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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The Kondo insulator YbB12 has recently aroused great attention. YbB12 undergoes a meta-transition 

at a high field. YbB12 is a particularly intriguing material given its ability to display quantum 

oscillations (QOs) within an insulating state at low fields, close its gap at reasonably low magnetic 

fields, and exhibit QOs in the high-field metallic state after the gap closure. The QOs in the insulating 

state are quite unique, which is still mysterious. Moreover, it has been suggested that the QOs in the 

high-field state exhibit unconventional field dependence, which is also highly unusual. 

 

This paper delivers an in-depth analysis of the angular dependence of resistivity oscillations within a 

metallic state of YbB12 and presents an interpretation of these phenomena through the lens of the 

reverse quantum limit. 

 

This paper contains a few significant points. First, the challenges associated with synthesizing high-

quality YbB12 samples have impeded progress in this area, and to date, studies on QOs have been 

mainly reported by the Michigan group. The successful production of high-quality single crystals and 

independent validation of QOs would be a significant advancement for the field. Second, as the 

origin of the QOs in the insulating state remains elusive, there is no doubt that the interpretation of 

unconventional QOs in the metallic state is important. 

 

The reverse quantum limit paradigm proposed by the authors may be important, with the potential 

for substantial impact. However, I still hesitate to recommend the publication of the present 

manuscript, because its validity warrants further investigation. 

 

1. The authors employ Equation 2 to assert that an oscillation is observed each time the left-hand 

side zeros out and that the oscillation's period is reliant on m*. Nevertheless, if this interpretation 

holds true, the oscillation period would be dependent on m* even in the ordinary metal state 

encapsulated by Equation 1, disregarding the Fermi surface shape. This assertion contradicts the 

Lifshitz-Kosevich (LK) formula. Though I do not claim expertise in QOs, this discrepancy may originate 

from an inaccurate derivation of the oscillation frequency. Quantum oscillations in metals are 

detected because the density of states at the Fermi surface (or its extrema) remains constant, while 

the density of Landau levels intensifies with the magnetic field. Consequently, as the field strength 

increases, the higher Landau levels lose their occupied states, leading to the Onsager relation. 

 



By this logic, in a reverse QO scenario, the number of occupied states and the Fermi surface (or its 

extrema) continue to expand as the field increases above the gap closure. Oscillations are thus 

discernible whenever the number of carriers surpasses that in the lowest occupied Landau level. 

Here, the oscillation period is dictated by the relationship between the density of states of the Fermi 

surface (or its extrema) and the Landau level, similar to the situation in metals. Therefore, the 

angular dependence of the quantum oscillation frequency does not directly support the reverse 

quantum oscillation scenario. I believe it is crucial for the authors to address this issue. 

 

 

2. In the context of this paper, it would indeed be interesting to explore what transpires when 

resistance oscillations are plotted against 1/(B-B*), where B* denotes the transition field, as opposed 

to the traditional 1/B. This approach, previously referred to in reference 21, may yield intriguing 

insights. In line with the reverse quantum limit picture, it is plausible that a scenario where the 

period is proportional to 1/(B-B*) could be consistent, depending on the field dependence of the 

carrier number. 

 

3. The authors claim that the "common set of bulk Landau levels drives the insulating and metallic 

oscillations." Can the authors link the present results to the dHvA oscillations observed in ref. 20? 

 

4. It might be helpful for the readers to add a description of the residual ratio of the resistivity 

(R(4.2K/R(R.T.) in this case ) in the main text since the observation of the QOs appears to depend on 

this ratio. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors studied the Kondo insulator YbB12 under magnetic fields. They measured quantum 

oscillations for different field angles and found that the Landau levels are tied to the insulator-metal 

transition. To understand this observation, they introduced the notion of reverse quantum limit 

where the Zeeman energy plays a crucial role and Landau levels are filled in a reverse way compared 

to that in conventional (semi)metals. Besides, the authors discussed the quantum oscillation 

frequency and argued that it can be well explained based on the reverse quantum limit picture. 

 

 



The Kondo insulator YbB12 shows interesting behaviors under magnetic fields such as the quantum 

oscillations in the insulating regime and the insulator-metal transition. Understanding these 

characteristic behaviors are highly important, since it could provide a new possible view of an 

insulator. 

In the present manuscript, it looks that the authors carefully performed experiments and 

experimental results are convincing. The main point is that the field angle dependence is understood 

based on the newly introduced notion, the reverse quantum limit. 

 

 

However, I have reservations to recommend the manuscript for publication in Nature 

Communications. In my understanding (mostly from the abstract and summary), the manuscript 

proposes the reverse quantum limit as a new state of matter or a new concept in the field of systems 

under magnetic fields (as shown in Fig. 4b) and argued that it is indeed realized in YbB12. The 

concept of the reverse quantum limit is entirely based on the model Eq. (2). Therefore, the validity of 

this model is a central issue in this manuscript, but there are some unclear points in the model as 

discussed below. 

 

 

 

 

1. It looks that the explanation of the reverse quantum limit in a Kondo insulator has been 

oversimplified. Equation (2) is a conventional Landau levels for conduction electrons with a gap, but 

hybridization with a valence band or f-electrons has been neglected. (The origin of the gap may be 

the hybridization, but it is just implicit and the gap has been added by hand.) Such a model is not a 

standard model in the field of Kondo insulators where hybridization between the conduction 

electrons and f-electrons is essential. 

 

One can compare Fig. 4a with the numerical calculation of a periodic Anderson model, for example 

Fig. 4a in Ref. 37 (Zhang et al., Phys. Rev Lett. 2016, where Zeeman effect was neglected). Note that 

Zeeman effects were included, for example, in Knolle and Cooper, Phys. Rev. Lett. 118, 176801 (2017) 

and Tada, Phys. Rev. Research 2, 023194 (2020), and it was argued that the results are robust against 

values of the g-factors. 

The Landau level spectrum such as Fig. 4a in Ref. 37 itself has been known for a long time in the 

context of the electron-hole hybridization in semiconductor heterostructures. Clear figures are 

shown in many papers, such as Jiang et al., Phys. Rev. B 95, 045116 (2017) and references therein. I 

don’t understand the key difference between the notion of the reverse quantum limit and these 

known Landau levels with electron-hole hybridization. 



 

 

2. As discussed in the introduction of the manuscript, an important point of the quantum limit is that 

many single-particle states are degenerate in a single Landau level and such degeneracy can enhance 

electron correlations. If I understand correctly, such enhanced correlation effects are not expected in 

the reverse quantum limit, because electrons occupy Landau levels mostly in the valence band. 

 

 

3. Although the comparison between the experimental data and (oversimplified) model analyses may 

sound reasonable, I think that a similar analysis can be done with a more standard model such as a 

Kondo lattice or periodic Anderson model. If this is done, what will be changed and what will be 

unchanged in the discussion of the manuscript? 

Or, if the model Eq. (2) (rather than more standard models) is expected to be highly suitable for a 

Kondo insulator, it should be explained in detail. 

 

 

4. Additionally, the discussion (in the main text and the supplemental information) on the oscillation 

frequency may be reasonable to some extent, but this also depends on the oversimplified model. An 

improved discussion could be done with more standard models. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

This paper proposes a concept of the reverse quantum limit which may be induced in an insulator 

with a strong electronic correlation, especially when the Zeeman energy is larger than the cyclotron 

energy. Although the mechanism of the formation of the reverse quantum limit is rather simple, 

there have not been such proposals before. It is an interesting proposal and can be important to 

understand the unusual phenomenon of quantum oscillation in the insulating phase. I have several 

questions and comments that may need to be addressed before publication. 

 

1. The following sentence, “We argue that close to the insulator-metal transition, the insulating state 

should be viewed through the lens of a magnetic field-induced electronic instability affecting the 



lowest Landau level states.” sounds too literary. Since the excitonic insulating state is thought to play 

an important role, the expression may be revised using the idea of an excitonic insulator. 

 

2. It is not clear how the Landau level index was determined to start from 6. The Landau indexes 

should be shown in Fig. 8 (a) at least when the angle is zero (B//100). 

 

3. Why is there no data for B//100 in the insulating phase in Fig. 8(b)? 

 

4. I understand that Eq.(7) in SI is only valid when ν=0. Therefore, Eq.(10) is valid only when ν=0, and 

Eqs. (11) and (12) are not correct for arbitrary ν. I guess a similar equation with Eq.(7) is OK, for any ν, 

but B_IM is different from that for ν=0. We may need to define it such as B_IM^ν. I may be 

misunderstood. So, the authors should give clearer explanations of how we have Eq.(12) (Eq.(3) in 

the main text). 

 

5. The carrier density can change with increasing magnetic fields for magnetic fields higher than the 

critical magnetic field. The hole and electrons are probably induced at the same time, and they may 

form excitons. But the number of electrons and holes should increase with increasing amagnetic 

field. It is necessary to explain how the reverse quantum limit scenario accommodates the issue of 

the change in carrier density. 

 

6. If the electronic correlation at the Landau level at a small number index is the key to making the 

system insulating, the original IM transition magnetic field should be lower than the one observed. 

Does this original transition field correspond to 35 T? If it is yes, the definition of the IM transition 

magnetic field needs to be more clarified. 

 

 



We thank the referees for their constructive comments and positive feedback. Responses to comments 
are given below in green. We have also clarified some portions of the main manuscript and providing 
additional explanations in the Supplementary Information. These changes are shown in red in the 
manuscript and supplementary information files. 

 

------------------------------------------------------------------------------------------------------------------------------------------ 

 

 

Reviewer #1 (Remarks to the Author): 

 

The Kondo insulator YbB12 has recently aroused great attention. YbB12 undergoes a meta-transition at a 

high field. YbB12 is a particularly intriguing material given its ability to display quantum oscillations (QOs) 

within an insulating state at low fields, close its gap at reasonably low magnetic fields, and exhibit QOs in 

the high-field metallic state after the gap closure. The QOs in the insulating state are quite unique, which 

is still mysterious. Moreover, it has been suggested that the QOs in the high-field state exhibit 

unconventional field dependence, which is also highly unusual. 

 

This paper delivers an in-depth analysis of the angular dependence of resistivity oscillations within a 

metallic state of YbB12 and presents an interpretation of these phenomena through the lens of the 

reverse quantum limit. 

 

This paper contains a few significant points. First, the challenges associated with synthesizing high-

quality YbB12 samples have impeded progress in this area, and to date, studies on QOs have been 

mainly reported by the Michigan group. The successful production of high-quality single crystals and 

independent validation of QOs would be a significant advancement for the field. Second, as the origin of 

the QOs in the insulating state remains elusive, there is no doubt that the interpretation of 

unconventional QOs in the metallic state is important.  

 

The reverse quantum limit paradigm proposed by the authors may be important, with the potential for 

substantial impact. However, I still hesitate to recommend the publication of the present manuscript, 

because its validity warrants further investigation. 

We thank the referee for acknowledging the significance of our experiments, which independently 

validate quantum oscillations in YbB12, and the “potential for substantial impact” of the reverse quantum 

limit paradigm proposed in this paper. We appreciate the questions raised by the referee and address 

them below. 

 

1. The authors employ Equation 2 to assert that an oscillation is observed each time the left-hand side 

zeros out and that the oscillation's period is reliant on m*. Nevertheless, if this interpretation holds true, 

the oscillation period would be dependent on m* even in the ordinary metal state encapsulated by 

Equation 1, disregarding the Fermi surface shape. This assertion contradicts the Lifshitz-Kosevich (LK) 

formula. Though I do not claim expertise in QOs, this discrepancy may originate from an inaccurate 



derivation of the oscillation frequency. Quantum oscillations in metals are detected because the density 

of states at the Fermi surface (or its extrema) remains constant, while the density of Landau levels 

intensifies with the magnetic field. Consequently, as the field strength increases, the higher Landau 

levels lose their occupied states, leading to the Onsager relation. 

 

By this logic, in a reverse QO scenario, the number of occupied states and the Fermi surface (or its 

extrema) continue to expand as the field increases above the gap closure. Oscillations are thus 

discernible whenever the number of carriers surpasses that in the lowest occupied Landau level. Here, 

the oscillation period is dictated by the relationship between the density of states of the Fermi surface 

(or its extrema) and the Landau level, similar to the situation in metals. Therefore, the angular 

dependence of the quantum oscillation frequency does not directly support the reverse quantum 

oscillation scenario. I believe it is crucial for the authors to address this issue. 

 

Thank you for these comments. We believe that the primary source of confusion was an omission we 

made in writing Eq. (1) in the manuscript. We neglected to include the Fermi energy in the submitted 

version of the manuscript. Below we show that with this term included we recover the Onsager relation 

in a typical metal. Then, we address the apparent mass dependence in the case of an insulator.   

 

First, we consider the case of a conventional metal in the presence of a magnetic field and show that our 

treatment recovers the Onsager relation and a quantum oscillation frequency that is mass independent. 

The electronic states in a conventional metal in a magnetic field are described as 

𝐸↑,↓ − 𝜇 = −𝜀𝐹 +
ℏ𝑒

𝑚∗ 𝐵 (𝜈 +
1

2
) ∓

1

2
𝑔∗𝜇𝐵𝐵, 

Where 𝐸↑,↓ is the energy of the up/down (-,+) spin state referenced to the chemical potential (𝜇), 𝜀𝐹 is 

the Fermi energy, 𝐵 is the magnetic field, ℏ is Planck’s constant, 𝑒 is electron charge, 𝑚∗ is effective 

mass, 𝜈 is the Landau level index, 𝑔∗ is an effective g-factor for pseudospins of 1/2 that is renormalized 

by interactions), and 𝜇𝐵 is the Bohr magneton. Since Landau levels cross the chemical potential when 

𝐸↑,↓ − 𝜇 = 0, one can derive an expression for the quantum oscillation frequency (𝐹 =
𝑑𝜈

𝑑
1

𝐵

) from 

𝜀𝐹 =
ℏ𝑒

𝑚∗
𝐵 (𝜈 +

1

2
) ∓

1

2
𝑔∗𝜇𝐵𝐵. 

The result of this is 

𝐹 =
𝑚∗

ℏ𝑒
𝜀𝐹, 

or, because 𝜀𝐹 =
ℏ2

2𝑚∗

𝐴𝑘

𝜋
  where 𝐴𝑘 = 𝜋𝑘𝐹

2, 

𝐹 =
ℏ

2𝜋𝑒
𝐴𝑘  

which is the Onsager relation. Therefore, our treatment recovers the Onsager relation, and a mass-

independent frequency, in the case of conventional metals. 



 

Next, we focus on the case of insulators. As described in Eq. (2) of the manuscript, the conduction band 

electronic states (𝐸𝐶
↑,↓) in an insulator with a zero-field gap of Δ under an applied magnetic field are given 

by 

𝐸𝐶
↑,↓ − 𝜇 = Δ +

ℏ𝑒

𝑚∗ 𝐵 (𝜈 +
1

2
) ∓

1

2
𝑔∗𝜇𝐵𝐵, 

analogous to the above expression for a conventional metal. Performing a similar analysis gives a 

quantum oscillation frequency of 

|𝐹| =
𝑚∗

ℏ𝑒
 Δ. 

However, since Δ ∝
1

𝑚∗ (Supplementary Information Section 3) the quantum oscillation frequency is, to 

leading order, independent of mass in the reverse quantum limit. Hence, a mass-independent analogue 

to the Onsager relation is obtained, the Lifshitz-Kosevich (LK) formula applies, and the angular 

dependence of the quantum oscillation frequency directly supports the reverse quantum oscillation 

scenario. 

 

 

2. In the context of this paper, it would indeed be interesting to explore what transpires when resistance 

oscillations are plotted against 1/(B-B*), where B* denotes the transition field, as opposed to the 

traditional 1/B. This approach, previously referred to in reference 21, may yield intriguing insights. In line 

with the reverse quantum limit picture, it is plausible that a scenario where the period is proportional to 

1/(B-B*) could be consistent, depending on the field dependence of the carrier number. 

 

Thank you for this comment. The approach used in Ref. 21 to linearize the Landau levels was to assume 

an “offset field” B* leading to an expression for the quantum oscillation frequency of the form 

𝐹 =
𝐹0𝐵

𝐵−𝐵∗, 

as indicated in the above comment. In Ref. 21, the choice of this functional form is empirical, and it is 

speculated that the “offset field… needed to linearize the Landau diagrams bears a qualitative similarity 

to the gauge field in the composite fermion interpretation of the two-dimensional fractional quantum 

Hall effect.” While this proposition is interesting, since there are so few oscillations used to linearize the 

data other functional forms besides the selected 1/(𝐵 − 𝐵∗) form could equally well describe the data. 

Additionally, the value of the offset field used to describe the data in Ref. 21 (41.6 T) is quite different 

from the transition field (47 T), making the physical significance of the offset field an open question. 

 

3. The authors claim that the "common set of bulk Landau levels drives the insulating and metallic 

oscillations." Can the authors link the present results to the dHvA oscillations observed in ref. 20? 



Thank you for this comment. The resistivity oscillations we observed are in good agreement with the 

dHvA oscillations observed in Ref. 20. Namely, Ref. 20 reported a dHvA frequency of 720T and effective 

mass of 
𝑚∗

𝑚𝑒
 ~ 7  when the magnetic field is close to [100]; we find a quantum oscillation frequency of 

750T and 
𝑚∗

𝑚𝑒
 ~ 7.6 from the resistivity data when the magnetic field is applied along a similar 

crystallographic direction. 

 

In order to emphasize the similarity between our quantum oscillation data and previous reports of both 

the SdH and dHvA oscillations, we have edited the manuscript to include the portion of text given below. 

We also point readers to the SI (Section 10) where we have included a comparison of the effective 

masses derived from a Lifshitz-Kosevich analysis of our quantum oscillations, and SdH and dHvA data 

from the literature (see Fig. SI 11). 

 

Importantly, the quantum oscillations in Fig. 2 are in good agreement with previous reports of SdH and 

de Haas-van Alphen quantum oscillations in both the insulating [20, 31, 32] and metallic states [21, 22] 

of YbB12 (see SI [19] for additional comparisons with the literature). This demonstrates quantum 

oscillations in high-quality YbB12 are a robust and reproducible phenomenon. 

 

 

4. It might be helpful for the readers to add a description of the residual ratio of the resistivity 

(R(4.2K/R(R.T.) in this case ) in the main text since the observation of the QOs appears to depend on this 

ratio. 

Thank you for this suggestion. We agree this is important to included and have added the residual 

resistivity ratio to the main text. The main text now reads: 

 

YbB12 possesses large changes in zero-field resistivity as a function of temperature (
𝜌(0.5𝐾)

𝜌(300𝐾)
~104) 

consistent with small gaps of order meV at low temperatures (see SI) arising from hybridization between 

conduction electrons and largely localized f-electrons. 

 

 

 

  



Reviewer #2 (Remarks to the Author): 

 

The authors studied the Kondo insulator YbB12 under magnetic fields. They measured quantum 

oscillations for different field angles and found that the Landau levels are tied to the insulator-metal 

transition. To understand this observation, they introduced the notion of reverse quantum limit where 

the Zeeman energy plays a crucial role and Landau levels are filled in a reverse way compared to that in 

conventional (semi)metals. Besides, the authors discussed the quantum oscillation frequency and argued 

that it can be well explained based on the reverse quantum limit picture. 

 

 

The Kondo insulator YbB12 shows interesting behaviors under magnetic fields such as the quantum 

oscillations in the insulating regime and the insulator-metal transition. Understanding these 

characteristic behaviors are highly important, since it could provide a new possible view of an insulator.  

In the present manuscript, it looks that the authors carefully performed experiments and experimental 

results are convincing. The main point is that the field angle dependence is understood based on the 

newly introduced notion, the reverse quantum limit.  

 

 

However, I have reservations to recommend the manuscript for publication in Nature Communications. 

In my understanding (mostly from the abstract and summary), the manuscript proposes the reverse 

quantum limit as a new state of matter or a new concept in the field of systems under magnetic fields (as 

shown in Fig. 4b) and argued that it is indeed realized in YbB12. The concept of the reverse quantum 

limit is entirely based on the model Eq. (2). Therefore, the validity of this model is a central issue in this 

manuscript, but there are some unclear points in the model as discussed below. 

 

 

 

 

1. It looks that the explanation of the reverse quantum limit in a Kondo insulator has been 

oversimplified. Equation (2) is a conventional Landau levels for conduction electrons with a gap, but 

hybridization with a valence band or f-electrons has been neglected. (The origin of the gap may be the 

hybridization, but it is just implicit and the gap has been added by hand.) Such a model is not a standard 

model in the field of Kondo insulators where hybridization between the conduction electrons and f-

electrons is essential.  

Thank you for raising this point. Under the most general of circumstances, when a conduction band and 

an f-electron band hybridize in a lattice environment, the result is an indirect gap. This has been 

proposed on the basis of electronic structure calculations of YbB12 (see for example the Figure below). 

We have added a new section to the SI (Section 3) to address this point. 



 [from Saso and Harima, arXiv:cond-mat/0302471v1] 

To lowest order, the electronic dispersions in the vicinity of the minimum of the conduction band and in 

the vicinity of the maximum of the valence band are parabolic. When the gap is closed by the 

introduction of a Zeeman interaction, the result is small electron and hole pockets (see for sample panels 

c and d below).  

 [from Liu et al, J. Phys.: Condens. Matter 30 

(2018) 16LT01]. 

 

Hence, one can consider the electronic dispersion undergoing Landau quantization to be two parabolic 

dispersions separated by a gap, as we have assumed in our Fig. 4a. Since we cannot be certain as to 

precisely which pocket is responsible for the quantum oscillations in YbB12, as a further simplification, we 

consider the electron and hole effective masses to be the same. (Also, see response to subsequent 

questions below). 

 

One can compare Fig. 4a with the numerical calculation of a periodic Anderson model, for example Fig. 

4a in Ref. 37 (Zhang et al., Phys. Rev Lett. 2016, where Zeeman effect was neglected). Note that Zeeman 

effects were included, for example, in Knolle and Cooper, Phys. Rev. Lett. 118, 176801 (2017) and Tada, 

Phys. Rev. Research 2, 023194 (2020), and it was argued that the results are robust against values of the 

g-factors. 

The Landau level spectrum such as Fig. 4a in Ref. 37 itself has been known for a long time in the context 

of the electron-hole hybridization in semiconductor heterostructures. Clear figures are shown in many 

papers, such as Jiang et al., Phys. Rev. B 95, 045116 (2017) and references therein. I don’t understand the 

key difference between the notion of the reverse quantum limit and these known Landau levels with 

electron-hole hybridization.  

Thank you for raising this point. The Landau levels with electron-hole hybridization illustrated in those 

manuscripts is specific to a scenario described by a Mexican hat dispersion where the conduction and f-

electron bands undergoing hybridization are isotropic within a certain plane through the Brillouin zone. 

This has been argued to be the case at the X point in SmB6, and has been proposed as a possible scenario 

for why the reported Landau levels and quantum oscillations in SmB6 are similar to those from 



conduction band Fermi surfaces in LaB6. It is important to note here, that as soon as the conduction and 

f-electron bands are not perfectly isotropic, the tops of the valence band and bottoms of the conduction 

band would occur at points in the Brillouin zone (similar to as in YbB12) instead of on a ring as for the 

Mexican hat dispersion. 

As yet, there is no evidence a hybridization between isotropic conduction and f-electron bands 

producing a Mexican hat dispersion occurs in YbB12. Also, large orbits similar to those of the unhybridized 

conduction band Fermi surfaces of LuB12 are not observed in YbB12 [see Liu et al, J. Phys.: Condens. 

Matter 30 (2018) 16LT01 for the LuB12 Fermi surface]. 

 

2. As discussed in the introduction of the manuscript, an important point of the quantum limit is that 

many single-particle states are degenerate in a single Landau level and such degeneracy can enhance 

electron correlations. If I understand correctly, such enhanced correlation effects are not expected in the 

reverse quantum limit, because electrons occupy Landau levels mostly in the valence band. 

Thank you for raising this point. When the Zeeman interaction closes the gap, there should be equal 

numbers of electrons and holes as in a compensated semimetal (although the hole pockets from the 

valence band and the electron pockets from the conduction band will be spin polarized). Both the 

electron and hole pockets will be in the quantum limit at that point.  

Considering the simple case of a parabolic dispersion, the k-space area 𝐴𝑘 = 𝜋𝑘2 of the Landau level 

tubes at the quantum limit is given by the magnetic field. We obtain this by setting 𝜈 = 0 in  
ℏ𝑒𝐵

𝑚
(𝜈 + 1

2
) =

ℏ2𝑘2

2𝑚
, from which we obtain 𝐴𝑘 =

𝜋𝑒𝐵

ℏ
. This area is the same regardless of whether the 

quantum limit occurs in the conventional manner or in reverse, as we propose in YbB12. The main 

difference with the reverse quantum limit scenario we propose is that it occurs in a system where the 

mass m is already much larger, and so the quantum limit is occurring in a system that is already strongly 

interacting. Whether interactions are strong enough to give rise to an instability at the Fermi surface in 

the reverse quantum limit such as an excitonic insulator, CDW or SDW remains an open question.  

 

3. Although the comparison between the experimental data and (oversimplified) model analyses may 

sound reasonable, I think that a similar analysis can be done with a more standard model such as a 

Kondo lattice or periodic Anderson model. If this is done, what will be changed and what will be 

unchanged in the discussion of the manuscript?  

Or, if the model Eq. (2) (rather than more standard models) is expected to be highly suitable for a Kondo 

insulator, it should be explained in detail. 

We thank the referee for this comment. If we use the Anderson hybridized band model, then we must 

introduce sufficient higher order hopping terms to produce hybridized bands mimicking those calculated 

for YbB12 using DFT or some other electronic structure method. However, a Taylor expansion of the 

dispersion in the vicinity of the conduction band minimum and valence band maximum will yield bands 

that are parabolic to lowest order. We can demonstrate this for a simple 1D case where the conduction 

band is given by 𝜀𝑘 = 𝑡 cos 𝑎𝑘𝑥 and the f-electron band is given by 𝜀𝑓 = 0. The hybridized bands are given 

by 𝜀 = 𝑡

2
cos 𝑎𝑘𝑥±√𝑡2

4
cos2 𝑎𝑘𝑥+𝑉2, where V is the hybridization strength. Taking the limit 𝑉 ≪ |𝑡 cos 𝑎𝑘𝑥| at 

the bottom of the conduction band (where 𝑎𝑘𝑥
′ = 𝜋 − 𝑎𝑘𝑥 = 0) and top of the valence band (where 

𝑘𝑥 = 0) we obtain 𝐸𝐶 ≈
𝑉2

𝑡
(1 +

𝑎2𝑘𝑥
′2

2
) and 𝐸𝑉 ≈ −

𝑉2

𝑡
(1 +

𝑎2𝑘𝑥
2

2
) for the conduction and valence bands, 



respectively. These can be rewritten as 𝐸𝐶 ≈ Δ +
ℏ2𝑘𝑥

′2

2𝑚
 and 𝐸𝑉 ≈ Δ +

ℏ2𝑘𝑥
2

2𝑚
, where ∆ ≈

𝑉2

𝑡
 and 𝑚 ≈

𝑡ℏ2

𝑉2𝑎2. 

The dependences of Δ and 𝑚 on 
𝑉2

𝑡
 will be true for most general forms of 𝜀𝑘 in 2 or 3 dimensions. 

Equation (2) in the main text is obtained by substituting 
ℏ2𝑘𝑥

2

2𝑚
 with 

ℏ𝑒𝐵

𝑚
(𝜈 + 1

2
) and the Zeeman term, 

under assumption that the conduction band minimum (and valence band maximum) occur at distinct 

points in k-space (i.e. not on a ring as for the Mexican hat model). 

 

 

4. Additionally, the discussion (in the main text and the supplemental information) on the oscillation 

frequency may be reasonable to some extent, but this also depends on the oversimplified model. An 

improved discussion could be done with more standard models. 

 

We thank the referee for pointing this out. The above derivation linking the parabolic band 

approximation to the Anderson lattice model is now included in the Supplementary Information (Section 

3). 

 

 

  



Reviewer #3 (Remarks to the Author): 

 

This paper proposes a concept of the reverse quantum limit which may be induced in an insulator with a 

strong electronic correlation, especially when the Zeeman energy is larger than the cyclotron energy. 

Although the mechanism of the formation of the reverse quantum limit is rather simple, there have not 

been such proposals before. It is an interesting proposal and can be important to understand the 

unusual phenomenon of quantum oscillation in the insulating phase. I have several questions and 

comments that may need to be addressed before publication.  

We thank the referee for their interest in our proposal and recognizing the importance of its implications 

for quantum oscillations in insulating systems. We also appreciate their questions and comments. We 

address them below. 

 

1. The following sentence, “We argue that close to the insulator-metal transition, the insulating state 

should be viewed through the lens of a magnetic field-induced electronic instability affecting the lowest 

Landau level states.” sounds too literary. Since the excitonic insulating state is thought to play an 

important role, the expression may be revised using the idea of an excitonic insulator.  

Thank you for the suggestion. We have reworded this sentence accordingly. It now reads:  

“We argue that the insulating state close to the insulator-metal transition should be viewed as a 

magnetic field-induced electronic instability, such as an excitonic insulating state, which affects the 

lowest Landau levels.” 

 

2. It is not clear how the Landau level index was determined to start from 6. 

Thank you for this question. We describe how we found the Landau level indices in greater detail below. 

To clarify this process in the paper, we have added similar text to Supplementary Information Section 7.  

 

Landau level indices, 𝜈, are related to the quantum oscillation frequency, 𝐹, according to 

𝐹 =
𝑑𝜈

𝑑 (
1
𝐵)

 

or, equivalently,  

𝜈 =
𝐹

𝐵
+ 𝜈0 

where 𝐵 is the magnetic field and 𝜈0 is a constant. We can then relate the Landau level indices to the 

extremal orbit area of the Fermi surface, 𝐴, using the Onsager relation (𝐹 =
ℏ

2𝜋𝑒
𝐴). This yields 

𝜈 =
ℏ

2𝜋𝑒

𝐴

𝐵
+ 𝜈0. 

 



Next, as motivated in the manuscript, we assume the Fermi surface area in the high-field metallic state, 

𝐴(𝐵), is related to the non-linear magnetization in the high-field metallic state, 𝑀(𝐵), because 𝑀(𝐵) is 

a measure of the extent of f-electron polarization. More specifically we assume 

𝐴(𝐵) = 𝑎 (
𝑀(𝐵)

𝜇𝐵
)

2/3

 

where 𝑎 is a fit parameter related to the degeneracy factor. Using this expression for 𝐴, we can relate 

both the Landau level indices and quantum oscillation frequency to the non-linear magnetization. These 

are the two expressions given below. 

𝜈(𝐵) =
ℏ

2𝜋𝑒

1

𝐵
𝑎 (

𝑀(𝐵)

𝜇𝐵
)

2/3

+ 𝜈0 

 

𝐹(𝐵) = −𝐵2
𝑑

𝑑𝐵
[

ℏ

2𝜋𝑒

1

𝐵
𝑎 (

𝑀(𝐵)

𝜇𝐵
)

2/3

] 

 

The 𝑎 parameter is fit using our experimental quantum oscillation frequency in the high-field metallic 

state, 𝐹(𝐵), and the experimental non-linear magnetization (taken from Ref. 21). We extract 𝜈(𝐵) by 

using this 𝑎 parameter and finding the value of 𝜈0 which gives the best agreement with the experimental 

non-linear magnetization (taken from Ref. 21). 

 

The Landau indexes should be shown in Fig. 8 (a) at least when the angle is zero (B//100). 

Owing to the configuration of the rotator used in this experiment and sample positioning, we could not 

access B || [100] during the angle-dependent magnetoresistance experiments. The closest angle we 

accessed was 5° from [100]. Fortunately, this does not substantially change the Landau indexing or our 

interpretation because the quantum oscillations and insulator-metal transition slowly vary with angle 

within ±10° from [100] (see Fig. 2 and measurements in Ref. 20). 

 

3. Why is there no data for B//100 in the insulating phase in Fig. 8(b)? 

See previous response. 

 

4. I understand that Eq.(7) in SI is only valid when ν=0. Therefore, Eq.(10) is valid only when ν=0, and Eqs. 

(11) and (12) are not correct for arbitrary ν. I guess a similar equation with Eq.(7) is OK, for any ν, but 

B_IM is different from that for ν=0. We may need to define it such as B_IM^ν. I may be misunderstood. 

So, the authors should give clearer explanations of how we have Eq.(12) (Eq.(3) in the main text). 

We thank the referee for this suggestion. In response, we have clarified our derivation in Supplementary 

Section S5 and generalized it. We believe that it is now more clearly demonstrated that our framework 



applies to the general case that the insulator-metal transition field 𝐵𝐼𝑀 occurs at an arbitrary Landau 

level. For convenience, we have reproduced the relevant portion of the text from the Supplementary 

Information below. 

 

In the reverse quantum limit scenario, Landau level crossings occur at magnetic fields, 𝐵𝜈,which satisfy 

2Δ − 𝑔∗𝜇𝐵𝐵𝜈 +
2ℏ𝑒

𝑚∗
𝐵𝜈 (𝜈 +

1

2
) = 0. 

If the insulator-metal transition occurs at some arbitrary Landau level 𝜈𝐼𝑀 which crosses the chemical 

potential at 𝐵𝐼𝑀, then the same expression holds: 

2Δ − 𝑔∗𝜇𝐵𝐵𝐼𝑀 +
2ℏ𝑒

𝑚∗
𝐵𝐼𝑀 (𝜈𝐼𝑀 +

1

2
) = 0. 

Subtracting these two equations and reducing the result yields 

1

𝐵𝐼𝑀
−

1

𝐵𝜈
=

ℏ𝑒

Δ𝑚∗
(𝜈 − 𝜈𝐼𝑀) 

Therefore, one anticipates the quantum oscillations to be pinned to the insulator-metal transition in the 

reverse quantum limit. 

 

5. The carrier density can change with increasing magnetic fields for magnetic fields higher than the 

critical magnetic field. The hole and electrons are probably induced at the same time, and they may form 

excitons. But the number of electrons and holes should increase with increasing a magnetic field. It is 

necessary to explain how the reverse quantum limit scenario accommodates the issue of the change in 

carrier density. 

Thank you for this question. In the reverse quantum limit scenario without an excitonic phase, YbB12 is 

insulating and driven to a metallic state at the 𝜈 = 0 Landau level. However, because YbB12 is in a low-

carrier, high-correlation regime, as the number of carriers increases with magnetic field poorly screened 

Coulomb interactions can cause the formation of an excitonic phase [e.g., Halperin and Rice, Rev. Mod. 

Phys. 40, 755 (1968)]. If this does occur, then the insulator-metal transition will occur at a higher 

magnetic field. Once in the metallic state, the carrier density and magnetization rapidly increase 

corresponding to the destruction of the excitonic phase, and the quantum oscillations begin to reflect 

changes in hybridization and the Fermi surface shape. We have included a discussion of the above points 

in the manuscript. 

 

6. If the electronic correlation at the Landau level at a small number index is the key to making the 

system insulating, the original IM transition magnetic field should be lower than the one observed. Does 

this original transition field correspond to 35 T? If it is yes, the definition of the IM transition magnetic 

field needs to be more clarified. 

Thank you for this question. Yes, according to our interpretation, the effects of Landau quantization 

effectively shift the insulator-metal transition to a higher magnetic field. We suspect that the original 



transition would occur around ~35T (for H||[100]) because this is the field at which (1) quantum 

oscillations begin in the insulating state and (2) gap closure is predicted from considering crystal-field 

states (Fig. 1c). However, further experiments are needed to confirm this hypothesis. We have added 

text explaining these points to the manuscript.  



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I appreciate the authors' effort in elucidating the derivation of both the ordinary and inverse 

quantum oscillation frequencies in their manuscript. The topic of quantum oscillation in insulators is 

of great interest currently, and this paper contributes valuable insights to the field. I am inclined to 

recommend this paper for publication in Nature Communications, provided one concern is 

satisfactorily addressed. 

 

In the revised manuscript and the response to reviewers, the authors have noted that the observed 

SdH frequency aligns with the dHvA frequency reported in earlier studies. While this alignment is 

evident and noteworthy, the discrepancy in the angular dependence of SdH compared to that in the 

previous study raises an important question. Understanding this difference could be important as it 

might offer deeper insights into the quantum oscillation phenomena in insulators. Could the authors 

provide a more detailed explanation or hypothesis to account for this discrepancy? 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors answered to the referees’ comments in detail. Especially a derivation of the model (2) 

was explained in Sec. 3 in SI, and differences between the models in the previous studies and the 

present manuscript are discussed in the reply. The present manuscript proposes an understanding of 

YbB12 which is different from those in the previous studies, which is an important step for 

developments of magnetic field related phenomena in correlated insulators. The model (2) seems 

reasonable for YbB12 and, based on the careful experiments, the authors show that the reverse 

quantum limit described by this model is indeed realized in YbB12. The reverse quantum limit is a 

simple but interesting situation which has not been explored before as far as I know. The revised 

manuscript provides improved discussions in response to the referees. Therefore, I recommend it for 

publication. 

 

 

Reviewer #3 (Remarks to the Author): 

 



The proposed reverse quantum limit model is likely to explain the quantum oscillations in magnetic 

fields for both insulating and metallic phases. Since the model is a very simplified one, it is rather 

surprising that the model can reproduce the results even quantitatively with several parameters of 

plausible values, indicating the model may manifest the essential mechanism of quantum oscillations 

in YbB12. 

 

In this paper, it is suggested that the instability of the Fermi surface at the insulator-metal transition 

with the quantum limit condition can result in the excitonic insulator. This is an intriguing physical 

problem and it will encourage some readers to study how quantum oscillations can occur there. 

 

Although there still have been some issues to be addressed in the future, I think this work has an 

impact on understanding the unusual quantum oscillations found in a correlated insulator. I 

recommend this paper be published in Nature Communications. 

 

 



We thank the referees for their positive feedback. Responses to comments are given below in green. In 
response to Reviewer #1 we have providing additional discussion in Supplementary Note 5. 

------------------------------------------------------------------------------------------------------------------------------------------ 

 

Reviewer #1 (Remarks to the Author): 

I appreciate the authors' effort in elucidating the derivation of both the ordinary and inverse quantum 

oscillation frequencies in their manuscript. The topic of quantum oscillation in insulators is of great 

interest currently, and this paper contributes valuable insights to the field. I am inclined to recommend 

this paper for publication in Nature Communications, provided one concern is satisfactorily addressed. 

 

In the revised manuscript and the response to reviewers, the authors have noted that the observed SdH 

frequency aligns with the dHvA frequency reported in earlier studies. While this alignment is evident and 

noteworthy, the discrepancy in the angular dependence of SdH compared to that in the previous study 

raises an important question. Understanding this difference could be important as it might offer deeper 

insights into the quantum oscillation phenomena in insulators. Could the authors provide a more 

detailed explanation or hypothesis to account for this discrepancy? 

We thank the reviewer for recommending publication and their constructive feedback throughout this 

process. We also appreciate the good question regarding the SdH angular dependence. In response to 

this question, we have added the discussion below to Supplementary Note 5. 

Our SdH data in the insulating state of YbB12 indicates minimal variations in the quantum oscillation 

frequency with angle over a 40° range. This conclusion appears to be independent of whether we 

compute the quantum oscillation frequency directly from Landau level indices or with a Fourier 

transform (Fig. 5 of the manuscript). 

The only other angular dependent measurements of SdH frequencies in YbB12 that we are aware of are 

described in Xiang et al., Science 362, 65–69 (2018). In that work, a pronounced angular dependence in 

the SdH data with a frequency of ~800T for H || [001] is reported. However, more recent work from the 

same group in Xiang et al., Phys. Rev. X 12, 021050 (2022) indicates a significantly smaller SdH frequency 

of ~678T for H || [001]. This newer reported frequency conflicts with the original reported value, but 

now agrees with the reported dHvA frequencies in both their works [Science 362, 65–69 (2018) and 

Phys. Rev. X 12, 021050 (2022)] as well our SdH frequency. 

While we cannot provide a detailed explanation for the origin of this difference, we hypothesize it has to 

do with sample quality. The original report of the angular dependence of the SdH quantum oscillations in 

the insulating state of YbB12 had few, small amplitude oscillations [Science 362, 65–69 (2018)] compared 

to later reports [Phys. Rev. X 12, 021050 (2022)] and our own measurements (see figure below). The 

number, and presence, of SdH oscillations seems to be intimately linked to sample quality. With so few 

oscillations (in some cases only 2 in Science 362, 65–69 (2018)), it can be difficult determine a frequency 

with high accuracy which could lead to the observed differences. This is clearly an important hypothesis 

to address with future angular dependent experiments. 



 

Reviewer #2 (Remarks to the Author): 

The authors answered to the referees’ comments in detail. Especially a derivation of the model (2) was 

explained in Sec. 3 in SI, and differences between the models in the previous studies and the present 

manuscript are discussed in the reply. The present manuscript proposes an understanding of YbB12 

which is different from those in the previous studies, which is an important step for developments of 

magnetic field related phenomena in correlated insulators. The model (2) seems reasonable for YbB12 

and, based on the careful experiments, the authors show that the reverse quantum limit described by 

this model is indeed realized in YbB12. The reverse quantum limit is a simple but interesting situation 

which has not been explored before as far as I know. The revised manuscript provides improved 

discussions in response to the referees. Therefore, I recommend it for publication. 

We thank the reviewer for recommending publication and their constructive feedback throughout this 

process. 

 

Reviewer #3 (Remarks to the Author): 

The proposed reverse quantum limit model is likely to explain the quantum oscillations in magnetic fields 

for both insulating and metallic phases. Since the model is a very simplified one, it is rather surprising 

that the model can reproduce the results even quantitatively with several parameters of plausible 

values, indicating the model may manifest the essential mechanism of quantum oscillations in YbB12. 

 

In this paper, it is suggested that the instability of the Fermi surface at the insulator-metal transition with 

the quantum limit condition can result in the excitonic insulator. This is an intriguing physical problem 

and it will encourage some readers to study how quantum oscillations can occur there. 

 

Although there still have been some issues to be addressed in the future, I think this work has an impact 

on understanding the unusual quantum oscillations found in a correlated insulator. I recommend this 

paper be published in Nature Communications. 

We thank the reviewer for recommending publication and their constructive feedback throughout this 

process. 
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