S2 Table

Symbol	Unit	Description	Model 1	Model 2
B	$CFU.mL^{-1}$	CFU concentration $(At \text{ or } Ct),$		_
		proxy for bacterial population size		
C	$\mathrm{au.mL}^{-1}$	LA concentration		
N	$\mathrm{au.mL}^{-1}$	unknown MM nutrient concentration		
R	$\mathrm{au.mL}^{-1}$	ROS concentration (proxy)		
r_{N1}	day^{-1}	maximum growth rate of Ct in MM	346.53	5.51
r_{N2}	day^{-1}	maximum growth rate of At in MM	891.43	126.46
r_{C1}	day^{-1}	maximum growth rate of Ct in LA	2.38	3.49
r_{C2}	day^{-1}	maximum growth rate of At in LA	1.94	2.37
K_{N1}	$\mathrm{au.mL}^{-1}$	half-saturation constant (Ct in MM)	0.1	0.001
K_{N2}	$\mathrm{au.mL}^{-1}$	half-saturation constant $(At \text{ in MM})$	1.01	0.36
K_{C1}	$\mathrm{au.mL}^{-1}$	half-saturation constant (Ct in LA)	0.0006	0.04
K_{C2}	$\mathrm{au.mL}^{-1}$	half-saturation constant $(At \text{ in LA})$	0.001	0.05
Y_{N1}	$CFU.au^{-1}$	yield (Ct in MM)	1.28×10^{9}	$4,08 \times 10^8$
Y_{N2}	$CFU.au^{-1}$	yield $(At \text{ in MM})$	3.14×10^{8}	3.27×10^{8}
Y_{C1}	$CFU.au^{-1}$	yield (Ct in LA)	1.38×10^{9}	5.79×10^9
Y_{C2}	$CFU.au^{-1}$	yield $(At \text{ in LA})$	2.383×10^9	10^{10}
eta_1	$mL.au^{-1}.day^{-1}$	toxicity for Ct (LA in model 1, ROS in model 2)	0.3	8.58
eta_2	$\mathrm{mL.au}^{-1}.\mathrm{day}^{-1}$	toxicity for At (LA in model 1, ROS in model 2)	3.36	20.03
γ_1	$\mathrm{mL.au}^{-1}.\mathrm{day}^{-2}$	toxicity accumulation of LA (model 1)	3.014×10^{-6}	
γ_2	$\mathrm{mL.au^{-1}.day^{-2}}$	toxicity accumulation of LA (model 1)	0.563	
$lpha_1$	$mL.CFU^{-1}.day^{-1}$	rate of ROS detoxification by $Ct \pmod{2}$		4.6×10^{-6}
α_2	$mL.CFU^{-1}.day^{-1}$	rate of ROS detoxification by $At \pmod{2}$		0
d	day^{-1}	rate of LA oxidation (model 2)		0.11
l	day^{-1}	rate of ROS decay (model 2)		0.35
e	$\mathrm{mL.au^{-1}.day^{-1}}$	ROS-triggered LA oxidation (model 2)		1.94
m	no unit	LA to ROS conversion factor (model 2)		0.88

Description of state variables and parameters used in the two models, with the estimates from fitting on mono-cultures. The compounds (LA, ROS, minimal medium nutrient) concentration unit is arbitrary (au).

December 20, 2023