S1 Table

Enzyme family	Gene names	Annotated genes in At str. MWF001	Annotated genes in Ct str. MWF001
Superoxide dismutases	SodA, SodM	SodB (3)	SodB (2)
Catalases	KatA, KatE, KatG	KatG (1)	KatG (1)
Thiol peroxidase,	TpxD, TlpA, Etrx,	TlpA (1), TrxA, TrxB (2),	TrxA (4), TrxC
thioredoxins	TrxA, TrxB	TrxC	
Peroxiredoxin	AhpC, AhpD, Bcp	AhpC, AhpD, Bcp (2)	AhpC, AhpF, BcpB, Bcp
Glutathione reductase,	gor, grxA	grxC, grxD	grxC, grxD
glutaredoxin			

ROS resistance genes in At and Ct. We searched for a list of putative ROS-degrading enzymes from a recent review paper [57] by searching the annotated genes of our two strains. We show the gene families listed in [57], and whether we found genes of the same family in our two genomes with gene number shown in brackets. This analysis shows that gene presence/absence tells us little about which of the two strains is more resistant to ROS.

December 20, 2023