parallelized, so multiple cores will make the calculations faster, espe-

cially when nABC gets larger.

9. RUNTIME

As the number of discretized time intervals between speciation events (nAB) increases and, more

importantly, as the number of discretized time intervals in deep coalescence (nABC) increases, the model

becomes more complex. This complexity is reflected in the number of hidden states, which amounts to

nAB × nABC + 3 ×
[
nABC + (nABC

2 )
]
, and it heavily impacts the runtime of each optimization round. The

optimization procedure requires two computationally expensive steps. The first step involves calculating

the transition probability matrix given a certain demographic model, nAB and nABC. Afterward, the

second step corresponds to calculating the likelihood of the model given some data. While this second

step is the most computationally heavy for small values of nABC, it quickly becomes surpassed by the

time spent calculating the transition probability matrix (Fig P). Conversely, posterior decoding of a fitted

model takes around the same time as computing the likelihood.

Based on the simulations used for Fig 2, around 150-to-200 iterations of the optimization procedure

were necessary to achieve convergence. Given the runtimes of Fig P, for each iteration when nAB =

nABC = 5, TRAILS spends ∼ 170 seconds for computing the transition probability matrix, and ∼ 75

seconds for the likelihood calculation for a 10Mb region. For a total of 150 iterations, this amounts to
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∼ 10 hours of computations to achieve convergence.

10. PARAMETRIC BOOTSTRAPPING

To quantify the variability of the parameters estimated by TRAILS, 20 genomes, 50 Mb in length,

were simulated from the model fitted with the parameters estimated for the HCGO alignment. After

performing parameter optimization using TRAILS, the 20 estimates were used to fit a normal distribution

per parameter (Fig R), and 95% confidence intervals were computed from the fitted normal distribution

(Table B).

Parameter Estimated value Bootstrapped mean Bootstrapped SD Low CI High CI
H-to-HC 5.51 5.49 3.08 × 10−2 5.43 5.54
C-to-HC 5.84 5.83 2.87 × 10−2 5.77 5.87

G-to-HCG 11.70 11.71 2.31 × 10−2 11.66 11.74
O-to-HCGO 19.28 19.31 4.60 × 10−2 19.22 19.38
HC-to-HCG 4.89 4.90 3.05 × 10−2 4.84 4.95

HCG-to-HCGO 8.15 8.18 3.99 × 10−2 8.10 8.24
NAB 167400 168323 1416 165548 170361

NABC 101290 101058 302 100467 101492
ρ 1.191 × 10−8 1.189 × 10−8 8.361 × 10−11 1.172 × 10−8 1.200 × 10−8

Table B: Estimated values, and mean, standard deviation (SD) and 95% confidence intervals (CI) of normal
distributions fitted on the parametric bootstrap replicates.

The same 20 replicates were also used to explore how parameters covary when estimated. Results

show that several pairs of parameters are correlated (Fig S). For example, both tA and tB are significantly

negatively correlated with t2, since in order to compensate for a large value of t2, the lengths of the

tip branches need to decrease. On the other hand, t2 is positively correlated with NAB, since, in

order to keep the same level of ILS, t2 and NAB must increase or decrease by the same factor, since

ILS = 2
3 exp(−t2/(2NAB)). Also, notably, ρ is not significantly correlated to any of the parameters.
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Fig Q: Posterior decoding of the topology and coalescent times of a region in chromosome 1 showing an excess of
V3 topology.

.
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