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Supplementary Note 1: Methods

Growth and Structural Characterization

YbB12 single crystals were grown via the traveling solvent method under Ar gas
atmosphere in a laser diode floating zone furnace (Crystal Systems Corp.) at
the Platform for the Accelerated Realization, Analysis and Discovery of Inter-
face Materials (PARADIM) user facility at Johns Hopkins University using a
similar procedure as previously documented [1] and described in the Methods
section. A representative diffraction pattern in Supplementary Fig. 1 provides
evidence of the crystal quality. The crystallographic lattice parameters, rele-
vant data collection information, and the corresponding refinement statistics
are provided in Supplementary Table 1.

Supplementary Figure 1 A single crystal domain on edge oriented close to the [011]
crystallographic axis.
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Supplementary Table 1 Crystallographic and refinement parameters for YbB12.

a (Å) 7.4752(2)

V (Å
3
) 417.70(3)

Z 4
T (K) 297(2)

θ-range (deg) 3.7 - 68.1
µ (mm−1) 11.93

Measured reflections 14740
Independent reflections 273

Rint 0.072

∆ρmax (e/Å
3
) 1.23

∆ρmin (e/Å
3
) 1.51

Extinction coefficient 0.0088(5)
Data / restraints / parameters 273 / 0 / 7

R1 (F 2 > 2σ(F 2)) 0.010 a

wR2 (F 2) 0.020 b

a R1 =
∑ ∣∣|Fo|−|Fc|

∣∣∑
|Fo|

b wR2 =

(∑
w(F2

o−F2
c )2∑

w(F2
o )2

)1/2

Supplementary Note 2: Physical Property
Characterization

The zero-field resistivity of the YbB12 sample used for the high field studies
reported in the main text was first characterized using a low-frequency AC
resistance bridge and a standard four-wire configuration in a Quantum Design
Physical Property Measurement System (PPMS). The resistivity increased
by over 4 orders of magnitude when cooled from 300K to 0.5K, as shown in
Supplementary Fig. 2. The insulating behavior stems from the opening of small
gaps (Ea = 2.7 meV and Ea = 4.7 meV, inset). These gaps are thought to
arise from the hybridization between conduction electrons and largely localized
f -electrons [2]. Below ∼3K the resistivity exhibits a “plateau” seen in other
YbB12 samples, often attributed to a metallic surface [1, 3, 4].

Supplementary Fig. 3 shows the magnetic susceptibility as a function of
temperature from 1.8K to 350K measured with magnetic fields of 0.1T and
5T. The data were obtained on a Quantum Design Magnetic Properties Mea-
surement System (MPMS3) equipped with a 7T magnet. Above ∼170K the
susceptibility exhibits Curie-Weiss behavior (Supplementary Fig. 3b) giving a
Curie temperature of -134.8±1.3K (-123.6±2.3K) and effective moments per
Yb of 4.6±0.3µB (4.4±0.3µB) for an applied field of 0.1T (5T). These values
are consistent with a nominal +3 valence for Yb (effective moment of 4.54
µB) [1]. The susceptibility exhibits a maximum at ∼75K, minimum at ∼17K,
and a low temperature increase which is suppressed by field. The maximum
is characteristic of Kondo singlet formation and the temperature of the sus-
ceptibility maximum is proportional to the Kondo temperature [5]. The low
temperature increase in susceptibility is indicative of magnetic impurities [1].
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Supplementary Figure 2 Resistivity as a function of temperature in zero magnetic field.
The resistivity increases by a factor of 2.8×104 from 300K to 0.5K owing to the opening of
gaps (inset).
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Supplementary Figure 3 (a) Magnetic susceptibility as a function of temperature mea-
sured with fields of 0.1T (red) and 5T (blue). (b) Inverse susceptibility with Curie-Weiss fits.

Specific heat measurements (Supplementary Fig. 4) were collected in a
PPMS calorimeter using a quasiadiabatic thermal relaxation technique with
a 3He insert before and after the sample was cut and polished for the pulsed
field experiments. Before polishing the mass of the crystal was ∼5 mg and after
polishing the mass was ∼1.1 mg. Both measurements show a low temperature
upturn, often attributed to a Schottky contribution [4]. In both cases a linear
extrapolation of C/T yields a Sommerfeld coefficient of 1.3±0.2 mJ/molK2.
This value is smaller than values reported in the literature [4], but of the same
order of magnitude.

Supplementary Note 3: Basis of the Reverse
Quantum Limit Scenario in YbB12

It is instructive to consider how the Kondo insulator ground state arises by
considering a simplified form of the Anderson lattice model in one dimen-
sion [6]. We consider hybridization between a conduction electron band of the
form εk = t cos ak and a narrow f -electron band εf = 0 for which a hybridiza-
tion potential V gives rise to reconstructed conduction and valence bands of
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Supplementary Figure 4 Heat capacity as a function of temperature before and after
polishing. A linear extrapolation of C/T gives an intercept of γ = 1.3± 0.2 mJ/molK2.

the form

EC,V − µ =
t

2
cos ak ±

√
t2

4
cos2 ak + V 2, (1)

where µ is the chemical potential and a is the lattice periodicity. For simplicity,
we have neglected the electron spin. This dispersion gives rise to an indirect
gap ∆ with the conduction band minimum located at the point ak = π, and
the valence band maximum located at the point ak = 0 (see schematic in
Supplementary Fig. 5). We perform a Taylor expansion of Equation (1) about

these points, considering the limit V < | t2

4 cos2 ak |, and obtain

EC,V − µ ≈ ±V 2

t

1

cos ak

≈ ±V 2

t

(
1 +

a2k2

2
+ . . .

)
. (2)

Equation (2) can be rewritten in the form

EC,V − µ ≈ ±
(
∆+

ℏ2k2

2m∗

)
, (3)

to lowest order in k, where ∆ = V 2/t and m∗ = tℏ2/V 2a2. Note that since
V < t, ∆ is expected to much smaller than t while m∗ values are expected
to be larger than those of the unhybridized conduction electron band. Exper-
imentally, the effective masses we observe are approximately twenty times
larger than those of the unhybridized conduction bands in LuB12 [7], which
has completely filled f -electron shells.

The formation of hybridized conduction and valence bands can be gen-
eralized to higher dimensions. If εk is isotropic in two or three dimensions
with respect to the top or bottom of εk, then the hybridization gives rise to
a Mexican hat dispersion form, which has been postulated to represent the
dispersion in the vicinity of the X point in SmB6 [8, 9]. For a more general
anisotropic forms of εk, EC will exhibit minima and EV will exhibit maxima at
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Supplementary Figure 5 Schematic of the hybridization in a periodic lattice.

distinctly different symmetry-related points in the Brillouin zone. These would
become, respectively, electron and hole pockets were the chemical potential to
be increased or decreased. Such a scenario has indeed been suggested in YbB12

on the basis of electronic structure calculations [7].
Since the dispersion is parabolic to lowest order in the vicinity of each of

the conduction band minima and valence band maxima, it is useful to consider
the orbital area Ak orthogonal to an applied magnetic field instead of k, so that

EC,V − µ ≈ ±
(
∆+

ℏ2Ak

2πm∗

)
, (4)

where m∗ now refers to the orbital effective mass. Equation (2) in the main
text is obtained by considering EC , and then applying the Bohr-Sommerfeld
quantization rule: Ak = 2πeB

ℏ (ν + 1
2 ) for fermions and including the Zeeman

energy. For the valence band, we have

E↑↓
V − µ = −∆− ℏe

m∗B

(
ν +

1

2

)
∓ 1

2
g∗µBB. (5)
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Since the Kondo gap in YbB12 is expected to be indirect, the minima in the
conduction band and the maxima in the valence band are located at different
points in k-space [7]. Under such circumstances, there is no requirement for
m∗ to be the same for EC and EV , although (for simplicity) we have assumed
this to be the case in constructing the schematic for Fig. 4a of the main text.

Supplementary Note 4: Reverse Quantum
Limit Criterion

Beginning from Eq. (2) in the main text, we have

E↑
C − µ = ∆− 1

2
g∗µBB +

ℏe
m∗B

(
ν +

1

2

)
. (6)

Landau level crossings occur when E↑
C = µ. Therefore,

∆ =

(
1

2
g∗µB − ℏe

m∗

(
ν +

1

2

))
B. (7)

Since the zero-field gap (∆)and field are positive quantities, the above equality
requires

1

2
g∗µB >

ℏe
m∗

(
ν +

1

2

)
. (8)

Focusing on the first Landau level (ν = 0) and substituting µB = eℏ
2me

yields
the criterion for the reverse quantum limit:

g∗
m∗

me
> 2. (9)

Landau level diagrams for the reverse quantum limit and the other four
high-field scenarios described in Fig. 4 of the main text are provided in
Supplementary Fig. 6.

Supplementary Note 5: Landau Level Pinning
to Insulator-Metal Transition in Reverse
Quantum Limit

Landau level crossings occur when E↑
C − µ = 0. If we assume g∗ and m∗ are

independent of field we can write the following expression for Landau level
crossings

0 = ∆(B)− 1

2
g∗µBB +

ℏe
m∗B(ν +

1

2
) (10)

We can simplify this expression by relating g∗ to the insulator-metal transition
field. To do this we consider that at Landau level crossings, the activation
energy is zero, so
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Supplementary Figure 6 Four high-field scenarios described in Fig. 4 of the main text
corresponding to whether the material is gapped at the chemical potential and the relative
size of the Zeeman and cyclotron energies. Colors correspond to the different Landau indices
defined in the first panel and dashed/solid lines denote different spins.

2Ea = (E↑
C − µ)− (E↓

V − µ) = 0. (11)

or equivalently,

2∆(B)− g∗µBBν +
2ℏe
m∗ Bν(ν +

1

2
) = 0 (12)

Assuming ∆(B) = ∆ is a constant in the insulating state prior to the insulator-
metal transition and that the insulator-metal transition occurs at a Landau
level crossing corresponding to νIM , then we have

2∆− g∗µBBIM +
2ℏe
m∗ BIM (νIM +

1

2
) = 0. (13)

This expression relates the zero-field gap to the insulator-metal transition field
and effective g factor. Subtracting Supplementary Eq. (12) and Supplementary
Eq. (13) and reducing gives

(ν − νIM )
ℏe
m∗ =

∆

BIM
− ∆(B)

Bν
. (14)

When ∆(B) does not depend on field (i.e, ∆(B) = ∆ which applies in the
insulating state) we have

(ν − νIM )
ℏe

m∗∆
=

1

BIM
− 1

Bν
(15)
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where we now explicitly add the subscript ν to B to denote the field at which
Landau level ν crosses the chemical potential. Since the left hand side of the
equation is only weakly dependent on angle, in the reverse quantum limit
Landau level indices are expected to be pinned to the insulator-metal transition
as is shown in Fig. 3 of the main text.

We can also confirm this behavior by looking at the angular dependence
of the quantum oscillation frequency in the insulating state because Supple-
mentary Eq.(15) implies a constant quantum oscillation frequency which is
independent of angle. Specifically, the quantum oscillation frequency assuming
a constant gap is

|F | = m∗∆

ℏe
. (16)

As shown in Section 3, ∆ ∝ 1/m∗ so this expression predicts a quantum oscil-
lation independent of mass and is an analogue to the familiar Onsager relation
found in conventional metals. Within the resolution of our experiments, the
quantum oscillation frequency in the insulating state determined from Landau
level indexing (Supplementary Fig. 7) or Fourier transforms (Supplementary
Fig. 8) is independent of angle.

Supplementary Figure 7 (a) Quantum oscillation frequency determined from Landau
level indexing in the insulating state as a function of angle has minimal variations over a
wide angular range. (b) Landau index as a function of inverse field in the metallic state (both
quantities are referenced to the first observed quantum oscillation according to Supplemen-
tary Eq.(14)). The angular dependence is related to anisotropies in the magnetization and
Fermi surface.

When the hybridization gap changes with field (relevant in the metallic
state), Supplementary Eq.(14) applies. In this situation we expect the Landau
levels to be pinned to the insulator-metal transition close to the transition,
with deviations at higher field owing to ∆ having a field dependence. This
explains the slight deviations from the angular dependence of the insulator-
metal transition in the metallic state shown in Fig. 3 of the main text. These
deviations are more clearly shown by plotting the Landau index as a function
of inverse field at fixed angles (Supplementary Fig. 7). As we show in subse-
quent sections, this behavior is consistent with the field-dependent quantum
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Supplementary Figure 8 (a) Second derivative of magnetoresistance with respect to
inverse field with the field applied 5◦ from the [100] crystallographic axis in the [100]-[011]
plane. (b) Fourier transform of the data shown in (a) indicating a dominant frequency of
740T with a harmonic. The Fourier transform amplitudes below 500T are likely artifacts.
(c) Fourier transforms of the magnetoresistance reveal minimal variation in the dominant
frequency with angle, in agreement with the angular dependence of the quantum oscillation
frequency deduced from Landau level indexing. All data acquired at ∼650mK.

oscillation frequency in the metallic state and is related to anisotropies in the
magnetization and Fermi surface.

Our SdH data in the insulating state of YbB12 indicates minimal varia-
tions in the quantum oscillation frequency with angle over a 40◦ range. This
conclusion appears to be independent of whether we compute the quantum
oscillation frequency directly from Landau level indices or with a Fourier trans-
form (Fig. 5 of the main manuscript, Supplementary Figs. 7 and 8). The only
other angular dependent measurements of SdH frequencies in YbB12 that we
are aware of are described in Ref. [3]. In that work, a pronounced angular
dependence in the SdH data with a frequency of ∼800 T for H applied par-
allel to [001] is reported. However, more recent work from the same group
in Ref. [10] indicates a significantly smaller SdH frequency of ∼678 T for a
magnetic field applied in the same direction. This newer reported frequency
conflicts with the original reported value, but now agrees with the reported
dHvA frequencies in both their works [3, 10] as well our SdH frequency. While
we cannot provide a detailed explanation for the origin of this difference, we
hypothesize it has to do with sample quality. The original report of the angular
dependence of the SdH quantum oscillations in the insulating state of YbB12

had few, small amplitude oscillations [3] compared to later reports [11] and
our own measurements. The number, and presence, of SdH oscillations seems
to be intimately linked to sample quality. With so few oscillations, it can be
difficult determine a frequency with high accuracy which could lead to the
observed differences. This is clearly an important hypothesis to address with
future angular dependent experiments.
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Supplementary Note 6: Field-Dependent
Frequency in Reverse Quantum Limit

Beginning from a generalization of Supplementary Eq. (6) where we do not
assume a particular field dependence for the gap

E↑
C − µ = ∆(B)− 1

2
g∗µBB +

ℏe
m∗B

(
ν +

1

2

)
, (17)

we impose the condition for quantum oscillations and solve for the Landau
index

ν +
1

2
=

g∗µBm
∗

2ℏe
− ∆(B)m∗

ℏeB
. (18)

Given that the quantum oscillation frequency is related to the Landau
index [12] via

F =
dν

d 1
B

= −B2 dν

dB
, (19)

we find that in the reverse quantum limit

F =
m∗

ℏe

(
B
d∆(B)

dB
−∆(B)

)
. (20)

More generally, starting from

E↑
C − µ = ∆(B)− 1

2
g∗µBB +

ℏe
m∗B

(
ν +

1

2

)
, (21)

but we let g∗, m∗, and ∆ all vary with B. Then, we once again impose the
condition for quantum oscillations and solve for the Landau index yielding

ν +
1

2
=

m∗(B)g∗(B)µB

2ℏe
− ∆(B)m∗(B)

ℏeB
. (22)

Using the relation between the quantum oscillation frequency and Landau
indices given by Supplementary Eq. (19), we find

F =
1

ℏe

(
−m∗(B)∆(B) +B

[
m∗(B)

d∆(B)

dB
+∆(B)

dm∗(B)

dB

]
−

µB

2
B2

[
m∗(B)

dg∗(B)

dB
+ g∗(B)

dm∗(B)

dB

]) (23)

Since the B2 term is small for the field ranges in these experiments, we can
neglect the last term in this expression giving

F =
1

ℏe

(
−m∗(B)∆(B) +B

[
m∗(B)

d∆(B)

dB
+∆(B)

dm∗(B)

dB

])
. (24)
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Then, becausem∗ experimentally scales linearly with field in the metallic state,
a non-linear field dependence in the quantum oscillation frequency requires ∆
to vary with field.

Supplementary Note 7: Relating Fermi Surface
Area, Quantum Oscillation Frequency, and
Landau Indices to Magnetization

As described in the main text, interpreting our experiments in terms of the
reverse quantum limit model suggests the field-dependent quantum oscillation
frequency in the metallic state occurs because the gap evolves as a non-linear
function of field in the metallic state. A possible origin for a non-linear field
dependence of the gap is that the c−f hybridization responsible for the gap is
altered by the magnetic field [5]. This possibility is consistent with partial f -
electron polarization leading to non-linear magnetization in the field-induced
metallic state [11, 13, 14]. The non-linear magnetization used throughout our
analysis is shown in Supplementary Fig. 9.
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Supplementary Figure 9 (a) Magnetization of YbB12 with H ∥ [100] at T = 0.64K
(blue). A linear fit to the magnetization in the insulating state (green) was used to obtain
the non-linear magnetization. (b) The non-linear magnetization obtained by subtracting the
linear fit from the total magnetization. Data taken from Ref. [11].

If this interpretation is correct, one expects the Fermi surface area mea-
sured by the quantum oscillations to be proportional to the non-linear portion
of the magnetization corresponding to the partial f -electron polarization [5].
More specifically, since magnetization is the magnetic dipole moment per unit
volume one expects the Fermi surface area to be proportional to the non-linear
magnetization to the 2

3 power for ellipsoidal pockets leading to

A = a

(
M(B)

µB

)2/3

(25)

where A is the Fermi surface area, µB is the Bohr magneton, M(B) is the
field-dependent, non-linear magnetization, and a is a dimensionless constant
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related to the degeneracy factor (see next section). Similar analyses have been
performed in heavy fermion systems including UPt3 [15].

Now we relate the non-linear magnetization to the Landau indices and
quantum oscillation frequency. Landau level indices (ν) are related to the
quantum oscillation frequency (F ) according to

F =
dν

d (1/B)
(26)

or, equivalently,

ν =
F

B
+ ν0 (27)

where B is the magnetic field and ν0 is a constant. We can then relate the
Landau level indices to the extremal orbit area of the Fermi surface, A, using
the Onsager relation [12],

F =
ℏ

2πe
A, (28)

which yields

ν =
ℏ

2πe

A

B
+ ν0. (29)

Next, using the result from Supplementary Eq. (25), it is possible to directly
relate the Landau indices to the non-linear component of the magnetization.
This relationship is

ν =
ℏ

2πe

1

B
a

(
M(B)

µB

)2/3

+ ν0. (30)

Furthermore, using Supplementary Eq. (26) one can express the measured
quantum oscillation frequency in terms of the non-linear magnetization.

Fmeasured = −B2 d

dB

[
ℏ

2πe

1

B
a

(
M(B)

µB

)2/3
]
. (31)

The value of a given in the main text is fit by comparing our experimental
quantum oscillation frequency in the high-field metallic state to the right-hand
side of Supplementary Eq. (31) computed using the magnetization data from
Ref. [11]. The Landau level indices are then extracted from Supplementary
Eq. (30) using the same value of a and finding the value of ν0 which gives the
best agreement with the experimental magnetization given in Ref. [11]. Note,
Supplementary Eq. (31) accounts for the effects of field-dependent quantum
oscillations [16, 17].

Now, we relate the gap to the non-linear magnetization. From Supplemen-
tary Eq.(14)

∆(B) = ∆
B

BIM
− ν

ℏe
m∗B. (32)
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Combining this condition with the relationship between the Landau indices
and non-linear magnetization yields an expression for the gap after the onset
of non-linear magnetization, i.e. the insulator-metal transition:

∆(B) = ∆
B

BIM
− ℏ2

2πm∗ a

(
M(B)

µB

)2/3

. (33)

Supplementary Note 8: Estimating Carrier
Density and Pocket Degeneracy

Since the Fermi surface area is known from Supplementary Eq. (25) it is pos-
sible to estimate the carrier concentration. Without knowing the exact shape
of the Fermi surface, we first make a crude estimate for the carrier concen-
tration assuming a spherical Fermi surface [12, 18]. In this case, the carrier
concentration n is related to the Fermi surface area through

n =
A3/2

3π2
. (34)

From Fig. 6 of the main text, the Fermi surface area near 60T is between
5− 10nm−1, corresponding to a carrier concentration of n ∼ 1020 − 1021cm−3

or ∼ 0.2 − 0.5 carriers per unit cell. This value is consistent with carrier
concentrations of other Kondo metals [19] and high field measurements we have
performed on other YbB12 samples at similar temperatures (Supplementary
Fig. 10).
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Supplementary Figure 10 High field carrier concentration at T = 0.615K obtained on
a different sample of YbB12.

Lastly, we express the constant a introduced in Supplementary Eq. (25) to
the pocket degeneracy factor D, and in doing so provide an estimate for the
pocket degeneracy. Our approach is to relate the magnetization contribution
of the partially spin-polarized hybridized bands to the magnetization implied
by the Landau level index in Supplementary Eq. (30).
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Similar to Pauli paramagnetism [18], the magnetization per unit volume
stemming from spin-polarization is given by

M =
1

2
g∗µBDn (35)

where D is the pocket degeneracy and n is the concentration of spin-polarized
carriers. Accounting for spin degeneracy, n is related to the wavevector k
through

n =
k3

3π2
(36)

and k is related to the Landau index via

k2 =
2e

ℏ
B

(
ν +

1

2

)
. (37)

Therefore, the magnetization is related to the Landau index through

M =
1

6π2
g∗µB

(
2e

ℏ
B

(
ν +

1

2

))3/2

. (38)

Substituting Supplementary Eq.(38) into Supplementary Eq. (30) and rear-
ranging yields

D =
6π7/2

g∗a3/2
. (39)

Using the value of the fit parameter a ≈ 3 obtained from relating the measured
frequency to the magnetization (i.e., Supplementary Eq. (31)) and g∗ ≈ 2, we
find D ≈ 32. This indicates YbB12 has a Fermi surface with high degeneracy,
similar to what has been suggested in Ref. [7, 20]. It is also important to
note that even without exact knowledge of the pocket shape, there can be a
number of additional factors affecting this degeneracy factor estimate such as
the saturated moment per Yb differing from µB [14], a change in the band
Van Vleck contribution [2], and/or a field-dependence of g∗.

Supplementary Note 9: Determination of the
Insulator-Metal Transition and Landau Level
Indexing

Values for the insulator-metal transition field as a function of angle were taken
from the contactless resistivity measurements because the onset of the metallic
state corresponds to a large change in the slope of the TDO frequency (e.g.,
Fig. 2 of main text). A precise determination of the insulator-metal transition
was more difficult with the conventional resistivity measurements because of
the dramatic change in the sample’s resisitivity as a function of magnetic field:
a current that would provide a sufficient signal-to-noise ratio to resolve the
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IM transition would cause large Joule heating in the insulating state. The use
of the insulator-metal transition field from the contactless resistance measure-
ments, and the slight differences in sample alignment between the contactless
resistance and conventional resisitivity measurements, is likely responsible for
the small difference in the concavity of the the angular dependences of the
insulator-metal transition and insulating state quantum oscillations shown in
Fig. 3 of the main text.

The angular dependence of the quantum oscillations was determined by
assigning Landau level indices and following the angular dependence of each
Landau level. We found this to be more robust than Fourier analysis owing to
the few oscillations in the insulating state. Indexing in this manner makes it
apparent that there is some evolution of fine structure in the insulating and
metallic oscillations as a function of angle. In cases where peak splitting was
apparent, we would take the average position of the split peaks as the field
assigned to that Landau index. The origin of the peak splitting is unclear.
While it has been suggested to be a consequence of spin-splitting [11], there will
also be contributions from the shape of the Fermi surface, g-factor anisotropy,
and anisotropic f -electron polarization [14], which complicate the situation.
The exact origin of the peak splitting does not impact the central claims of
this work.

Supplementary Note 10: Lifshitz-Kosevich
Analysis

According to Lifshitz-Kosevich theory [12], quantum oscillations possess a
temperature dependent amplitude damping factor (RT ) of

RT =
α T

B
m∗

me

sinh
(
α T

B
m∗

me

) , (40)

where

α =
2π2kBme

eℏ
. (41)

In order to isolate the amplitude of the quantum oscillations to determine
m∗ from Supplementary Eq.(40), it is necessary to account for the background
signal. A simple polynomial subtraction proved to be sufficient for the TDO
data, however the significant magnetoresistance in the insulating state com-
plicates the analysis. Following Pippard [12, 21], we perform a background
normalization [10] instead of a subtraction for the quantum oscillations in the
insulating state, effectively assuming

ρoscillatory
ρbackground

∼ RT
goscillatory(µ)

gbackground(µ)
(42)

where ρ is resistivity, g(µ) is the density of states at the chemical potential. This
normalization more properly accounts for temperature dependent scattering
rates.
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The results of this analysis are shown in Supplementary Fig. 11, along
with data from LK analyses available in the literature [10, 11]. The effective
masses of both the insulating and metallic states are in good agreement with
those previously reported [3, 10, 11]. We also performed a measurement of
the mass as a function of field in the metallic state at 18.6◦ from the [100]
crystallographic axis in the [100]-[011] plane (Supplementary Fig. 12). When
combined with the measurements along the [100] axis, these measurements
reveal minimal anisotropy in the effective mass of the field-induced metallic
state.

While we did not observe strong deviations from LK behavior, this could
be because we could not reach sufficiently low temperatures. Moreover, the
substantial background magnetoresistance in the insulating state makes subtle
deviations from LK difficult to discern. It is worth noting that the data pre-
sented in Ref. [10] does show deviations from LK behavior in the SdH data.
Although an alternative explanation is provided, it is possible the deviations
could be caused by an excitonic insulator phase.

Supplementary Note 11: Gap Extraction with
Parallel Conduction Model

To corroborate the gap closure results from the Arrhenius fits presented in Fig.
1 of the main text, we also analyzed the gap closure using a parallel conduc-
tion model that has previously been used to analyze transport in YbB12 [4].
The simplest model assumes the total conductance consists of two conduction
channels, a constant channel often attributed to a metallic surface [4], and an

Supplementary Figure 11 Effective mass analysis near [100] in the (a,c) insulating and
(b,d) metallic states based on Lifshitz-Kosevich theory. The temperature dependent ampli-
tudes of the (a) insulating state oscillations were obtained by background normalization and
the temperature dependent amplitudes of the (d) metallic state oscillations were obtained by
background subtraction. The temperature dependent amplitudes of the (c) insulating and
(d) metallic quantum oscillation are well described the Lifshitz-Kosevich formula. Compar-
isons are made to LK analyses from Ref. [10, 11]
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Supplementary Figure 12 Effective mass as a function of field at two different angles
in the field-induced metallic state. At both angles the effective mass increases linearly with
applied field. The effective mass exhibits minimal anisotropy. A comparison is made to data
from Ref. [11]

activated channel. As such, we fit the conductance as a function of temperature
at fixed fields to the model

G = A+G0 exp

(
−Ea

T

)
(43)

where G is the total conductance, A is the constant conduction channel, G0 is
the activated channel’s prefactor, and Ea is the activation energy. Supplemen-
tary Fig. 13 shows examples of fits to this model at fixed fields of 20T and 43T
(applied parallel to [100]). Note, only the Ea = 30K gap was included in this
analysis because the larger gap (e.g., Supplementary Fig. 2) has a negligible
contribution to the total conductance in this temperature and field range.

In Supplementary Fig. 13a, two fits are shown to the experimental data.
The blue fit treats Ea as a fit parameter. The red fit constrains Ea to a fixed
value obtained by assuming the gap evolves linearly in field from its measured
zero field value (Supplementary Fig. 2) through Zeeman splitting, i.e.

Ea(B) = ∆− 1

2
g∗µBB. (44)

While there is minimal difference between these two fits at 20T (Supple-
mentary Fig. 13a), the assumption of linear-in-field gap closure is unable to
describe the data at high fields (Supplementary Fig. 13b). Even with the addi-
tion of a third conduction channel which has been used to describe a possible
nodal semimetallic state in SmB6 [22], such that

G = A+G0 exp

(
−Ea

T

)
+ βT, (45)

it is clear the high field data cannot be fit by models which assume the gap
closes linearly with field. Moreover, the gap values extracted from treating the
gap as a free parameter are substantially (4-5×) larger than those required
were Supplementary Eq. (44) to apply over the entire field range.
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Supplementary Figure 13 Parallel conduction model fits to the conductance at fixed
fields of (a) 20T and (b) 43T. In the lower field regime, the data is equally well fit with the
gap considered to be a free parameter or constrained to take on a value assuming linear-in-
field gap closure. The high field data cannot be described by linear-in-field gap closure.

Note, a comparison of the fits in Supplementary Fig. 13b with and without
the third conduction channel indicate that both models capture the experi-
mental data. Since inclusion of the linear term does not appreciably change
the fitted gap value, it is excluded from subsequent analysis.
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Supplementary Figure 14 A comparison of the high field behavior of the gap extracted
from an Arrhenius analysis (rising field only) and parallel conduction fits (rising and
falling fields). All methods give similar gap behavior and demonstrate the gap closes non-
monotonically at high fields.

Having demonstrated that the gap closes non-linearly at high fields, we
now confirm the results of our Arrhenius fit by comparing those findings to the
high field dependence of the gap acquired from parallel conduction fits with
the model describeed by Supplementary Eq. (45). As shown in Supplementary
Fig. 14, the high field dependences of the gap acquired from the Arrhenius
analysis and from the parallel conduction plots are in good agreement. This
provides additional evidence that the gap does not monotonically close at high
fields.
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Supplementary Note 12: Gap Closure Along
[011] Crystallographic Axis

In addition to examining the field-induced gap closure for fields applied along
the [100] crystallographic axis, similar measurements were performed with field
applied along the [011] crystallographic axis. Supplementary Fig. 15a shows the
field-dependence of the magnetoresistance acquired at fixed temperature. This
data possesses a similar field dependence to the [100] data shown in Fig. 1a of
the main text. Quantum oscillations in the insulating state of YbB12 are also
present in this measurement configuration at high fields, but their small ampli-
tudes preclude a quantitative analysis. An Arrhenius analysis (Supplementary
Fig. 15b) indicates gap closure with the field applied along [011] is similar to
gap closure with the field along [100]. Supplementary Fig. 15c demonstrates
this similarity by comparing the field-dependence of the gap when the field is
applied parallel to [100] and [011] with fields normalized by the insulator-metal
transition field. These data show that the gap closes non-linearly for fields
applied along multiple crystallographic axes, consistent with the possibility of
an excitonic insulator transition prior to the insulator-metal transition. Note,
an Arrhenius analysis at lower field values for the [011] case was unreliable
owing to an insufficient amount of high temperature data.

Supplementary Figure 15 (a) YbB12 magnetoresistance with the magnetic field applied
along the [011] crystallographic axis. Along this direction the insulator-metal transition
occurs at ∼54 T. (b) An Arrhenius analysis of the resistivity was used to obtain the evolution
of the gap as a function of field in pulsed fields (PF). (c) The gap closure for fields along the
[100] and [011] show similar deviations from linear gap closure when the field is normalized
by the insulator-metal transition in each direction.

Supplementary Note 13: Checks for
Field-Induced Heating Effects

Field-induced heating in pulsed field experiments can arise from induced Eddy
currents or magnetocaloric effects [23]. Eddy current heating can be a sub-
stantial problem for metallic samples in pulsed fields, but can also be an issue
in insulating samples owing to their metallic contacts.

Eddy current heating typically scales with H2, so we performed a series of
pulses with different maximum fields to check for field-induced heating effects.
As shown in Supplementary Fig. 16, the field dependence of the resistivity
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Supplementary Figure 16 Field-induced heating effects were assessed by using pulses
with different maximum fields at the same temperature. The (a) rising and (b) falling field
data for these pulses indicate minimal field-induced heating below ∼ 35T. There are small
differences in (c) the rising field data above ∼ 42T and (d) the falling field data above ∼ 35T.
These effects have a minimal impact on the positions of the quantum oscillations.

below ∼ 35T is independent of the maximum field. The rising field data pos-
sesses slight differences above∼ 42T, as does the falling field data above∼ 35T.
However, directly comparing the rising and falling field data for the 44T and
52T pulses (Supplementary Fig. 17) shows the position of the quantum oscil-
lations is minimally impacted by these effects. To further minimize the impact
of these effects on our conclusions, where possible, we limited ourselves to ana-
lyzing data acquired while the sample was immersed in liquid and from pulses
with similar maximum fields.

It is worth noting that there is a small, and systematic, difference between
the positions of the quantum oscillations in the rising and falling field data even
when the maximum field is chosen to keep the sample within the insulating
state (e.g., Supplementary Fig. 17). This shift is small and does not affect our
conclusions, but its origin is unclear. Eddy current heating of the electrodes
(unlikely) or magnetocaloric effects [23] in the sample close to the transition are
possible explanations. Note, these effects are present even when the maximum
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field is kept below the insulator-metal transition, precluding effects stemming
from entry into the metallic state (e.g., hysteretic effects).
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Supplementary Figure 17 There is a small, systematic shift between the positions of
the quantum oscillations during the rising and falling fields. This shift occurs even when the
sample does not enter the field-induced metallic state.
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Supplementary Note 14: Checks for Joule
Heating Effects

Joule heating effects were analyzed by varying the current used for resistivity
measurements during a sequence of 60T pulses at similar temperatures and a
fixed angle. As shown in Supplementary Fig. 18, Joule heating in the insulating
state causes the measured resistivity to shift to lower values for fixed magnetic
fields. This trend is consistent with the temperature dependent magnetoresis-
tance shown in Fig. 1 of the main text. These effects do not alter the position
or shape of the quantum oscillations in an appreciable manner, however we
utilized the smallest current possible to minimize impacts of Joule heating.

Supplementary Figure 18 Joule heating effects were assessed by varying the current
used to measure the resistivity during the pulsed field experiments. For a given field, an
increase in current caused a reduction in resistivity in both the (a) rising field and (b) falling
field, consistent with Joule heating. Importantly, the positions and shapes of the quantum
oscillation in both the (c) rising field and (d) falling field are minimally affected. Vertical
dashed lines are guides for the eye.
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