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EXPERIMENTAL DETAILS

TbMn6Sn6 crystallizes in the HfFe6Ge6-type structure with hexagonal space group P6/mmm

(No. 191) and lattice parameters a and c are 5.530 and 9.023 Å at 300 K [S1].

HEISENBERG MODEL DESCRIPTION

The Heisenberg model is given by H = Hintra +Hinter +Haniso. Each Mn kagome layer pos-

sesses strong NN FM exchange (J1 = −28.8 meV),

Hintra = J1

∑
⟨i<j⟩

si · sj (S1)

where s is the Mn spin operator with magnitude s = 1. Several unique interlayer magnetic cou-

plings between Mn layers and between Mn and Tb layers are found, giving

Hinter =
∑
k

∑
i<j

JMM
k si · sj+k + JMT

∑
⟨i<j⟩

si · Sj. (S2)

Here, JMT = 0.93 meV is the AF coupling between neighboring Mn and Tb layers, with Tb

having a total spin angular momentum of S = 3 and Mn having s = 1. Competing interactions

between Mn layers with a layer index k up to k = 3 (JMM
1 = −4.4 meV, JMM

2 = −19.2

meV, JMM
3 = 1.8 meV) are necessary to fully describe the low energy spin waves, especially the

splitting of AO and AE modes. Finally, uniaxial and easy-plane single-ion anisotropies for Tb and

Mn, respectively, are described by

Haniso = KT
∑
i

(Sz
i )

2 +KM
∑
i

(szi )
2 (S3)

with KT = −1.28 meV and KM = +0.44 meV [S2, S3].

Extended models where longer-range intralayer Mn-Mn interactions have been introduced,

such as J2, J3a (through the Mn atom), and J3b (across the hexagon). Generally, longer-range

FM interactions pull down the average energy OE and OO modes in better correspondence to ex-

periments. We try not to affect the AO and AE modes by introducing constraints. For example,

keeping J1 + 3J2 = constant will keep the M-point energies of the AE and AO modes fixed.

Fig. S1 shows some results for the extended models.

In Fig. S2, we show constant energy slices from the Heisenberg model parameters used in

the main text. This can be compared to the data shown in Fig. 2 of the main text. The model
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FIG. S1. Calculations of the neutron scattering intensity along the (1-K,2K), (H,0) and (H-0.5,1) directions for

Heisenberg model with (a) Nearest-neighbor intralayer interaction J1 = −28.8 meV, (b) nearest and next-nearest

neighbor interactions with J1 = −15 meV and J2 = −4.6 meV and J1 + 3J2 = −28.8 meV, (c) nearest and third-

nearest neighbor (through the Mn) interactions with J1 = −12 meV and J3a = −8.4 meV and J1 + 2J3a = −28.8

meV, (d) nearest and third-nearest neighbor (across the hexagon) interactions with J1 = −12 meV and J3b = −8.4

meV and J1 + 2J3b = −28.8 meV.

calculations indicate that intensity principally occurs in the Γ zones below 130 meV (comprised

of AE and AO modes) and only in the Γ′ zones above 130 meV (comprised of OE,OO,FE, and

FO modes). The flat band modes that occur at the highest energies have intensities centered at the

K-point.
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FIG. S2. Constant energy slices of the TbMn6Sn6 spin excitations from a Heisenberg model. Slices are identical to

the data cuts shown in Fig. 2 and are made over incremental energy ranges from (a) 50–70 meV, (b) 70–90 meV, (c)

90–110 meV, (d) 110–130 meV, (e) 130–150 meV, (f) 150–170 meV, (g) 170–190 meV, (h) 190–210 meV, (i) 210–230

meV, (j) 230–250 meV. Data were collected at Ei = 250 meV for panels (a)–(e) and Ei = 500 meV for panels (f)–(j).

All cuts are averaged over an L-range from -7 to 7 rlu. Hexagonal Brillouin zone boundaries are shown and Γ and Γ′

zone centers are indicated by filled and empty circles, respectively.

DAMPED HARMONIC OSCILLATOR ANALYSIS

Figure 1(i) in the main text shows cuts at the key reciprocal space positions for the chiral and flat

band excitations. Here, we fit the imaginary part of the dynamical magnetic susceptibility to a to a

damped harmonic oscillator lineshape, χ′′(E) = AγE/[(E2 − ω2
i )

2 + E2γ2
i ], plus a background.

We find the mean frequencies of the chiral and flat mode cluster excitations, ωC =145(2) meV

and ωF =187(8) meV, and the corresponding relaxation rates, γC =69(10) meV and γF =115(30)

meV, respectively. The relaxation rates are influenced by the background fitting, so we used the

cut at Γ = (2, 0) to estimate the high-energy background level. Nonetheless, an oscillator Q-factor

of ω/γ ≈ 1.5− 2 for the two modes is consistent with large damping.
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FIG. S3. Comparison of slices along the (−K, 2K, 0) direction for a) T = 5 K and b) 400 K. Data are proportional

to the dynamical susceptibility, χ′′(q, E) = I(q, E)(1 − exp(−E/kT )). Cuts are performed with Ei = 250 meV.

All plots are also averaged over reciprocal space ranges of H = [0.9 : 1.1] and L = [−7 : 7]. Data are symmetrized

according to the P6/mmm space group to improve statistics.

TEMPERATURE DEPENDENCE

Figure S3 compares slices through excitations in the Γ and Γ′ zones at T = 5 K and 400 K as

measured with Ei = 250 meV for several energy transfers. These data show that the dispersive

AO and AE excitations in the (-1,2,0) Γ zone are further split at 400 K, indicating significant

softening of the Mn modes just below TC . The localized q = 0 cluster mode in the (1,0,0) Γ′ zone

is still observed at 400 K. Both the dispersive Γ and localized Γ′ modes are more intense at lower

energies, but their intensity rapidly diminishes above 100 meV as a consequence of softening and

mode damping near TC . Evidence of the dispersive Γ mode is present at 130 meV. However, the

Γ′ excitation appears to be completely suppressed above 130 meV at 400 K. Despite the complex

temperature dependence, which also must take into account the transition from uniaxial to easy-

plane ferrimagnetism above TSR = 310 K, the data suggest that the both the Γ and Γ′ excitations

occur on an ordered Mn sublattice.
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FIG. S4. Calculation of the structure factor of a triangular cluster with chiral Γ′ spin correlations.

PLAQUETTE STRUCTURE-FACTOR CALCULATIONS

Triangular plaquette. Spin correlations are most likely to occur in hexagonal or trangular

plaquettes in the kagome layer. In Fig. S4, we plot the structure factor for chiral spin correlations

around a triangular plaquette. This pattern is not consistent with the q-dependence of the data in

the Γ′ zones shown in Fig. 2(a)–(e). Fig. 3(g) shows a schematic diagram of flat band and chiral

spin excitations which have no phase coherence from hexagon-to-hexagon.

Chiral spin correlations with planar magnetization. Above 310 K, TbMn6Sn6 adopts a pla-

nar magnetization. In this scenario, chiral spin correlations originating from spin fluctuations that

are transverse to the magnetization (with vector chirality pointing in the plane) will involve and

in-plane and out-of-plane components of the instantaneous moment. To account for the planar

magnetization and compare to the uniaxial case, we must also average the neutron intensity over

the three different domains of the planar magnetization vector. The neutron intensity for an arbi-

trary direction of the magnetization is given by the sum

S(q) = f 2(q)
∑
αβ

(δαβ − q̂αq̂β)Sαβ (S4)

and

Sαβ(q) =
∑
ij

Si
α(S

j
β)

∗exp[q · (rj − ri)] (S5)
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FIG. S5. (a) Calculation of the structure factor for transverse chiral spin correlations of a single-domain planar

magnetization with magnetization direction (and vector chirality) pointing along the x direction (shown as the white

arrow labeled ”M”). (b) Chiral structure factor for planar magnetization after averaging over all three domains. (c)

Comparison to the chiral structure factor for uniaxial magnetization pointing along z.

where Sα are the spin components transverse to the magnetization.

For example, if the planar magnetization points along the x direction, then transverse chiral spin

correlations have components Sx = 0, Sj
y = sin ϕj , and Sj

z = cos ϕj . When suitably averaging

over all instantaneous configurations and L, then Fig. S5(a) shows that a single planar domain

gives a chiral scattering pattern with in-plane intensity anisotropy consistent with the average

magnetization direction. After averaging over all three equivalent planar magnetization domains,

the planar chiral structure factor (Fig. S5(b)) is identical to the uniaxial structure factor (Fig. S5(c)

to within an overall scale factor. The scale factor depends on the data analysis choices, such as

the L-averaging. In general, these results indicate that the unpolarized neutron scattering data is

unable to determine the direction of the vector chirality after domain averaging.

MASSIVE DIRAC FERMIONS

Figure S6, shows the expectation for intravalley and intervalley charge scattering for massive

Dirac fermions (MDFs), which form a continuum of scattering near the Γ and K-points. Experi-

mental data place the chemical potential at ED = −130 meV with a band gap of ∆ ≈ 30 meV [S4].

The features of the continuum of scattering from interband transitions of the MDFs show similar
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FIG. S6. Continuum of electron-hole scattering channels for massive Dirac fermions in a 2D kagome layer. Dirac

fermions are characterized by the chemical potential ED and gap ∆.

energy onset and q-dependence as the data. However, the spin-polarized nature of the MDFs in-

dicates that these are not spin-flip transitions and therefore should not couple to magnons. This

assumption is supported by our DFT calculations.

DENSITY-FUNCTIONAL THEORY CALCULATIONS AND LANDAU DAMPING

Band structure. The electronic structures of TbMn6Sn6 were calculated in the DFT+U approxi-

mation using an all-electron full-potential LMTO (FP-LMTO) [S5]. Plain DFT usually incorrectly

positions the Lanthanide 4f states near the Fermi level. A sizable on-site Hubbard U ≈ 7 eV cor-

rection was applied on Tb-f states to push down the occupied 4f states and further away from the

Fermi level. The resulting spin magnetic moments and band structure compare well with those

previously calculated using other full-potential all-electron methods [S6].

Susceptibility calculation. After obtaining the self-consistent ab initio Hamiltonian H , we cal-

culate the bare transverse spin susceptibility χ+−
0 (q, ω) using the eigenvalues and eigenfunctions
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FIG. S7. The imaginary part of the bare transverse spin susceptibility Im[χ+−
0 (q, ω)] along the

high symmetry path Γ–K–M–Γ–Z in TbMn6Sn6. The intensity of Im[χ+−
0 (q, ω)], normalized with

max(Im[χ+−
0 (q, ω)]), is shown in the energy windows of 0–3 eV (left panel) and 0–300 meV (right panel),

respectively. Im[χ+−
0 (q, ω)] characterizes the intensity of single-particle spin-flip excitations—the Stoner

excitations.

of H within a linear response theory [S7–S10],

χ+−
0 (r, r′,q, ω) =

occ∑
kn↓

unocc∑
k′n′↑

Ψ∗
kn↓(r)Ψk′n′↑(r)Ψ

∗
k′n′↑(r

′)Ψkn↓(r
′)

ω − (ϵk′n′↑ − ϵkn↓) + iδ

+
unocc∑
kn↓

occ∑
k′n′↑

Ψ∗
kn↓(r)Ψk′n′↑(r)Ψ

∗
k′n′↑(r

′)Ψkn↓(r
′)

−ω − (ϵkn↓ − ϵk′n′↑) + iδ
, (S6)

where k′ = q + k. For computational efficiency, χ0 was calculated using a mixed basis [S11],

which consists of the product basis [S11, S12] within the augmentation spheres and interstitial

plane waves. We first calculate χ+−
0 (q, ω) on a 12× 12× 6 q mesh and construct the χ+−

0 (R, ω)

through Fourier transformation. Then we use the resulting χ+−
0 (R, ω) to calculate χ+−

0 (q, ω) with

a dense set of q points along high-symmetry paths.

The Mn-d bands dominate near the Fermi level, governing the spin-flip excitations. Figure S7

shows the imaginary part of the bare transverse spin susceptibility Im[χ+−
0 (q, ω)] along the high

symmetry path Γ–K–M–Γ–Z. As shown in the left panel, the most prominent Stoner excitations

occur near 2.2 eV, corresponding to the exchange splitting of Mn-3d bands that dominate near the

Fermi level. However, since TbMn6Sn6 is a metallic system, small finite q-dependent χ+−
0 (q, ω)

can also be observed in the energy window of magnon excitations (right panel), which may cause

the magnon damping.
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