Suppleme	Intary Table 1.	Seropositivity rates	s by sample type			and inteage	
Genotype	Variable	Value	Total (N)	Seronegative (n)	Seropositive (n)	%	p value
HPV16	Sample	Plasma	343	197	146	43%	
	Sample	Serum	232	152	80	34%	0.052
	Disease	Disease	470	280	190	40%	
	Disease	No Disease	105	69	36	34%	0.244
	Region	Africa	320	187	133	42%	
	Region	Americas	136	80	56	41%	
	Region	Asia	113	82	31	27%	0.004
	Region	Europe	6	0	6	100%	0.001
	Lineage	A	150	104	40	31%	
	Lineage	В	112	62	50	45%	
	Lineage		100	94	64	41%	0 079
	Somplo	D	100	167	52	43%	0.076
	Sample	Serum	107	96	11	24 %	0 003
	Discaso	Discoso	107	137	10	10%	0.005
	Disease	No Disease	171	126	45	26%	0 001
	Region	Africa	89	73	16	18%	0.001
	Region	Americas	158	119	39	25%	
	Region	Asia	78	69	9 Q	12%	
	Region	Furope	2	2	0	0%	0 092
	Lineage	A	197	161	36	18%	0.002
	Lineage	B	126		28	22%	
	Lineade	С	0	4	0	0%	0.418
HPV31	Sample	Plasma	255	161	94	37%	
-	Sample	Serum	176	125	51	29%	0.089
	Disease	Disease	98	72	26	27%	
	Disease	No Disease	333	214	119	36%	0.090
	Region	Africa	40	24	16	40%	
	Region	Americas	357	239	118	33%	
	Region	Asia	23	16	7	30%	
	Region	Europe	11	7	4	36%	0.820
	Lineage	A	148	94	54	36%	
	Lineage	В	145	101	44	30%	
	Lineage	С	138	91	47	34%	0.534
HPV33	Sample	Plasma	134	75	59	44%	
	Sample	Serum	55	31	24	44%	0.961
	Disease	Disease	52	24	28	54%	
	Disease	No Disease	137	82	55	40%	0.090
	Region	Africa	13	6	7	54%	
	Region	Americas	141	80	61	43%	
	Region	Asia	23	14	9	39%	
	Region	Europe	12	6	6	50%	0.816
	Lineage	A	149	80	69	46%	
	Lineage	В	28	18	10	36%	
	Lineage	C	12	8	4	33%	0.437
HPV45	Sample	Plasma	180	149	31	17%	0.004
	Sample	Serum	119	114	5	4%	0.001
	Disease	Disease	109	104	5	5%	
	Disease	No Disease	190	159	31	16%	0.003
	Region	Africa	55	48	/	13%	
	Region	Americas	200	171	29	14%	
	Region	Asia	42	42	0	0%	0.066
	Lincoro		150	122	17	110/	0.000
	Lineage	R	100	100	1/	1170 120/	0 706
HP\/52	Sample	Plasma	107	00	00	50%	0.700
111 VJZ	Sample	Serum	20 191	90 21	99 17	JU%	0 522
	Disease	Disease		22	20	40%	0.000
	Disease	No Disease	170	86	52 84	40%	0 980
	Region	Africa	25	12	13	52%	0.000
	Region	Americas	155	81	74	48%	
	Region	Asia	52	24	28	54%	
	Region	Furope	3	2	-0	33%	0 811
	Lineage	A	146	75	71	49%	
	Lineade	В	35	18	17	49%	
	Lineade	С	38	20	18	47%	
	Lineage	D	16	6	10	62%	0.752
HPV58	Sample	Plasma	162	97	65	40%	
	Sample	Serum	37	18	19	51%	0.212
	Disease	Disease	51	29	22	43%	
	Disease	No Disease	147	85	62	42%	0.688
	Region	Africa	33	17	16	48%	
	Region	Americas	123	70	53	43%	
	Region	Asia	42	27	15	36%	
	Region	Europe	1	1	0	0%	0.567
	Lineage	Α	149	86	63	42%	
	Lineage	В	13	4	9	69%	
	Lineage	С	18	10	8	44%	
	Lineage	D	19	15	4	21%	0.060

al 11.

Lineage D 19 15 4 21% 0. *N*, total number of samples tested; *n*, resulting number of samples testing scropositive or scronegative; *p* value, χ^2 (Chi squared; 2-sided, exact *p* values) test for differences in proportions

Supplemer	ntary Table 2. Lineag	ge-spec	cific geometric mea	an (95%Cl) neutra	alization titers		
Genotype	Infection lineage	N	Metric	PsV-A	PsV-B	PsV-C	PsV-D
HPV16	A	46	n GMT (95%CI) <i>p value</i>	42 361 (233-560)	43 381 (253-572) 0.970	44 346 (233-514) 0.618	43 321 (216-478) 0.331
	В	50	n GMT (95%CI) p value	44 377 (216-657) 0.702	46 390 (227-671)	44 280 (163-482) 0.188	40 284 (160-505) 0.021
	С	64	n GMT (95%CI) p value	50 201 (133-305) <0.001	50 209 (136-321) <0.001	64 481 (320-724)	50 215 (140-329) <0.001
	D	66	n GMT (95%CI) p value	63 318 (220-459) 0.837	64 335 (238-472) 0.636	60 284 (200-404) 0.483	64 330 (235-464)
HPV18	A	36	n GMT (95%CI) p value	36 275 (183-414)	35 271 (174-421) 0.226	35 228 (150-347) 0.043	
	В	28	n GMT (95%CI) p value	27 165 (125-216) 0.802	27 168 (130-216)	27 146 (114-188) 0.001	
	С	0	n GMT (95%CI) p value	N/A	N/A	N/A	
HPV31	A	54	n GMT (95%CI) <i>p value</i>	51 241 (180-324)	53 221 (172-285) 0 115	50 196 (148-260) 0 024	
	В	44	n GMT (95%CI) <i>p value</i>	40 176 (129-240) 0 556	42 181 (134-246)	42 188 (137-257) 0 401	
	С	47	n GMT (95%CI) p value	45 159 (125-203) <0.001	45 175 (137-224) <0.001	47 231 (182-294)	
HPV33	A	69	n GMT (95%CI) p value	66 381 (265-548)	49 132 (93-187) <0.001	38 89 (63-127) <0.001	
	В	10	n GMT (95%CI) p value	6 91 (34-245) 0.017	9 331 (119-923)	8 188 (65-543) 0.032	
	С	4	n GMT (95%CI) p value	3 163 (14-1864) 0 465	3 155 (14-1682) 0 853	3 150 (9-2644)	
HPV45	A	17	n GMT (95%CI) p value	17 180 (134-241)	14 110 (71-170) 0.040		
	В	19	n GMT (95%CI) p value	18 232 (135-398) 0.520	18 218 (133-357)		
HPV52	A	71	n GMT (95%CI) <i>p value</i>	68 266 (202-352)	64 154 (122-194) <0 001	69 250 (196-318) 0 006	50 91 (70-118) <0 001
	В	17	n GMT (95%CI)	16 235 (124-443) 0 004	13 124 (67-228)	16 197 (110-355) 0 008	10 97 (44-213) 0 905
	С	18	n GMT (95%CI) <i>p value</i>	18 346 (189-629) 0 199	16 127 (69-235) <0 001	18 297 (172-510)	11 72 (42-123) <0 001
	D	10	n GMT (95%CI)	7 119 (47-301) 0 203	7 102 (44-240) 0 059	7 112 (45-276) 0 169	9 300 (127-705)
HPV58	A	63	n GMT (95%CI) <i>p value</i>	63 386 (287-520)	58 270 (191-382) 0.203	10 32 (27-37) <0.001	62 376 (276-511) 0.686
	В	9	n GMT (95%CI) <i>p value</i>	6 94 (32-282) 0.550	7 108 (36-329)	4 47 (26-85) 0.260	6 97 (31-304) 0.403
	С	8	n GMT (95%CI) <i>p value</i>	7 133 (64-275) 0.575	6 108 (46-254) 0.401	6 141 (52-379)	5 84 (36-197) 0.263
	D	4	n GMT (95%CI) <i>p value</i>	2 57 (8-384) 0.353	2 53 (13-214) 0.842	2 74 (10-544) 0.853	2 67 (8-559)

N, number of sera positive for antibodies against any lineage antigen; *n*, number of sera positive for antibodies against indicated antigen; GMT, geometric mean (95%CI) neutralization titer; N/A, not applicable; *p* value, Wilcoxon paired rank test (2-sided, exact *p* values).

Pagion	Country	164	16D	160	160	101	10D	100	214	21D	210	22 1	22D	220	450	45D	52A	50P	520	52D	E0 1	E0D	500	59D	Total
Region	Country	IUA	100	100	100	TOA	TOD	100	SIA	310	310	33A	330	330	45A	456	JZA	JZD	520	520	JOA	30D	560	36D	Total
Africa	Algeria	21	15	23	1/	13	1	1			5	1			4	4	1								106
Africa	Guinea	_	2	3		-							1		1									-	1
Africa	Kenya	2	6	31		3	12			1	1	2			8	3	2	1						3	75
Africa	Mali	4	24	15		4	9	3			1			1	9	2	2					4	2	1	81
Africa	Morocco	12	25	47	10	19	1		3		6	3			2	4	4					1			137
Africa	Nigeria	5	9	14		1	13		1		22	1	1	1	11	2	14				4	6	10	2	117
Africa	Tanzania		12	5			6					1			3		1								28
Africa	Uganda		12	5	1		3						1		2										24
Americas	Argentina	15		1	8	7			5	5	11	3				3	11		1		6				76
Americas	Bolivia				1		1		3	2	1				2	1	1								12
Americas	Brazil	5		3	24	12	1		7			6			2	5	1				9				75
Americas	Chile				5					5	1	5			1	3	3	1							24
Americas	Colombia					2			13	1		3									3				22
Americas	Costa Rica		4		9	47	74		76	121	82	82	25	10	69	102	87	5	15	12	81		5	12	918
Americas	Cuba		1		3		1		1							1	1								8
Americas	Panama		1	2	3		3		1		1				3	2	1			1	2				20
Americas	Paraguay				3				1		2	5			2	1	1					1			16
Americas	Peru	17			31	10			15	3		2			3		8		6		4				99
Asia	India	13			2	13					2	6			3	2		2			4				47
Asia	Indonesia														1	3									4
Asia	Korea	5				4			1			5				1		3		1	5				25
Asia	Philippines	10	1	2	5	27	1		4						23	5	3	8	1		9				99
Asia	Thailand	33		7	27	29			13	1		6				4	1	9	13	2	13	1		1	160
Asia	Vietnam	8				4			2			6					3	6			8		1		38
Europe	Poland									1	1														2
Europe	Spain				6	2			2	5	2	12			1	1	1		2		1				35
	Total	150	112	158	155	197	126	4	148	145	138	149	28	12	150	149	146	35	38	16	149	13	18	19	2255

Supplementary Figure 1 Geographical distribution of samples included in this study

Top panel, world map with 30° indicative latitude and longitude grid (Tentotwo; 1:110m Natural Earth Datasets CC BY-SA 3.0; <u>https://commons.wikimedia.org/w/index.php?curid=21507855</u>) highlighting geographical dispersal and approximate number of samples included within this collection. Bottom panel, numbers of samples representing each region, country, type and lineage in this study, where each cell contains *n* number of samples with green intensity reflecting the proportion within the collection.

Supplementary Figure 2 Use of additional antigen clustering tools

Top panel, hierarchical clustering and heatmap using indicated relative scale. Natural log neutralizing antibody titers were reordered according to serological and antigen dendrograms constructed from the resulting Euclidean distance matrices. Serum side bar denotes natural infection lineage from which serum (or plasma) sample derived according to key. Bottom panel, principal component analysis to define relative antigen position in two-dimensional space: lineage A (black), B (red), C (blue) and D (green). The PC1 and PC2 channels accounted for the majority of the variance across these datasets as indicated: HPV16 (91%), HPV18 (100%), HPV31 (100%), HPV33 (100%), HPV45 (100%), HPV52 (97%), HPV58 (98%). Both analyses made use of the ClustVis web tool (https://biit.cs.ut.ee/clustvis/).

Mean (95%CI)	A	В	С	D
Δ		1.7	17.0	1.2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1.7 - 1.8	16.1 - 18.0	1.2 - 1.2
P			15.0	1.7
В			14.3 - 15.7	1.6 - 1.7
<u> </u>				19.3
C				18.5 - 20.2

	Full dataset					М	ean itera	ations (n=1	0)
	E e l el	D	0			E a lat		0	
	Fold	В	ل د	D		Fold	В	L L	D
16	A	1.2	2.7	1.9	16	A	1.2	2.7	2.0
	В		2.6	1.7		В		2.6	1.7
	С			2.0		С			2.0
18	A	1.3	1.4		18	A	1.3	1.4	
	В		1.3			В		1.3	
31	A	1.3	1.6		31	A	1.3	1.6	
	В		1.4			В		1.4	
33	A	4.2	5.9	1	33	A	4.2	5.9	
	В		1.7			В		1.7	
52	A	2.3	1.1	3.9	52	Α	2.3	1.1	3.8
	В		2.2	3.5		В		2.2	3.4
	С			3.6		С			3.6
58	А	1.7	17.2	1.2	58	Α	1.7	17.0	1.2
	В		15.7	1.7		В		15.0	1.7
	С			19.8		С			19.3

# Supplementary Figure 3 Resampling of 90% of neutralization data for antigenic cartography iterations

To test the robustness of the antigenic mapping for each genotype a 10% data redaction method was employed. The dataset for each genotype was subjected to 10 such randomizations (iterations) creating 10 pseudo-replicate antigenic maps. An example using HPV58 is shown with lineages coded as follows: A, black; B, red; C, blue; D, green. Antigenic distances between antigens were summarized as the mean (95%CI). Comparisons of mean distances for the full dataset and the iterative dataset are summarized. Fold difference between indicated antigens shown with <2-fold (green), 2-4 fold (gold) and >4 fold (red) differences highlighted as indicated. Analysis restricted to genotypes with >2 lineages for comparability, thus does not include HPV45.



# Supplementary Figure 4 Antigenic mapping of HPV45 lineage A and B pseudovirus antigens

To estimate the antigenic distance between lineage antigens A and B, a dummy dataset was included in each map based upon a copy of lineage A (A', left panel) or lineage B data (B', right panel). Lineage antigens A (black), B (red) and A'/B' copy (green) as indicated.



# Supplementary Figure 5 Antigenic mapping of type-specific rabbit neutralizing antibody responses

Left panel, Alpha-9 types (HPV16, 18, 31, 33, 35, 52 and 58) and right panel, Alpha-7 types (HPV18, 39, 45, 59 and 68). Filled circles and open squares represent type-specific pseudovirus antigens and rabbit sera (n=3 per type), respectively, and are similarly colored for each type. In each antigenic map the grey grid squares represent 1 antigenic unit (AU), which is equivalent to a 2-fold distance; thus, three grid squares is equivalent to an 8-fold (2³) distance.

Genotype	Total	Single	Dual	Multiple
HPV16	575	541	31	3
HPV18	327	295	32	0
HPV31	431	392	38	1
HPV33	189	169	16	4
HPV45	299	279	18	2
HPV52	235	204	27	4
HPV58	199	165	30	4
Total	2255	2045	192	18
%	100%	90.7%	8.5%	0.8%

	F	ull data	aset			Single infections only				
					•					
	Fold	В	С	D			Fold	В	С	D
16	A	1.2	2.7	1.9		16	А	1.2	2.7	2.0
	В		2.6	1.7			В		2.6	1.7
	С			2.0			С			2.0
18	A	1.3	1.4		-	18	А	1.3	1.4	
	В		1.3				В		1.3	
31	A	1.3	1.6	]		31	Α	1.3	1.6	
	В		1.4	]			В		1.4	
33	A	4.2	5.9	1		33	Α	4.4	6.3	
	В		1.7				В		1.8	
52	A	2.3	1.1	3.9		52	А	2.4	1.1	4.0
	В		2.2	3.5			В		2.4	3.8
	С			3.6	Ī		С			3.7
58	A	1.7	17.2	1.2		58	А	1.7	18.8	1.2
	В		15.7	1.7			В		18.1	1.6
	С			19.8			С			21.6

Supplementary Figure 6 Assessment of antigenic distance using single vs. mixed infection samples

Top panel, a small number of DNA samples exhibited mixed infections. Additional coded serum samples were included to account for this multiplicity. Bottom panel, a subset analysis was conducted where the antigenic distances were estimated for those samples derived from single infections only and a comparison made with those that included all samples. Fold difference between indicated antigens shown with <2-fold (green), 2-4 fold (gold) and >4 fold (red) differences highlighted as indicated. Analysis was restricted to genotypes with >2 lineages for comparability, thus does not include HPV45.

Impact analysis	Samples (n)	Fold	В	С	D
		A	1.2	2.7	1.9
Original dataset	n=226 seropositive samples	В		2.6	1.7
		С			2.0
	Asia and the Americas $(n-87)$ no	A	1.3	2.3	1.9
	samples from Africa or Europe)	B		2.0	1.4
		С			1.6
	Africa and Asia (n=164: no samples	A	1.1	2.8	1.9
	from the Americas or Europe)	В		2.8	1.8
		С			2.2
	Africa and the Americas $(n-180; no)$	A	1.3	2.9	2.1
Impact of geographical	samples from Asia or Europe)	В		2.7	1.7
origin on antigenic		С			2.1
		A	1.1	3.1	2.0
uisiance estimates	Africa only (n=133)	В		3.0	1.9
		С			2.4
		A	1.4	2.5	2.0
	The Americas only (n=56)	В		2.1	1.4
		С			1.7
		A	1.2	2.0	1.5
	Asia and Europe only (n=37)	В		1.8	1.6
		С			1.4
	Reduced lineage A samples (n=27/46:	A	1.2	2.6	1.9
	n=207 total samples ( $n=27740$ ,	B		2.6	1.6
		C			2.0
	Reduced lineage B samples (n=19/50)	A	1.2	2.6	2.0
Impact of seropositivity	n=195 total samples)	В		2.5	1.6
rate on antigenic distance		C			1.9
	Peduced lineage C samples (n=32/64:	A	1.3	2.5	1.9
estimates	n=104 total samples)	В		2.4	1.6
		С			1.8
	Reduced lineage D samples (n-30/66)	A	1.2	2.7	2.0
	n=100 total samples)	В		2.6	1.7
	n=190 (0(a) 3ampies)	С			2.1

Supplementary Figure 7 Impact assessment of geographic origin and seropositivity rate on antigenic distance

Estimates of antigenic distance between HPV16 lineage antigens following inclusion of samples from indicated geographical regions and following removal of *ca*. 50% of seropositive samples to simulate a lower seropositivity rate for the indicated lineages compared to the original dataset. Fold difference between indicated antigens shown with <2-fold (green), 2-4 fold (gold) and >4 fold (red) differences highlighted as indicated.

Method	Туре	N	Fold	В	С	D
		A=69	A	4.2	5.9	
	HPV33	B=10	В		1.7	
		C=4	С			
		A=71	Α	2.3	1.1	3.9
Original dataset	HPV52	B=17	В		2.2	3.5
		D=10	С			3.6
		A=63	Α	1.7	17.2	1.2
		B=9	В		15.7	1.7
	HPV58	D=4	С			19.8
		A=107	A	<b>4.1</b> (3.8 – 4.4)	<mark>5.9</mark> (5.5 – 6.3)	
	HPV33	B=17	В		1.8 (1.7 – 1.8)	
		C=7	С			
	HPV52	A=125	А	2.2 (2.2 – 2.3)	1.1 (1.0 – 1.1)	3.8 (3.6 – 3.9)
Proportionate randomized		B=28 C=29	В		2.2 (2.1 – 2.3)	3.6 (3.4 – 3.8)
resampling with		D=18	С			3.6 (3.5 – 3.7)
	HP\/58	A=147	A	1.7 (1.6 – 1.8)	<mark>16.2</mark> (14.7 – 17.7)	1.2 (1.2 – 1.3)
		B=23 C=20 D=10	В		14.5 (12.8 – 16.2)	1.7
			С			18.9 (17.0 – 20.9)
		A 50	A	<b>4.3</b> (4.1 – 4.5)	<b>4.8</b> (4.6 – 5.0)	
	HPV33	A=50 B=50	В		1.5 (1.4 – 1.5)	
		C=50	С			
Disproportionate		A=50	А	2.3 (2.3 – 2.4)	1.1 (1.0 – 1.1)	<b>4.1</b> (3.9 – 4.3)
randomized resampling with	HPV52	B=50 C=50	В		2.3 (2.2 – 2.4)	<b>4.0</b> (3.8 – 4.3)
replacement		D=50	С			3.9 (3.8 – 4.1)
		A=50	А	1.8 (1.8 – 1.9)	<mark>8.1</mark> (7.6 – 8.6)	1.3 (1.3 – 1.4)
	HPV58	B=50 C=50	В		<mark>6.2</mark> (5.9 – 6.5)	1.8 (1.7 – 1.9)
		D=50	С			<mark>9.5</mark> (8.9 – 10.2)

# Supplementary Figure 8 Antigenic distance estimates following randomized resampling with replacement

Estimates of antigenic distance (mean, 95%CI) between lineage antigens following two randomized resampling with replacement evaluations compared to the original dataset. The proportionate randomized resampling with replacement randomly selected samples from the type-specific dataset where N represents the mean number of samples for each lineage after 10 iterations and is expected to maintain the structure of the original dataset. The disproportionate randomized resampling with replacement randomized resampling with replacement randomly selected samples until a target of N=50 samples for each lineage was reached and therefore is not expected to retain the structure of the original dataset. Fold difference between indicated antigens shown with <2-fold (green), 2-4 fold (gold) and >4 fold (red) differences highlighted as indicated.