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Section 1 provides further detail of the steps that were taken when constructing the analysis data

set from the Community Data Warehouse (CDW). Section 2 contains additional information of the

spatio-temporal general practice (GP) registration model that was omitted from the main article as

this is not the primary focus of the research. Finally, Section 3 contains exploratory data analysis,

Markov Chain Monte Carlo (MCMC) methodology, and diagnosis, to supplement the information

given in the main article.

1 Primary data source

The construction of the population data set from the CDW is outlined in the Methods section of

the main article. Here we provide additional detail of decisions made, for the sake of transparency:

• Duplicate NHS Numbers (most commonly caused by an individual being registered at more

than one GP) with agreeing sex, date of birth, and date of death (if applicable), are assumed

to be the same person, and the record with the most recent GP registration start date is

taken as their current GP practice and address. If there is discrepancy then all records with

the given NHS number are excluded.

• In order to be counted in a particular year, an individual’s entry date must be prior to the

half way point (1st October) of the given year and their end date after the halfway point.

This was done to avoid overestimating the population count, particularly in areas with highly

transient populations.

• For a given GP registration in the CDW, only the individual’s current address, rather than

entire address history, is recorded. A change in address can only be identified if it is accom-

panied by a change in registered GP. Consequently, it is possible to observe “large” moves in

people, but not “smaller” local moves. This limitation is exacerbated by several GP practices

in the Morecambe Bay Clinical Commissioning Group (MBCCG) being made up of multiple

sites. For example, Lancaster Medical Practice is comprised of eight separate sites spread

over central Lancaster, hence an individual could move multiple times living in varied areas,

demographically speaking, whilst remaining with the same GP. In addition, since GP regis-

tration end date is missing, it is not possible to determine whether there are breaks between

registrations, for example if an individual has moved out of the MBCCG then moved back

in at a later date. Therefore, we only consider the most recent registration for each distinct

individual. Although this does waste some information, given the relatively short length of

the study period it should only impact majorly on areas with transient populations which

will have a spatial correlation.

• “Regular” registrations only are considered. In England, a “temporary” GP registration

can be used whilst away from home for work, study, or on holiday, for up to three months.

Individuals with a temporary registration remain registered with their permanent GP surgery

during this time.
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2 GP registration model

The primary focus of the main article is referrals to outpatient respiratory clinics and the impact

of the MBRN, hence minimal focus is given to the extensive work carried out to model the GP-

registered population. In this section we provide extended detail of the model, including motivation,

exploratory analysis, methodology, and results. Some information from the main article has been

duplicated for the sake of clarity and completeness.

2.1 Model motivation

For our study into referrals to outpatient respiratory clinics, it is crucial to adjust for patient

burden to avoid producing a model that simply acts as a proxy for chronic respiratory disease

(CRD) prevalence. Our modelling approach includes CRD patient count as an offset term to

express the rate of referral for each space-time unit in terms of number of CRD patients. Patients

with a CRD diagnosis are identified from CDW primary care records. However, the number of

patients registered at a MBCCG GP for a given space-time unit is open to multiple sources of

error which will in turn bias the CRD patient count. NHS Digital has released GP-registered

population data at Lower Layer Super Output Area (LSOA) level since 2014, allowing us to apply

a correction to our CRD patient count for study years 2014-2019 (see Methods: Statistical Analysis:

1. Adjusting CRD patient count of the main article). However, NHS Digital has only released this

data since 2014, whereas our study begins in 2012. The purpose of this model is to model the

error process between the true GP-registered population count taken from NHS Digital and the

corresponding erroneous population count from the CDW. The model output allows us to predict

the unobserved NHS Digital data for 2012 and 2013 and apply the correction to the CRD patient

count. For our research into outpatient referrals, the GP registration model is a means to an end,

but the methodology outlined could be applied to other research where official statistics are required

beyond the time frame for which they have been reported.

2.2 Exploratory analysis

The outcome variable, denoted PNHS
it , is the number of adults ≥ 25 years registered at an MBCCG

GP for LSOA i = 1, . . . , N and year t = 1, . . . , T + 1, calculated from NHS Digital. Our study of

outpatient referrals is over T = 8 study years (2012-2019), yet for this model we utilise data from the

year 1st April 2020 - 31st March 2021. We recognise that including the 2020/21 year may introduce

COVID-related bias (e.g., people may have been less likely to move house or relocate during the

pandemic which would in turn affect GP registration) but it has been included to increase the

sample size and improve the model’s prediction capacity.

We first consider a generalised linear model (GLM). The outcome counts are sufficiently large (mean

= 1181, minimum = 681) to justify a log-Gaussian model as an approximation to the Poisson. The

natural logarithm of CDW population count, from which we aim to predict the outcome variable

for the unobserved years, is included as a covariate (log(CDW)). Additional covariates are included to
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adjust for known sources of error, namely year (Year) and proportion of the population registered

at a GP not included in the CDW data sharing agreement (Missing). Table S1 provides further

details of the variables used in analysis and Table S2 provides summary statistics. The GLM is of

the form:

log(PNHS
it ) = β0 + β1 log(CDWit) + β2 Yeart + β3 Missingit .

Spatial autocorreltion was explored using Moran’s I statistic computed on the GLM residuals for

each year separately; the values ranged from 0.23 to 0.33 with p-values<0.0001 in all years. The lag-

1 temporal autocorrelation calculated for each LSOA separately yielded a mean of 0.3762 across all

LSOAs. Therefore, we pursued modelling approaches that would account for strong spatio-temporal

correlation.

Table S2: Summmary statistics for covariates used in the GP registration model (NHS Digital GP-

registered population, CDW population count, and proportion of the LSOA population registered

at a GP not in the CDW).

Min 1st Median Mean 3rd Max

NHS Digital 680.6 960.5 1102.5 1180.7 1356.5 2210.7

CDW 365 881 1048 1095 1272 2153

Proportion missing 0 0 0 0.022 0.017 0.555

2.3 Methodology

2.3.1 Model specification

Let S = (S1, . . . , ST+1) be the set of random effects for time points t = 1, . . . , T + 1, where

St = (S1t, . . . , SNt) is a vector of LSOA-level random effects for a given time point t. Then,

log(PNHS
it ) |Sit ∼ N

(
xTitβ + Sit, σ

2
)
,

where xit is the vector of explanatory variables, β the corresponding regression parameters, and

σ2 the variance of the residual errors. The model captures the spatio-temporal autocorrelation

by assigning the random effects a spatio-temporal extension of conditional autoregressive (CAR)

priors, which are a type of Gaussian Markov random field (GMRF). Here we follow the model

proposed by Rushworth et al. [1],

St|St+1 ∼ N
(
ρTSt+1, τ

2Q(ρS ,W )−1
)

t = 1, . . . , T

ST+1 ∼ N
(
0, τ2Q(ρS ,W )−1

)
.

(1)

The ST+1 is specified marginally since ST+2 does not exist. We condition in the reverse order

since the unobserved data is the furthest back in time as opposed to a future event which is more

typically seen in prediction modelling.

The random effects specified in (1) are non-separable in space and time. Temporal correlation is

modelled in the conditional expectation via a first-order autoregressive process with dependency
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Table S1: Description of variables used in spatio-temporal GP registration model.

Variable Time

varying

(Y/N)

Source Description Notes

GP-registered

population

Y NHS Digital Average number of adults (25+

years) registered at a MBCCG GP

for each LSOA inside the CCG

boundaries

LSOA-level data released quarterly (1st Jan, 1st Apr,

1st Jul, 1st Oct) since January 2014. LSOA-level given

for all-age only. GP-level given in five-year age brack-

ets. Number 25 years or over estimated for each LSOA

by multiplying the number registered at each GP by

the proportion of that GPs register over 25. Estimates

calculated for each quarter and averaged across study

years.

Only consider data for MBCCG GPs and LSOAs

within the MBCCG.

‘Regular’ registrations only. ’Temporary’ registrations

are not counted in the NHS Digital data

CDW GP reg-

ister counts

Y CDW

(primary

care records)

Annualised count of the number of

adults (25+ years) registered at a

MBCCG GP for each LSOA inside

the CCG boundaries

Entry date – most recent of study start date

(01/04/12), 25th birthday, and GP registration start

date.

End date – earliest of date of death and GP registra-

tion end date proxy. If not relevant then ’NA’.

‘Regular’ registrations only. ’Temporay’ registrations

not included.

Year Y NA Continuous variable form of year Exploratory analysis suggested a linear trend between

(natural logarithm of) GP-registered population and

time, hence the use of a continuous form of year.



Missing GPs Y NHS Digital Percentage of the LSOAs GP-

registered population missing from

the CDW as a result of GPs not in

the data sharing agreement

Two GPs not in the data sharing agreement of the

CDW. An additional GP closed in September 2015

(before the CDW was created), patients had to regis-

ter at a new GP so these patients are “missing” pre-

September 2015.

Percentage calculated using LSOA-level GP registra-

tion data released by NHS Digital. We do with calcu-

lations with all-age data and assume this variable not

to be correlated with age. As with the ’GP-registered

population’ variable, mean taken across quarters.

For the study years 2012 and 2013, the 2014 value is

used. Exploratory analysis suggests this variable does

not fluctuate year-on-year.
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parameter ρT , whereas the spatial autocorrelation is induced via the precision matrix, Q. Numerous

specifications for the precision matrix have been proposed in the CAR literature, but here we use

that proposed by Leroux et al. [2], Q(ρS ,W ) = ρSW+(1−ρS)I where ρS is the spatial dependency

parameter, I the N ×N identity matrix, and W an N ×N neighbourhood matrix defined for the

204 non-overlapping spatial units that comprise the lattice data for this study. Using the notation

i ∼ j to mean “areas i and j share a common border” and ni to be the total number of neighbours

for area i, the individual elements of W are:

wij =


ni if i = j

−1 if i ∼ j

0 otherwise .

Thus the precision matrix is a weighted average of the spatially dependent and independent struc-

tures, accommodating both weak and strong spatial autocorrelation [3]. The univariate full condi-

tional distribution better illustrates the spatial relationship, and is given by,

Sit|S−i,t ∼ N

(
ρS
∑

j∼i Sjt

niρS + 1− ρS
,

τ2

niρS + 1− ρS

)
.

The subscript notation −k is used to mean ”all elements except k”, and so S−i,t is the vector of all

random effects at time point t excluding area i.

2.3.2 MCMC methodology

Model fit was carried out by sampling from the posterior distribution of the parameters using

MCMC methodology. It is assumed the reader has an understanding of the fundamentals of

Bayesian inference and MCMC methods.

Prior distributions:

The random effects, Sit (i = 1, . . . , N and t = 1, . . . , T + 1), act as latent variables and the spatio-

temporal CAR prior is described in (1). For the remaining parameters, we assume the following

independent prior distributions:

τ2 ∼ Inverse-Gamma (a, b)

σ2 ∼ Inverse-Gamma (c, d)

ρT ∼ Unif (0, 1)

ρS ∼ Unif (0, 1)

β ∼ N
(
0, λ2I4

)
,

where a = c = 1, b = d = 0.01, λ2 = 1000, and I4 the 4-dimensional identity matrix.
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Posterior distribution:

Let θ = (β, S, τ2, σ2, ρT , ρS) be the vector of parameters to be estimated. The joint posterior

distribution is:

π (θ|P ) ∝ f (log (P )|S)×
T+1∏
t=1

π(St|St+1)× π(τ2, σ2, ρT , ρS , β)

∝
(
σ2
)−N(T+1)

exp

(
− 1

2σ2
(log(P )−Xβ − S)T (log(P )−Xβ − S)

)
× det

(
τ2Q−1

)−(T+1)/2
exp

(
− 1

2τ2

T+1∑
t=1

(St − ρTSt+1)
T Q (St − ρTSt+1)

)
× π(τ2, σ2, ρT , ρS , β) .

In the above we define ST+2 = 0 to simplify the posterior equation and write π(τ2, σ2, ρT , ρS , β) as

shorthand for the prior distributions.

Updating algorithms:

The parameters (τ2, σ2, ρT ) were updated via separate Gibbs samplers according to their full con-

ditional posterior distributions:

τ2|P, θ−τ2 ∼ Inverse-Gamma

(
a+

N(T + 1)

2
, b+

1

2

T+1∑
t=1

(St − ρTSt+1)
T Q (St − ρTSt+1)

)

σ2|P, θ−σ2 ∼ Inverse-Gamma

(
c+

N(T + 1)

2
, d+

1

2
(log(P )−Xβ − S)T (log(P )−Xβ − S)

)
ρT |P, θ−ρT ∼ Truncated-Normal

( ∑T+1
t=1 St

TQSt+1∑T+1
t=1 St+1

TQSt+1

,
τ2∑T+1

t=1 St+1
TQSt+1

; 0, 1

)
,

where the parameters of the truncated normal distribution respectively correspond to the mean,

variance, minimum value, and maximum value.

The parameter ρS was updated via a random walk Metropolis step. The tuning parameter was

tuned to achieve an acceptance rate between 0.4 and 0.45.

The regression parameters, β, and latent variables, S, were updated jointly using Gaussian Markov

random field (GMRF) full conditional sampling techniques outlined in Chapter 2 of Rue and Held

(2005) [4]. To summarise, we define ϕ = (β, S) and so,

ϕ|P, θ−ϕ ∼ N

(
1

σ2
V −1AT log (P ), V −1

)
,

where A is the design matrix and V the precision matrix for ϕ. We omit the full specification of

V −1. To ensure V is singular, we enforce the linear constraint
∑

i ϕi = 0. Sparse matrix methods

combined with the algorithm for sampling from GMRFs under a linear constraint outlined on page

38 of Rue and Held (2005) were used to improve computational efficiency [4].
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Inference

Inference was based on 2,000 independent samples obtained from 250,000 iterations of the algorithm

with a burn-in of 50,000 and the remaining 200,000 thinned by a factor of 100 to remove any

remaining autocorrelation. Convergence of the MCMC algorithm was established by the Gelman-

Rubin convergence diagnostic calculated on three shorter chains to select a suitable length for the

burn-in period. Trace plots, density curves, auto-correlation plots, and effective sample size (ESS)

calculations were used to assess sufficient mixing of the final chain. The independent variables were

standardised prior to model fit to reduce multicollinearity.

The unobserved data for years 2012 and 2013 (corresponding to years t = 1, 2) are treated as

missing values in the response vector and are estimated each iteration of the MCMC algorithm

according to the posterior predictive distribution:

̂log(Pit)|P ∼ N
(
xTitβ0 + Sit0, σ

2
0

)
t = 1, 2 ,

where 0 has been used to denote the current values of the parameters at a given iteration.

2.4 Results

In preliminary runs of the MCMC algorithm, the temporal dependency parameter, ρT , was close

to 1 (0.989), suggesting very strong temporal autocorrelation in the error process between NHS

Digital data and the CDW. The model was repeated with ρT fixed at 1 which represents perfect

temporal auotcorrelation. The Deviance Information Criterion (DIC), an indicator of model fit for

hierarchical models, was equivalent (DIC=-7299) for the models with fixed and variable temporal

dependency. Hence for sake of parsimony, we proceeded with the temporal parameter fixed at 1.

2.4.1 Model output

Table S3 shows the results of the model fit.

Table S3: Median parameter estimates, 95% credible intervals (CI), and effective sample size (ESS)

for the spatio-temporal GP-registration model based on 2,000 independent MCMC samples.

Parameter Coefficient 95% CI ESS

ρs 0.353 (0.264, 0.450) 2000

σ2 0.000173 (0.000144, 0.000207) 2138

τ2 0.00263 (0.00226, 0.00303) 2000

β0 (Intercept) 6.111 (6.088, 6.136) 1360

β1 (log(CDW)) 0.000839 (0.000817, 0.000860) 2000

β2 (Year) -0.0152 (-0.0173, -0.0130) 1535

β3 (Missing GPs) 1.302 (1.203, 1.399) 2000

Figure S1 is a boxplot of the LSOA-level true GP-registered population; observed years are shaded

in grey and the predicted years shaded in green. The predicted years are very similar to that
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of 2014. This is supported by census data over the same time period which shows a plateau in

the total adult population between 2012-2014 (Figure S2). Although the census population is not

identical to the GP-registered population, it is still a good indicator of overall trends [5].
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Figure S1: Spread of LSOA-level GP-registered adult (≥25) population from NHS Digital data for

years 2014-2020 (shown in grey) and spatio-temporal model prediction results for years 2012-2013

(shown in green).
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Figure S2: Total population size for the 204 study LSOAs according to ONS mid-year estimates.

The predictive performance of the spatio-temporal model was by leave-one-out cross validation on

the observed data (2014-2020). The mean absolute percentage error (MAPE) was calculated for the

predictions as well as the percentage of LSOA-level true values within the 95% credible intervals

for the corresponding prediction (Figure S4). The model predicts well for years 2014-2019, with a

maximum of three LSOAs falling outside the 95% CI. The year 2020 performs considerably worse

compared to the others, likely due to impact of the COVID-19 lockdown on movement of people

and GP registration behaviour.
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Table S4: Mean absolute percentage error (MAPE) and proportion of true values that are within

the 95% credible interval (CI) for each year predicted.

Year predicted MAPE LSOAs in 95% CI

2014 1.81 202 (99.0%)

2015 1.14 202 (99.0%)

2016 1.21 204 (100.0%)

2017 1.02 204 (100.0%)

2018 1.11 201 (98.5%)

2019 1.36 202 (99.0%)

2020 3.28 168 (82.4%)

2.4.2 MCMC diagnostics

Figures S3-S5 show the traceplots and density curves for the parameters in the model and a subset

of the latent variables. The ESS for the model parameters can be seen in Table S3, and the ESS

for the latent variables had a median of 2,000 and a minimum of 1,104.
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Figure S3: Diagnostic traceplots and density curves for (τ2, σ2, ρs) in the spatio-temporal GP

registration model.
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Figure S4: Diagnostic traceplots and density curves for the β parameters in the spatio-temporal

GP registration model.
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Figure S5: Diagnostic traceplots and density curves for a subset of the S latent variables in the

spatio-temporal GP registration model.
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3 Outpatient referrals model

This section supplements the main article by providing additional details of the generalised linear

mixed model (GLMM) for outpatient referrals. We first present exploratory data analysis results

before describing the specifics of the MCMC algorithm used for model fit. The material is assumed

to be read in conjunction with the main article.

3.1 Exploratory data analysis

Table S5 provides a summary of the variables used in the referrals model, including data source,

general description, and additional notes.

Response variable

Figure S6 shows the time trend in the raw referral counts data by MBRN intervention status.

For the sake of this figure, we dichotomiose the MBRN covariate so that an LSOA is classed as

“MBRN” if the proportion of the population registered at an MBRN GP ≥ 50% and “Non-MBRN”

otherwise. Prior to the initiation of the MBRN, the time trends are quite similar between the two

groups. Post-initiation, the MBRN areas show a dramatic decrease in annual number of referrals

whilst non-MBRN areas continue in an upward trend. However, the patterns in this plot do not

account for population growth or changes in the demographic or health structure of the populations.

Explanatory variables

Table S6 provides summary statistics of the covariates used in the final model for referrals to

outpatient respiratory clinics.

Table S6: Summary of model covariates over all space-time units. All values are percentages, except

the distance variable which is in kilometres.

Min 1st quartile Median Mean 3rd quartile Max

65-74 4.40 13.73 16.42 16.88 20.52 32.70

75+ 2.33 9.90 13.54 14.09 16.79 34.71

Male 40.19 46.63 47.88 48.20 49.43 65.66

Distance 0.87 3.31 6.81 9.42 13.27 38.16

IMD 3.62 10.84 16.72 22.62 29.19 77.84

MBRN 0 0.20 51.46 50.93 99.90 100.00

Table S7 shows the change in mean of all time-varying covariates: both age variables show a mostly

increasing trend, indicative of an ageing population and percentage male has increased marginally.

The proportion of the population registered at a GP that joined the MBRN in 2017 remained
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Figure S6: Annual number of referrals for intervention and non-intervention areas. The MBRN

covariate has been dichotomised at the 50% mark. The grey dashed line represents the introduction

of the MBRN in 2017.
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Table S5: Description of variables used in the random intercept model of referrals to outpatient respiratory clinics.

Variable Time

varying

(Y/N)

Source Description Notes

Outpatient re-

ferrals

Y CDW

(secondary

care records)

Annualised count of number of

referrals to outpatient respiratory

clinics

New referrals from GP, for adults aged 25+ years re-

siding within MBCCG boundaries.

Clinic inclusion: respiratory, spirometry, lung, or oxy-

gen clinics; nurse or consultant led; at Royal Lancaster

Infirmary, Furness General Hospital, or Westmorland

General Hospital.

Clinic exclusion: post-op, rheumatology, physio,

asthma biologics, or sleep clinics, and 2-week-wait can-

cer referrals.

CRD patients Y NHS Digital

and spatio-

temporal

model output

Annualised count of number of pa-

tients with an asthma, COPD,

bronchiectasis, or ILD diagnosis

Patients identified by relevant asthma, COPD,

bronchiectasis, and ILD SNOMED CT codes. Ad-

ditional criterion for asthma diagnosis is an inhaler

prescription in the last 12 months.

Age Y ONS

(mid-year

estimates)

Percentage of adult (25+ years)

population in a given age bracket.

Age brackets ’65-74’ and ’75+’ are used; covariate se-

lection methods suggests these are the only relevant

age groups.

Sex Y ONS

(mid-year

estimates)

Percentage of adult (25+ years)

population that are male

IMD

score

Y Ministry of

Housing, Com-

munities &

Local Govern-

ment

Index of Multiple Deprivation

(IMD) score from English Indices

of Deprivation

The IMD is update every 3-4 years. The mean of the

2015 and 2019, the two publications within the study

period, indices was taken.



Distance

to hospital

N OSMR Travel distance (km) by car to the

nearest hospital within the MBCCG

Hospitals considered: Royal Lancaster Infirmary, Fur-

ness General Hospital, and Westmorland General Hos-

pital.

Distances were calculated using open source routing

software in R Studio. Distances were calculated for

all 11,594 (as of 14/01/22) postcodes in the study area

and then averaged by LSOA.

Year Y NA Factor variable form of year Factor form used as opposed to continuous to better

study the evolution of the MBRN in the three years

since initiation.

MBRN

intervention

Y NHS Digital Percentage of GP-registered popula-

tion registered at an MBRN GP

This is calculated for each year regardless of whether

the MBRN was yet active in order to account for base-

line differences in the areas that have and have not

received MBRN intervention. For study years prior to

MBRN introduction (2012-2016), the covariate is cal-

culated as the percentage of the population registered

at a GP that goes on to join the MBRN in 2017.

Percentage calculated using LSOA-level GP registra-

tion data released by NHS Digital. We do with calcu-

lations with all-age data and assume this variable not

to be correlated with age. As with the ’GP-registered

population’ variable, mean taken across quarters.

For the study years 2012 and 2013, the 2014 value

is used. Exploratory analysis suggests numbers regis-

tered at each GP does not fluctuate year-on-year.
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mostly constant between 2014-2017 before increasing in 2018. MBRN coverage is unobserved for

study years 2012 and 2013 as NHS Digital did not release LSOA-level data until 2014. In the final

model, we assume the 2012 and 2013 values to be equal to 2014. Note that IMD is not included in

Table S7 since it is not time varying.

Table S7: Mean of time varying GLMM covariates by study year.

Year 65-74 75+ Male MBRN

2012 16.0 13.5 48.0 -

2013 16.5 13.7 48.0 -

2014 16.8 13.9 48.0 50.7

2015 17.0 14.0 48.3 50.7

2016 17.2 14.1 48.3 50.8

2017 17.3 14.2 48.3 50.8

2018 17.2 14.5 48.4 51.4

2019 17.1 14.8 48.4 51.6

Figures S7 and S8 both illustrate the spread of the MBRN. Since the MBRN covariate is time-

varying we used 2017 data only for these plots. The MBRN covariate is defined as percentage of

the total population (Table S6), yet 84% of the data points are either less than 1% or greater than

99%, with an overall median of 51.5% (S7). Lancaster is the only area that has had widespread

full coverage (Figure S8), this is because all GPs in this area are part of larger, multi-site practices.

The LSOAs with 0% coverage account for a greater proportion of the MBCCG spatially speaking,

due to the differences in population density (illustrated by the sizes of the LSOAs), and yet phase

1 of the MBRN reached 50% of the total MBCCG population.
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Figure S7: Histogram showing the distribution of the proportion of the popualtion registered at an

MBRN GP in 2017.
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Figure S8: Choropleth map of percentage of LSOA population registered at a GP that joined the

MBRN in 2017.

Overdispersion

We first considered a Poisson GLM to model referrals, with covariates included as described in the

main article. The model was overdispersed (mean(Yit) = 5.5 < 10.0 = var(Yit); residual deviance =

2092 > 1707 = q(0.95, df = 1612) and random effects models were next considered. An analysis

of the residuals did not suggest any significant spatial or temporal correlation. Moran’s I statistic

was insignificant for study years 2012-2017 and suggested only a weak spatial correlation at 5%

significance level for 2018 and 2019 (Moran’s I = 0.10 and 0.15 respectively). Therefore, it was

concluded that a more complex spatial correlation structure was not necessary and an independent

random intercept model was used.

3.2 MCMC methodology

Prior distributions:

The random effects, Zi (i = 1, . . . , N), act as latent variables and have independent Normal(0, κ2)

priors, as described in the main article. For the remaining parameters, the following priors were
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used:

κ2 ∼ Gamma (a, b)

γ ∼ N
(
0, λ2I

)
,

where a = 1, b = 0.01, λ2 = 1000, and Ip is a p-dimensional identity matrix with p being the

number of regression parameters in the referrals model.

Posterior distribution:

Let θ = (γ, Z, κ2) be the vector of parameters to be estimated. The joint posterior distribution is:

π (θ|Y ) ∝ exp

(
N∑
i=1

T∑
t=1

[
yTitditγ + yTitzi − exp(log(Rit) + ditγ + zi)

])

× (κ2)−N/2 exp

(
− 1

2κ2

N∑
i=1

z2i

)
× π(κ2, γ) ,

where π(κ2, γ) represents the corresponding prior distributions.

Updating algorithms:

The parameter κ2 was updated via a Gibbs sampler according to the following full conditional

posterior distribution:

κ2|Y, θ−κ2 ∼ Inverse-Gamma

(
a+

N

2
, b+

1

2

N∑
i=1

z2i

)
.

The regression parameters, γ, and latent variables, Z, were updated jointly. If we let ψ = (γ, Z),

the posterior distribution for ψ is:

π(ψ|Y, κ2) ∝ exp

(
−1

2
ψTQψ + Y TBψ − 1T exp(log(R) +Bψ)

)
, (2)

whereQ is a diagonal matrix of the prior precision and B is the design matrix for ψ. The distribution

in (2) does not have a tractable form but can be approximated to a GMRF using the methodology

in e.g., Chapter 4 of Rue and Held (2005) [4]. The GMRF approximation, which we will denote by

q(.), is then used as a proposal distribution in a Metropolis-Hastings step.

We omit the full calculations, but in brief, the approximation uses a second-order Taylor’s expansion

of the log of the posterior in (2) about the current value of ψ, say ψ0. Then,

π(ψ|Y, κ2) ≈ q(ψ|Y, κ2, ψ0) ∝ exp

(
−1

2
ψTCψ + bψ

)
∼ N

(
C−1b, C−1

)
,
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where the matrix C and vector b are functions of ψ0:

b =
(
log π(ψ0|Y, κ2)

)′ − (log π(ψ0|Y, κ2)
)′′
ψ0

C = −
(
log π(ψ0|Y, κ2)

)′′
.

To improve the accuracy of the approximation, the expansion is repeated, with each successive

expansion performed around the mean of the previous approximation i.e. the first expansion is

around ψ0, the second expansion is around µ1 = C−1(ψ0)b(ψ0), the third expansion is around

µ2 = C−1(µ1)b(µ1), and so on. Preliminary runs of the algorithm found five expansions to be

sufficient. Once the approximation is complete, a proposed value, say ψ∗, can be sampled from the

GMRF according to the same methodology in 2.3.2. As with the spatio-temporal GP registration

model, we impose the linear constraint
∑

i ψi = 0 to ensure the precision matrix of the GMRF is

invertible.

The acceptance probability of the Metropolis-Hastings step is,

α = min

{
1,
π(ψ∗|Y, κ2)q(ψ0|ψ∗)

π(ψ0|Y, κ2)q(ψ∗|ψ0)

}
.

Note that the above also requires a Taylor’s expansion of π(ψ∗|Y, κ2) around ψ∗ in order to evaluate

q(ψ0|ψ∗). This is also iterated to improve the accuracy.

Finally, at each iteration of the MCMC algorithm, we randomly sample from the posterior pre-

dictions of PNHS
it for study years 2012 and 2013, and update the offset term according to the

correction formula in Methods: Statistical Analysis: 1. Adjusting CRD patient count of the main

article. Using this method, we use the entire posterior predictive sample, as opposed to a point

estimate such as the mean of the sample, and thus account for the uncertainty in the predictions.

Inference

Inference was based on 2,000 independent samples obtained from 25,000 iterations of the algorithm,

with a burn-in of 5,000 and the remaining 20,000 thinned by a factor of 10. Similarly to the reg-

istration model, convergence was established by the Gelman-Rubin convergence diagnostic. Trace

plots, density curves, auto-correlation plots, and ESS calculations were used to assess sufficient

mixing of the chain. Continuous explanatory variables were standardised prior to model fit to

reduce multicollinearity.

3.3 MCMC Diagnostics

Figures S9-S11 show the traceplots and density curves for the parameters in the model. Since there

are 21 regression coefficients and 204 latent variables, only a subset of the plots are displayed. The

ESS for κ2 was 1,432. The ESS for the regression coefficients had a median of 2,000 and a minimum

of 1,863, and the latent variables had a median of 2,000 and a minimum of 1,231.
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Figure S9: Diagnostic traceplots and density curves for κ2 in the random intercept outpatient

referrals model.
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Figure S10: Diagnostic traceplots and density curves for a subset of the regression coefficients, γ,

in the random intercept outpatient referrals model.
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Figure S11: Diagnostic traceplots and density curves for a subset of the Z latent variables in the

random intercept outpatient referrals model.
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