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Supplementary Note 1. Synthesis of core-sheath SWNT@GDY nanotubes 
1.1 Preparation of hexaethynylbenzene (HEB) monomer 

Hexakis[(trimethylsilyl)ethynyl]benzene (HEB-TMS) was first synthesized according to the 

synthetic route presented in Supplementary Scheme 1 (41). Then 5 mg HEB-TMS monomers were 

dissolved into 75 mL CH2Cl2 solvent in a Schlenk reactor. 75 μL solution of tetrabutylammonium 

fluoride (1 M in tetrahydrofuran) was added into the HEB-TMS solution. After reaction at 0℃ for 

15 min under Ar atmosphere in the dark, HEB solution (in CH2Cl2) was obtained as the precursor 

for the subsequent coupling reaction. 

Scheme S1 Synthetic route for the HEB-TMS monomers. 

1.2 Preparation of semiconducting SWNT toluene solution 

Arc-discharged semiconducting single-walled carbon nanotubes (SWNTs, 20 mg) were first 

dissolved in 20 mL of toluene (42), followed by tip-sonicating for 30 min. The resultant 

suspensions were centrifuged with 40,0000 g for 1 h to remove the impurities. The upper 90% of 

the supernatants were collected for further use. 

1.3 Synthesis of core-sheath SWNT@GDY nanotubes 

A solution-phase epitaxial strategy was used to synthesize core-sheath SWNT@GDY nanotubes 

(27-30). 200 μL of as-prepared SWNT toluene solution was added to 5 mL of pyridine solution of 

copper acetate (2 mM) and 2 mL of toluene in a home-made reaction vessel. 5 mL of 

dichloromethane solution of HEB monomers (10 μM) was slowly added into the reaction vessel 

using an injection pump with a rate of 100 μL min–1. After 24 h successive catalytic coupling 

reaction in Ar atmosphere and dark environment at room temperature, a GDY layer with thickness 



of approximately 1 nm was synthesized wrapping the SWNT, forming a core-sheath 

SWNT@GDY structure as illustrated in Fig. 1c. Fig. S1 compares the Raman spectra of SWNT 

and SWNT@GDY. The radial breathing mode (RBM) and G band of SWNT is almost unchanged 

before and after the synthesis of GDY layer (43), indicating that the synthesis process does not 

damage the structure and change the property of SWNTs. In addition, the new Y’ band at around 

2195 cm-1 demonstrates the success synthesis of GDY (30, 41). 



Fig. S1 Raman spectra of SWNT (blue) and SWNT@GDY (red), respectively. The inset in 

the right panel presents the zoomed-in Raman Y’ band corresponding to GDY. The RBM and G 

band of SWNT are almost unchanged before and after GDY synthesis, indicating that the synthesis 

of GDY would not damage the structure and change the property of SWNT. 



Fig. S2 Fabrication process and structure of the SWNT@GDY-based vision sensor array. 

(A,B) Illustration and corresponding optical images of the fabrication process of the sensor array. 

Step 1: SWNT@GDY channels with a thickness of approximately 10 nm are directly printed on 

the SiO2/Si substrate by an Aerosol Jet printer. Step 2: the source, drain and side-gate electrodes 

(Cr/Au 10/50 nm) of the device array are fabricated by photolithography, thermal evaporation, and 

lift-off processes. Step 3, an insulated polymethyl methacrylate (PMMA) layer is spin-coated on 

the device surface to protect the source and drain electrodes from contact with the electrolyte, and 

specific windows on top of the SWNT@GDY channels and side gates were selectively exposed 

via electron-beam lithography (EBL). Step 4, the ion-gel electrolyte is spin-coated on top of the 

PMMA layer, connecting the exposed SWNT@GDY channel and side-gate. Step 5: The 

electrolytes of each device are separated by selective etching to avoid interference between 



adjacent devices. (C) Optical image of an individual three-terminal device. (D,E) Schematic of the 

top-view and side-view of the device structure. 



Fig. S3 TEM image of the cross-section of the device. The thickness of the SWNT@GDY 

channel and electrolyte are approximately 10 nm and 1.2 μm, respectively. 



Supplementary Note 2. Mechanism for the non-volatile modulation of conductance and 

responsivity 

2.1 Charge transport through the channel 

Since SWNTs are p-type semiconductor, holes are the majority carriers in the channel. Fig. S4A 

illustrates the charge transport path between the source and drain electrodes. The SWNT@GDY 

has a core-sheath structure that SWNT is wrapped by GDY, and thus the electrodes have a direct 

contact with the outer GDY layer. As shown in fig. S5, the lateral conductance of GDY is almost 

5 orders of magnitude lower than that of SWNT due to the numerous grain boundaries and defects 

in GDY, and thus the transport of charges in the lateral direction is mainly through the inner SWNT 

rather than GDY. On the other hand, the resistance of GDY film (approximately 1 nm) in the 

vertical direction is 106 ohms (including contact resistance between GDY and electrodes, fig. S6), 

which is 3 orders of magnitude smaller than that of SWNT channel. Thus holes from the drain 

electrode can inject into SWNT through the GDY layer and transport in SWNT in the lateral 

direction, and then pass through the GDY layer to reach the source electrode (fig. S4A). In addition, 

as illustrated in fig. S4B, the source and drain electrodes are protected by a PMMA layer from 

contact with the electrolyte, and only the SWNY@GDY channel under the exposed window area 

can contact the electrolyte. The intercalation of Li+ ions into GDY and thus the modulation of 

conductance and photoresponse of the device mainly occur in this area. The resistance of the 

residual parts (PMMA coverage area) can be considered as constant. Thus the channel can be 

divided into three parts: two constant resistances (including contact resistance, resistance of GDY 

layer in vertical direction, and resistance of SWNT in the coverage area) and one electrolyte-gated 

phototransistor (SWNT@GDY channel under the exposed window) are connected in series (fig. 

S4C). The resistance of the device is dominated by the center phototransistor. 

2.2 Non-volatile modulation of the conductance and responsivity 

As shown in fig. S4D, a positive VG pulse (0.5 V) can drive Li+ ions in electrolyte penetrate into 

GDY layer, and the static electric field induced by the Li+ ions leads to the decrease of the hole 

concentration (and thus the conductance) in the p-type SWNT channel under the exposed window 

area. After removing the VG pulse, the intercalated Li+ ions can still be restricted in GDY due to 

the diffusion barrier of Li+ ions in GDY (fig. S4E), and thus resulting in a non-volatile modulation 

of the conductance. The extraction of Li+ ions from GDY layer back to bulk electrolyte is realized 



by applying an opposite (–0.5 V) VG pulse. After removing the intercalated Li+ ions in GDY layer, 

the device returns to its initial state. 

As for the responsivity, the photoresponse mainly occurs at the area under the exposed window 

since the residual SWNT@GDY is covered by the electrodes. The numerous alkyne bonds in GDY 

are active as positive-charge-attracting magnets (36, 37) and the intercalated Li+ ions in GDY can 

attract electrons. Photogenerated holes or electrons will be attracted to the charge-trapping sites in 

GDY and these trapped charges induce the change of the channel conductance (photocurrent) via 

photogating effect. While the hole-attracting alkyne bonds dominate the photoresponse, the 

trapped holes will induce a negative photoresponse, and in turn, the electron-attracting Li+ ions 

will induce a positive photoresponse. By controlling the concentration of intercalated Li+ ions in 

GDY, the responsivity can be modulated in both negative and positive regimes. 

2.3 Crucial role of the GDY layer for the non-volatile modulation 

The intercalation and storage of Li+ ions in the GDY layer play a crucial role for the non-volatile 

modulation of the conductance and responsivity. Previous works have demonstrated that the 

accumulation of ions at the interface of the channel and electrolyte would induce the volatile 

change of the conductance (44-47), since the accumulated ions would gradually diffuse back to 

the bulk electrolyte after the gate pulse driven by the concentration gradient. In contrast, the 

intercalated ions in the channel would induce a non-volatile change of the conductance via 

electrochemical doping or redox (35, 39, 44, 45, 48, 49). For the device based on core-sheath 

SWNT@GDY, a VG pulse of 0.5 V, 1 s could induce a non-volatile change of the channel 

conductance from 4 nS to 0.4 nS (fig. S7A). As a comparison, a device based on bare SWNTs with 

the same structure was fabricated, which exhibited a volatile response to a 0.5 V, 1 s VG pulse (fig. 

S7B). In general, the ions can penetrate into the channel from the electrolyte when the gate voltage 

exceeds a certain range (45, 50). As shown in fig. S7B, the SWNT-based device realized a non-

volatile change of the channel conductance while VG exceeded 4 V. These results indicate that the 

intercalation of Li+ ions into the GDY layer is realizable for a 0.5 V gate bias due to the evenly 

distributed pores (51, 52), while the penetration of Li+ ions into the SWNT requires a much large 

(4 V) gate voltage. In addition, the photoresponse of the SWNT-based device cannot be modulated 

even after applying various VG pulses (±0.7 V, 20 ms, fig. S8), indicating the important role of 

GDY for the non-volatile modulation of responsivity. 



To further demonstrate the intercalation of Li+ ions into the GDY layer, rather than the SWNT, 

electron energy loss spectroscopy (EELS) and Raman spectroscopy were performed. Fig. S9 

presents the EELS mapping of Li for the cross-sectional SWNG@GDY and SWNT channels after 

applying a VG pulse. After removing the electrolyte, a strong Li signal was still observed in the 

SWNT@GDY channel (VG = 0.5 V), which indicated that Li+ ions intercalated into the 

SWNT@GDY. For the bare SWNT channel, Li signal was hardly observed for the case of VG = 

0.5 V, and an obvious Li signal presented while VG = 5 V. In addition, the Raman spectra of the 

SWNT channel after applying VG pulses with different amplitudes were shown in fig. S10. The 

Raman spectra were almost unchanged while VG was smaller than 3.5 V, and a significantly 

enhanced Raman D band was observed while VG exceeding 3.5 V, since the injection of Li+ ions 

would damage the structure of SWNTs and induce defects. The EELS mapping and Raman spectra 

are consistent with the volatile/non-volatile change of the channel conductance (fig. S7). All these 

results demonstrate that GDY plays a crucial role for the intercalation of Li+ ions and non-volatile 

modulation of conductance and responsivity, with a small VG pulse (e.g., 0.5 V). 

2.4 Influence of the GDY layer thickness 

The thickness of the shell GDY layer used in this work was approximately 1 nm, which was almost 

the thinnest GDY film that has been reported. Fig. S11 presents the absorption spectra of SWNT 

and GDY film with a thickness of 1 nm. The absorption of 1 nm thick GDY is much smaller than 

that of SWNT@GDY, which indicates that light is mainly absorbed by the core SWNT. With the 

increase of the GDY thickness, more light would be absorbed by the shell GDY layer, which would 

lead to the decrease of photoresponse and disrupt the linear relationship between the photocurrent 

and light intensity. In addition, a thicker GDY layer would degrade the electrical performance of 

the device. Fig. S4A illustrates the charge transport path between the source and drain electrodes. 

Holes from the drain electrode inject into SWNT through the GDY layer and transport in SWNT 

in the lateral direction, and then pass through the GDY layer to reach the source electrode. As 

shown in fig. S6, the resistance of a 1 nm thick GDY film in vertical direction was 106 ohms 

(including the contact resistances between electrodes and GDY), which is much smaller than that 

of SWNT channel. However, with the increase of the GDY thickness, the conductance of the GDY 

film in vertical direction degrades seriously, which would restrict the charge transport between the 

electrodes and SWNT channel. Thus a thin GDY film with 1 nm thickness is suitable for our device. 



Fig. S4 Mechanism for the non-volatile modulation of channel conductance. (A) The charge 

transport path between the source and drain electrodes. Holes from the drain electrode inject into 

SWNT through the GDY layer and transport in SWNT in the lateral direction, and then pass 

through the GDY layer to reach the source electrode. (B) Schematic of the structure of the 

SWNT@GDY-based device. The source and drain electrodes are protected by a PMMA layer from 

contact with the electrolyte. A specific window is exposed by EBL on top of the channel, and only 

the SWNT@GDY under the exposed window area can contact the electrolyte, and the residual 

area are covered by PMMA. Noteworthily, for a clear view, the side-gate of the device is drawn 



on top of the electrolyte in fig. S4. In fact, the side-gate is coplanar with the source and drain 

electrodes. (C) The equivalent circuit of device channel. The channel can be divided into three 

parts: PMMA coverage areas around the source and drain electrodes with constant resistances 

(including the contact resistance between electrode and GDY layer, the resistance of GDY layer 

in vertical direction, and the resistance of SWNT in the coverage area) and exposed area under the 

specific window with a Li+-ion modulated conductance. Since the resistances at the PMMA 

coverage areas are much smaller than that of the exposed window area, the conductance and 

photoresponse of the device are dominated by the center phototransistor. (D) Driven by a positive 

gate voltage (VG), positively charged Li+ ions in electrolyte migrate from the bulk to the 

electrolyte/GDY interfaces, and due to the evenly distributed large pores of GDY, Li+ ions can 

penetrate into GDY layer with a small gate bias. Noteworthily, a much higher gate bias is required 

for the penetration of Li+ ions into SWNT (53), and thus we can control the penetration of Li+ ions 

into the GDY layer while keeping the SWNT channel impermeable to Li+ ions by applying a small 

VG (0.5 V). The intercalated Li+ ions in GDY layer can be regarded as positive charges captured 

in GDY, and an electric-double-layer (EDL) with high capacitance is formed locally nearby the 

SWNT, significantly changing the carrier density and thus the conductance of the SWNT via the 

EDL gating effect. (E) After removing the VG pulse, the diffusion barrier of Li+ ions in GDY 

restricts the diffusion of Li+ ions captured in GDY layer back to the electrolyte without an external 

electric field. As a result, the intercalated Li+ ions would retain in GDY layer even after removing 

external gate bias, resulting in a non-volatile modulation of the conductance and responsivity of 

the device. That is, the weights, i.e., conductance and responsivity, are locally stored. (F) The 

extraction of Li+ ions from GDY layer back to bulk electrolyte is realized by applying an opposite 

(negative) VG pulse. After removing the intercalated Li+ ions in GDY layer, the device returns to 

its initial state. 



Fig. S5 I–V curves of lateral GDY and SWNT with Vds sweeping from –1 V to 1 V in linear (A) 

and logarithmic (B) coordinates. The GDY used in this work is almost dielectric with/without the 

intercalation of Li+ ions, demonstrating that the transports of charges between the source and drain 

is mainly through the SWNT channel. 



Fig. S6 I–V curve of the vertical Au/GDY/Au structure. The thickness of the GDY film was 1 

nm. The inset is the optical image of the vertical Au/GDY/Au structure, in which TE and BE 

represent the top electrode and bottom electrode, respectively, and the GDY is sandwiched 

between the TE and BE. 



Fig. S7 Response of devices based on SWNT@GDY and SWNT triggered by VG pulses with 

different amplitudes. (A) For the SWNT@GDY-based device, a 0.5 V, 1 s VG pulse could induce 

a non-volatile change of the conductance, indicating the intercalation of Li+ ions. (B) For the 

SWNT-based device, the conductance presented a volatile change when VG pulses with amplitudes 

of 0.5 V, 2 V, and 3 V were applied, while the non-volatile change was realized by applying VG 

pulses with larger amplitude (4 V and 5 V). The volatile change of conductance is induced by the 

accumulated Li+ ions at the SWNT/electrolyte interface via the EDL gating effect, while the non-

volatile change of the conductance is ascribed to the intercalation of Li+ ions into the SWNT (44, 

45, 50). 



Fig. S8 Photoresponse of the SWNT-based electrolyte-gated phototransistor. Positive and 

negative VG pulses were first applied, and the photocurrents were measured after the dark currents 

of the device becoming stable. The photocurrents were almost unchanged even after positive and 

negative VG pulses, indicating that the responsivity of the device cannot be non-volatile modulated. 



Fig. S9 EELS mapping images of the cross-sectional SWNT@GDY and SWNT channels 

after applying VG pulses. (A) SWNT@GDY channel after applying a 0.5 V VG pulse. (B) SWNT 

channel after applying a 0.5 V VG pulse. (C) SWNT channel after applying a 5.0 V VG pulse. The 

left panels in (A–C) are the high-angle annular dark field (HAADF) images of the cross-sectional 

SWNT@GDY and SWNT channels, and the left three panels correspond to the EELS mapping 

images of Si, Li and Pt, respectively. The samples were prepared as following: one SWNT@GDY-

based device and two SWNT-based devices were fabricated, followed by applying a 0.5 V, 1 s VG 

pulse to the SWNT@GDY-based device and one SWNT-based device, while the other SWNT-

based device was applied to a 5.0 V, 1 s VG pulse. Then the electrolytes of these three devices were 

dissolved to remove the Li+ ions in bulk electrolytes and expose the SWNT@GDY and SWNT 

channels. Finally the cross-sectional TEM samples were prepared by focused ion beam (FIB). The 

Pt above the SWNT@GDY and GDY layers was introduced during the FIB process. 



Fig. S10 Raman spectra of the SWNT channel after applying VG pulses with amplitudes of 

0.5–5 V. A significant Raman D band appeared at ~1340 cm-1 while the VG pulse exceeding 3.5 

V, indicating the appearance of defects in SWNTs. 



Fig. S11 Absorption spectrum of core-sheath SWNT@GDY and GDY. The core-sheath 

SWNT@GDY has a broadband absorption in range of 400–2000 nm, and the absorption peaks at 

around 1750 nm and 1000 nm correspond to the S11 and S22 peaks of semiconducting SWNTs, 

respectively (54). The absorption spectrum of GDY corresponds to the absorption of a 1 nm thick 

GDY film, which is much smaller than that of SWNT@GDY, indicating that the light is mainly 

absorbed by the inner SWNT. 



Fig. S12 Transfer curve of the device with different sweeping rates. The entire sweeping 

process of VG can be divided into four stages: Stage I, –0.5 V to 0 V, ClO4
- ions accumulate at the 

GDY/electrolyte interface, but they cannot intercalate into the GDY layer due to its large size. 

Stage II, 0 V to 0.5 V, Li+ ions begin to accumulate at the GDY/electrolyte interface and intercalate 

into the GDY layer. Stage III, 0.5 V to 0 V, more Li+ ions intercalate into the GDY layer. Stage 

IV, 0 V to -0.5 V, parts of intercalated Li+ ions in the GDY layer are extracted by the negative gate 

bias. That is, in the sweeping process, the time for the intercalation of Li+ ions is longer than that 

for the extraction of Li+ ions. If the sweeping rate is constant for the entire process, some Li+ ions 

still remain in the GDY layer after the sweeping process due to the asymmetrical time for the 

intercalation and extraction of Li+ ions, and thus the conductance is decreased after sweeping (Fig. 

2A in the main text). In order to extract all the intercalated Li+ ions during the sweeping process, 

a longer extraction time for stage IV is required (a slower sweeping rate). In this case, the 

conductance can return to its origin. 



Fig. S13 64 conductance states achieved by applying VG pulses. This is an enlargement of Fig. 

2B in the main text, and the red line is the linearly fitted line of the 64 conductance states. State 0 

represents the initial conductance of the device before applying VG pulses. While a 0.5 V, 1 ms VG 

pulse is applied to the device, the intercalated Li+ ions in GDY will induce a decrease of the 

conductance via EDL gating effect, and thus the conductance state is changed from approximately 

7.0 nS (state-0) to 6.9 nS (state-1). This change is non-volatile, just as shown in fig. S14. While 

more VG pulses are applied, the conductance will be further decreased. Finally, by applying 63 VG 

pulses, the conductance of the device can be linearly modulated from approximately 7.0 nS to 0.3 

nS, forming 64 (including state-0) discrete states. 



Fig. S14 Retention characteristics of the device at 64 conductance levels. Corresponding to Fig. 

2B in the main text, by applying different numbers of VG pulses, the device can be programmed to 

64 discrete conductance levels, and the retention characteristics were measured by applying a 0.1 

V read voltage for 104 s. 



Fig. S15 The leakage current (IGS) of the device measured by applying a 0.5 V VG pulse. 



Fig. S16 Cyclic endurance of the device measured by alternatively applying ±0.5 V, 1 s VG 

pulses. The device was switched between the high-conductance and low-conductance states for 

105 times, and no obvious degradation was observed during whole test. 



Fig. S17 Photocurrents of the device measured with different responsivities. Five positive (0.7 

V, 20 ms) and five negative (–0.7 V, 20 ms) VG pulses were sequentially applied to change the 

responsivity of the device, and after each VG pulse the photocurrent was measured by irradiating a 

532 nm light with intensity of 1.0 nW μm-2. By applying positive VG pulses, the photocurrent 

gradually evolves from negative to positive, and in turn, it gradually returns to initial negative 

value by applying negative VG pulses, indicating the reversible modulation of responsivity in both 

positive and negative regimes. Noteworthily, the photoresponse was measured with a latency 

of 30 s after each VG pulse, and the changed photocurrents from negative to positive and 

back to negative undoubtedly demonstrated the non-volatile modulation of responsivity. 



Supplementary Note 3. Linear, symmetrical and identical conductance and responsivity 

updates in sensory networks 

For the implementation of in-memory and in-sensor computing, linear, symmetrical and identical 

weight updates with small device-to-device and cycle-to-cycle variations (DDV&CCV) are 

essential. Here a closed-loop programming method (25) was used to circumvent the nonlinear and 

asymmetric weight update issue and minimize the DDV and CCV. In order to minimize the 

number of VG pulses required for the weight update, the linear modulation regime of all the 27 

devices was first determined. 

As shown in fig. S18, the initial responsivity of the device is first measured, and this value is 

defined as –R0 (the initial responsivity is negative). Then a series of +0.5 V, 1 ms VG pulses (basic 

VG pulses for closed-loop programming) are applied to the device, and the corresponding 

responsivities after each VG pulse are measured. While the responsivity value close to +R0 (the 

opposite value of the initial responsivity), stop to apply positive VG pulses, and in turn, a series of 

negative VG pulses (–0.5 V, 1 ms) are applied to the device until the responsivity returns to –R0. 

Thus we obtain a complete responsivity update curve consisting of potentiation and depression. 

Then a boundary value R is defined, and the responsivities in range of ±R (centered around zero) 

are linearly fitted, obtaining a fitting parameter of R-squared. The responsivity is considered as 

linear update while the fitted R-squared > 0.99, and the linear modulation regime is defined as the 

largest R with R-squared > 0.99. Noteworthily, the responsivities in the potentiation and depression 

curves are fitted separately, and both the two fitted R-squared parameters should be larger than 

0.99. All the linear modulation regimes of the 27 devices were measured using this approach (fig. 

S19A). The intersection of all the 27 linear regimes is defined as the final linear modulation regime, 

since it can ensure that all the device can be linearly modulated in this regime. Here the linear 

modulation regime for responsivity is approximately in ±10 mA W-1. The linear modulation region 

of the conductance for all the 27 devices is defined using similar processes, which is in range of 

0.4–7.0 nS (fig. S19B). The conductance and responsivity in the linear modulation regimes are 

equally divided into 32 levels, acting as the weights (5-bit precision) for the neural networks. 

As described in the Materials and Methods section in the main text, after each epoch, the updated 

weights (responsivity and conductance) are calculated by backpropagating the gradients of the loss 

function. And the updated weights should be programmed to the device array hardware. Here we 

used the closed-loop programming method (fig. S20) to update the weights of the device array one 



device by one device. Using responsivity as an example, the initial responsivity of the first device 

is measured by applying a 1.0 nW cm-2 illumination with a read voltage of 0.1 V. Compared to the 

target responsivity, if the measured responsivity is smaller (larger) than the target one, a +0.5 V, 1 

ms (–0.5 V, 1 ms) VG pulse is applied to the first device to increase (decrease) the responsivity. 

After that, the responsivity is measured and compared to the target one again. This process is 

repeated until the measured responsivity is within the margin of the target responsivity. Thus the 

responsivity update for the first device is completed, and the following devices are programmed 

in sequence using the same method, until all the 27 devices in the array are programmed to the 

target values. After that, we will check all the responsivity again to ensure all the weights are 

correctly updated. A similar process is performed to program the conductance of the device array 

to the updated value, one device by one device. In the conductance update process, a positive VG 

pulse (0.5 V, 1 ms) is applied to decrease the conductance; and in turn, a negative VG pulse (–0.5 

V, 1 ms) is applied to increase the conductance. 

Fig. S21, S22 present the 32 conductance and responsivity states achieved by the 27 devices 

using this closed-loop programming method, demonstrating that all the target conductance and 

responsivity levels can be programmed precisely. The 27 devices were further programmed to 

these 32 states for 1000 times, and fig. S23, S24 shows the statistics of the 1000 repetitions. These 

results demonstrate that the closed-loop programming method can update the conductance and 

responsivity linearly, symmetrically and identically. 

On the average, it takes two VG pulses to program the conductance to the adjacent level, and for 

the case of responsivity, three VG pulses are required to update the responsivity to the adjacent one. 

Given the energy consumption for an individual VG pulse is approximately 50 aJ (E = VG × IGS × 

tduration), the average energy consumption for the update of conductance and responsivity between 

the adjacent levels are approximately 0.1 fJ and 0.15 fJ, respectively. 



Fig. S18 Defining the linear modulation regime for responsivity update. Step 1, update the 

responsivity by applying a series of +0.5 V, 1 ms VG pulses (potentiation) and –0.5 V, 1 ms VG 

pulses (depression), obtaining a complete responsivity update curve in range of ±R0 (–R0 is the 

initial negative responsivity before applying VG pulses, and +R0 is the largest value during 

responsivity update). Step 2, define a boundary value of R, and linearly fit the responsivities in 

range of ±R. While the fitted parameter of R-squared > 0.99, the responsivities in range of ±R are 

considered as linear update, and the linear modulation regime is defined as the largest R with R-

squared > 0.99. 



Fig. S19 Linear modulation regimes of the responsivity (A) and conductance (B) for all the 27 

devices. The final linear modulation regime is the intersection of all the 27 linear regimes, so that 

all the devices can update linearly in this regime. 



Fig. S20 Flowcharts of the closed-loop programming operations for responsivity update (A) and 

conductance update (B), respectively. For responsivity update, a positive (+0.5 V, 1 ms) and a 

negative (–0.5 V, 1 ms) VG pulse were used to increase and decrease the conductance, while the 

increase and decrease of conductance were realized by applying a negative (–0.5 V, 1 ms) and a 

positive (+0.5 V, 1 ms) VG pulse, respectively. 



Fig. S21 32 conductance states achieved by the 27 devices using the closed-loop programming 

method. 



Fig. S22 32 responsivity states achieved by the 27 devices using the closed-loop programming 

method. 



Fig. S23 Statistics of the 32 conductance states achieved by the 27 devices for 1000 repetitions. 



Fig. S24 Statistics of the 32 responsivity states achieved by the 27 devices for 1000 repetitions. 



Fig. S25 Light-intensity dependent photoresponse of the device with different responsivities. 

Optical pulses with intensity in range of 0.1–1.2 nW μm-2 with a step of 0.1 nW μm-2 were applied 

to the device. The gradually deepening red and blue curves in (A) and (B) represent the 

photoresponse of the device with gradually increased amplitude of responsivity in negative (A) 

and positive (B) regimes, respectively. 



Fig. S26 Photoresponse of the device triggered by optical pulses with wavelengths of 405 nm (A), 

532 nm (B), 633 nm (C), 980 nm (D), 1550 nm (E), and 1800 nm (F), respectively. Positive VG 

pulses (0.7 V, 20 ms) were applied to the device to modulate the responsivity, and the 

photocurrents were measured by irradiating light pulses (1.0 nW μm-2) with corresponding 

wavelengths. Here the duration of each optical pulse is 50 s, and such a long duration is used to 

demonstrate that the photocurrents do not change with prolonging the illumination time, which is 

crucial for the computing accuracy of the neural network. 



Fig. S27 32 responsivity states achieved by the 27 devices for wavelengths of 405 nm (blue), 532 

nm (green), 633 nm (dark red), 980 nm (brown), 1550 nm (pink), and 1800 nm (cyan), respectively, 

using the closed-loop programming method. 



Fig. S28 The linearly light-intensity-dependent photoresponse of the vision sensor for different 

wavelengths. 



Fig. S29 Illustration of convolutional processing for hyperspectral images. Original image 

(100 × 100 pixels) was first divided into 98 × 98 sub-images with 3 × 3 pixels, mimicking the 

sliding of a 3 × 3 kernel with a step of 1. These sub-images were sequentially objected into the 3 

× 3 sensor array with pre-defined responsivity distribution to implement in-sensor MAC operations. 

By measuring the total photocurrents generated by the sensory network, each sub-image was 

converted to a photocurrent value, which was used to reconstruct a 98 × 98-pixel image as the 

processed image. 



Fig. S30 Hyperspectral images of Urban. Spatial (A) and spectral (B) distribution of the four 

endmembers, roof, grass, tree, and road, in the hyperspectral images of Urban 

(https://rslab.ut.ac.ir/data) (40). 

https://rslab.ut.ac.ir/data


Fig. S31 Simulation results of the convolutional processing for hyperspectral images in UV, 

vis, and NIR regime. Different weight distributions were defined to realize functions of image 

sensing, edge detection, and sharpness.  



Fig. S32 Generation of the training and test datasets. (A) Processes for the generation of mixed-

color images with Gaussian noises. Step 1, 300 images (3 × 3 pixels) with letters of “n”, “k”, and 

“u” are randomly generated, with intensities of “255” and “0” for the occupied and blank pixels, 

respectively. Step 2, the pixel values of the generated training and test images are normalized to 

0–1, followed by adding the randomly generated Gaussian noises (σ = 0, 0.1, 0.2, and 0.3, 

respectively), and then the pixel values of each image are normalized to 0–255 again. Step 3, the 

9 pixels in each image are randomly divided into 3 groups, and each group corresponds one color 



(blue, green, and red). These 300 images are randomly divided two groups: 200 images as training 

dataset and 100 images as test dataset. (B) Processes for the generation of pure-color images with 

Gaussian noises. The first two steps are the same with that of the mixed-color images, while the 

last step only one color (for example, green) instead of three colors is added to these images. In 

these images, the pixel values corresponded to the intensities of the input light, with corresponding 

wavelengths. In the autoencoding experiment, the gray-scale images were projected to the sensor 

arrays using a 532 nm laser array, and thus the gray-scale image datasets can be considered as 

pure-color (green) images. 



Fig. S33 Training and test datasets with noise level of σ = 0.2 for color image classification 

task. 



Fig. S34 Measurement system for the sensor array. (A,B) Schematic and photograph of the 

equipment for the projection of 3 × 3-pixel images to the sensor array. A 3 × 3 fiber laser array is 

equipped on a probe station. The 3 × 3 light signals emitted by the lasers with corresponding 

wavelengths enter the microscope and are focused by a 10× objective lens. The focused light spots 

are projected on the 3 × 3 device array, and the total photocurrents are measured by the Keithley 

4200A-SCS. (C) Optical images of the projected images of “n”, “k” and “u” on the 3 × 3 sensor 

array. Scale bars. 50 μm. The size of the focused light spots is approximately 20 μm, which are  



marked with corresponding colors. (D) Schematic of the circuit for the measurement of the total 

photocurrent generated by the 3 × 3 sensor array while projecting 3 × 3-pixel images. The 3 × 3 

purple rectangles represent the sensor array, while the blue/green/red circles represent the light 

spots illuminated on the devices. The nine sensors are connected in parallel and the photocurrents 

generated by the nine sensors are summed via Kirchhoff’s law. Vds = 0.1 V. (E) Schematic for the 

measurement of the responsivities of the 3 × 3 sensor array. The equipment is similar to (B), but 

only one 532 nm (1.0 nW cm-2) light is focused on one device each time. The responsivity is 

measured from the first device ((1,1), left panel) using Keithley 4200A-SCS, and then switch to 

the second, the third, …, the 9th device ((3,3), right panel) in sequence. The responsivities of the 

sensor array are measured one device by one device. Vds = 0.1 V. 



Fig. S35 Responsivity distributions of the three kernels in the classifier before (A) and after (B) 

training. 



Fig. S36 Loss of the classifier for different noise levels during the training. 



Fig. S37 Classification accuracy of the classifier for pure-color images with different noise 

levels. Since the device illuminated by different wavelengths would generate different 

photocurrents, i.e., wavelength-dependent photoresponse, the total generated photocurrent in each 

kernel varies while the color of the input images changes, which would degrade the recognition 

efficiency and accuracy of the classifier for mixed-color images. To evaluate the influence of the 

wavelength-dependent photoresponse of the vision sensors on the classification accuracy for 

mixed-color images, here the classification tasks for pure-color images were implemented. The 

training and text datasets with pure-color images with different noise levels were randomly 

generated following the steps as described in fig. S32B. Compared with the classification of 

mixed-color images (Fig. 5D in the main text), less epochs were required to reach a 100% 

recognition accuracy for each noise level. Thus the wavelength-dependent photoresponse would 

induce a slightly degradation in recognition efficiency for mixed-color images. 



Fig. S38 Evolution of the responsivity distributions of the three kernels in the classifier after 

training with different latency. The last panel in each box describes the degradation of the 

responsivity in 10 h, which are calculated by ΔR/20 × 100%, where ΔR is the change of 

responsivity in 10 h, and factor 20 is the whole range of the responsivity (–10 to 10 mA W-1). 



Fig. S39 Classification accuracy of the classifier after training as a function of weight storage 

time. For each noise level (σ = 0, 0.1, 0.2, and 0.3), the classifier was trained for 30 epochs to 

reach a 100% recognition accuracy for the color images with corresponding noise level. Then, the 

test dataset with corresponding noise level was input to the trained classifier every 1 h, and the 

classifier maintained a 100% recognition accuracy for the test dataset even after 10 h. 



Fig. S40 Training and test datasets with noise level of σ = 0.2 for grayscale image 

autoencoding task. 



Fig. S41 Responsivity distributions of the three kernels in the encoder before (A) and after (B) 

training. (C) Histogram of the initial and final responsivity values of the three kernels. 



Fig. S42 Conductance distributions of the 9 × 3 device array in the decoder before (A) and after 

(B) training. (C) Histogram of the initial and final conductance values of the decoder.



Fig. S43 Loss of the autoencoder for noise levels of σ = 0.2 and 0.3 during the training. 



Fig. S44 Evolution of the reconstructed images performed by the autoencoder after training 

with different latency. The weights were locally stored in the network, and autoencoding tasks 

for grayscale images with noise levels of σ = 0.2 and 0.3 were performed every 1 hour. The 

degradation of the weights is within 5% in 10 h, and thus the reconstructed images with reduced 

noises and enhanced contrast do not have obvious change. 



Fig. S45 Conversion of encoded data to 6-bit precision binary voltage inputs. In the 

autoencoder, the encoded data, f1, f2, and f3, were quantized to binary values with 6-bit precision. 

The input voltage signals to the decoder were divided into six intervals (t1, t2, …, t6), and each ‘1’ 

at a certain bit location implied a 0.1 V read voltage pulse, while a ‘0’ indicates a 0 V read voltage 

pulse. The corresponding output current Ik (k = 1, 2, …, 6) at each time interval tk was measured, 

and the total output current was summed by 6 1
1
( 2 )k

kk
I I −

=
= ×∑  (25). Here sequential voltage 

pulses (with small amplitude of 0.1 V) were used to input the encoded data to the decoder since 

such a small voltage was safe for the device. It would not change the conductance state of the 

device while applying a 0.1 V voltage to the drain electrode.  



Table S1. Parameters of the retinomorphic vision sensors for in-sensor computing. 

Device 
structure 

Responsivity modulation 
Spectral 

range 
Self-

power 
Response 

speed 
Array 
scale Ref. 

Manner Regime Non-
volatile Linear 

Ambipolar 
WSe2

Dual-gate 
bias 

Positive/
Negative N Y vis Y 40 ns 3×3×3 (1)

WSe2/hBN/ 
Al2O3 

Gate 
bias 

Positive/
Negative N Y 405-650

nm N 8 ms 3×3×3 (13)

BP/Al2O3/ 
HfO2/Al2O3 

Floating 
gate Positive Y -- MIR N -- 4×3 (17) 

MoTe2/ 
PdSe2 

Gate 
bias 

Positive/
Negative N Y 365-980

nm Y 0.4-4 μs 1e) (14) 

GaN/AlGaN/ 
HfO2/OIHPa) 

Gate 
bias 

Positive/
Negative N -- 457-660

nm N -- 3×3 (20) 

PZT/SRO/ 
STOb) 

Ferroelectric 
polarization 

Positive/
Negative Y Y UV Y -- 3×3 (15) 

Gr/MoS2-xOx/ 
Grc)

Redox of Gr 
electrodes Positived) Y Y Sun 

light N -- 3×3 (16) 

SWNT@
GDY Li+ ions Positive/

Negative Y Y 400-1800
nm N 5 ms 3×3×3 This

work 
“N”: No; “Y”: Yes; “--”: Not available. 
a)OIHP: Organic–inorganic halide perovskite. b)PZT: Pb(Zr0.2Ti0.8)O3; SRO: SrRuO3; STO: SrTiO3.
c)Gr: Graphene. d)Individual device can only realize positive response, and negative response was

realized by parallel connection of two devices with opposite polarity. e)Parameters extracted from

one device, and extended to a 3 × 3 array by simulation.
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