

Targeted metabolite profiling of *Salvia rosmarinus* Italian local ecotypes and cultivars and inhibitory activity against *Pectobacterium carotovorum* subsp. *carotovorum*

Valeria Iobbi^{1⊥}, Giuliana Donadio^{2⊥}, Anna Paola Lanteri³, Norbert Maggi⁴, Johannes Kirchmair⁵, Valentina Parisi^{2#}, Giovanni Minuto³, Andrea Copetta⁶, Mauro Giacomini⁵, Angela Bisio^{1*}, Nunziatina De Tommasi^{2*}, Giuliana Drava¹

¹ Department of Pharmacy, University of Genova, Genova, Italy

² Department of Pharmacy, University of Salerno, Fisciano, Italy

³ Centro di Sperimentazione e Assistenza Agricola (CeRSAA), Albenga, Italy

⁴ Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Genova, Italy

⁵ Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria

⁶ Centro di Ricerca Orticoltura e Florovivaismo (CREA), Sanremo, Italy

[#]PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy.

¹These authors have contributed equally to this work and share first authorship

* Correspondence: Angela Bisio angela.bisio@unige.it; Nunziatina De Tommasi detommasi@unisa.it

Supplementary Material

1 Supplementary Figures and Tables

1.1 Supplementary Figures

Figure S1. Representative ¹H-NMR spectrum of *S. rosmarinus* (accession 2, Table S1) leaves extract in CD₃OD-KH₂PO₄ in D₂O at pH 6.0, 500 MHz.

Figure S2. Representative HSQC spectrum of *S. rosmarinus* (accession 2, Table S1) leaves extract in CD₃OD-KH₂PO₄ in D₂O at pH 6.0.

Figure S3. Representative HMBC spectrum of *S. rosmarinus* (accession 2, Table S1) leaves extract in CD₃OD-KH₂PO₄ in D₂O at pH 6.0.

Figure S4. Representative COSY spectrum of *S. rosmarinus* (accession 2, Table S1) leaves extract in CD₃OD-KH₂PO₄ in D₂O at pH 6.0.

Figure S5. ¹H-NMR spectra.

Figure S6. Similarity dendrograms obtained from cluster analysis (single linkage method based on Pearson coefficients) applied.

Figure S7. Similarity dendrogram obtained from cluster analysis (single linkage method based on Pearson coefficients) applied to the 38 metabolites (Chenomx 500 MHz custom library metabolites (CCL) and Chenomx 500 MHz version 11 library metabolites (CL) jointly) measured on 111 rosemary samples.

Figure S8. Similarity dendrogram of the 111 rosemary samples obtained by cluster analysis (single linkage method based on Euclidean distance) based on the 11 Chenomx 500 MHz version 11 library metabolites (CL). **Figure S9.** Similarity dendrogram of the rosemary accessions (111 samples) obtained by cluster analysis

(single linkage method based on Euclidean distance) based on the 27 Chenomx 500 MHz custom library metabolites (CCL).

Figure S10. Similarity dendrogram of the 111 rosemary samples obtained by cluster analysis (single linkage method based on Euclidean distance) based on the 38 metabolites (Chenomx 500 MHz custom library metabolites (CCL) and Chenomx 500 MHz version 11 library metabolites (CL) jointly).

Figure S11. Results of PCA of Chenomx 500 MHz version 11 library metabolites (CL) measured in 111 samples: biplot of Principal Components 1 and 2 (52% of explained variance).

Figure S12. Results of PCA of Chenomx 500 MHz version 11 library metabolites (CL) measured in 111 samples: biplot of Principal Components 3 and 4 (29% of explained variance).

Figure S13. Results of PCA of Chenomx 500 MHz custom library metabolites (CCL) measured in 111 samples: biplot of Principal Components 1 and 2 (51% of explained variance).

Figure S14. Results of PCA of Chenomx 500 MHz custom library (CCL) metabolites measured in 111 samples: biplot of Principal Components 3 and 4 (17% of explained variance).

Figure S15. Results of PCA of Chenomx 500 MHz custom library metabolites (CCL) measured in 111 samples: biplot of Principal Components 5 and 6 (14% of explained variance).

Figure S16. SOM, U-matrix and maps for each Chenomx 500 MHz version 11 library metabolite (CL). Similar color gradations indicate highly correlated variables.

Figure S17. SOM: Graphical representation of map for Chenomx 500 MHz version 11 library metabolites (CL).

Figure S18. SOM: Map clusterization for Chenomx 500 MHz version 11 library metabolites (CL).

Figure S19. U-matrix and maps for each Chenomx 500 MHz custom library (CCL) metabolite.

Figure S20. Graphical representation of Chenomx 500 MHz custom library (CCL) metabolites on map. **Figure S21.** Map clusterization.

Figure S22. Bacterial soft rot assay (a) and graphs of the results (b, c): potato tuber slices inoculated with the bacterial suspension of *P. carotovorum* subsp. *carotovorum* after 5 days of incubation at 25 °C.

Figure S23. ProSA z-score (left) and Ramachandran plot (right) of the *P. carotovorum* pectate lyase 1 (PelA) homology model.

Figure S24. Binding pose (left) and interaction (right) of the selected compounds docked to ligand binding site of *P. carotovorum* pectate lyase 1 (PelA).

Figure S25. Binding pose (left) and interaction (right) of the selected compounds docked to ligand binding site of *P. carotovorum* endo-polygalacturonase (PehA).

1.2 Supplementary Tables

Table S1. List of rosemary accessions used in the study.

Table S2. Rosemary accessions data.

Table S3. Brief description of the commercial cultivars used in the study.

Table S4. Morphological traits of the ecotype "Eretto Liguria".

Table S5. ¹H NMR chemical shifts (δ) and coupling constants (Hz) of Chenomx 500 MHz custom library metabolites (CCL) identified by using 1D spectra in CD₃OD-KH₂PO₄ in D₂O at pH 6.0, 500 MHz.

Table S6. Selected ¹H NMR chemical shifts (δ) and coupling constants (Hz) of Chenomx 500 MHz version 11 library metabolites (CL).

Table S7. Pearson correlation coefficients among 500 MHz version 11 Chenomx library metabolites (CL).^{*a*} **Table S8.** Pearson correlation coefficients among custom 500 MHz version 11 Chenomx library (CCL) metabolites.^{*a*}

Table S9. Quantification in CFU/mL of *Pectobacterium carotovorum* subsp. *carotovorum* after the exposure to the extracts / pure compounds at 1000 ppm, 500 ppm, 50 ppm and 0 ppm, respectively. **Table S10.** Disk diffusion test.

Supplementary Figures

Figure S1. Representative ¹H-NMR spectrum of *S. rosmarinus* (accession 2, Table S1) leaves extract in CD₃OD-KH₂PO₄ in D₂O at pH 6.0, 500 MHz.

Figure S2. Representative HSQC spectrum of *S. rosmarinus* (accession 2, Table S1) leaves extract in CD₃OD-KH₂PO₄ in D₂O at pH 6.0.

Figure S3. Representative HMBC spectrum of *S. rosmarinus* (accession 2, Table S1) leaves extract in CD₃OD-KH₂PO₄ in D₂O at pH 6.0.

Figure S4. Representative COSY spectrum of *S. rosmarinus* (accession 2, Table S1) leaves extract in CD₃OD-KH₂PO₄ in D₂O at pH 6.0.

Figure S5. ¹H-NMR spectra.

1: spectra of the rosemary extracts (direct extraction) using the open access software NMRProcFlow v1.4.14. Spectra of the extracts are presented in different colors.

2: comparison between an NMR spectrum of the direct extraction for the NMR experiment with CD₃OD 0.01% 3-(trimethylsilyl)propionic-2,2,3,3- d_4 acid sodium salt (TSP)/ D₂O 90 mM H₂KPO₄ buffer 6.5:2.5 (A) and NMR spectrum (CD₃OD) of the methanolic extract for the soft rot assay (B).

Figure S6. Similarity dendrograms obtained from cluster analysis (single linkage method based on Pearson coefficients) applied.

A) to the 11 metabolites of the Chenomx 500 MHz version 11 library (CL); B) to the 27 metabolites of the Chenomx 500 MHz custom library (CCL) measured on 111 rosemary samples.

Figure S7. Similarity dendrogram obtained from cluster analysis (single linkage method based on Pearson coefficients) applied to the 38 metabolites (Chenomx 500 MHz custom library metabolites (CCL) and Chenomx 500 MHz version 11 library metabolites (CL) jointly) measured on 111 rosemary samples.

Figure S8. Similarity dendrogram of the 111 rosemary samples obtained by cluster analysis (single linkage method based on Euclidean distance) based on the 11 Chenomx 500 MHz version 11 library metabolites (CL). black line = Liguria; red line = Campania

Figure S9. Similarity dendrogram of the rosemary accessions (111 samples) obtained by cluster analysis (single linkage method based on Euclidean distance) based on the 27 Chenomx 500 MHz custom library metabolites (CCL).

black line = Liguria; red line = Campania

Figure S10. Similarity dendrogram of the 111 rosemary samples obtained by cluster analysis (single linkage method based on Euclidean distance) based on the 38 metabolites (Chenomx 500 MHz custom library metabolites (CCL) and Chenomx 500 MHz version 11 library metabolites (CL) jointly). black line = Liguria; red line = Campania

Figure S11. Results of PCA of Chenomx 500 MHz version 11 library metabolites (CL) measured in 111 samples: biplot of Principal Components 1 and 2 (52% of explained variance). $\mathbf{x} = \text{Liguria}; \mathbf{\bullet} = \text{Campania}$

Figure S12. Results of PCA of Chenomx 500 MHz version 11 library metabolites (CL) measured in 111 samples: biplot of Principal Components 3 and 4 (29% of explained variance). \times = Liguria; • = Campania

Figure S13. Results of PCA of Chenomx 500 MHz custom library metabolites (CCL) measured in 111 samples: biplot of Principal Components 1 and 2 (51% of explained variance). \times = Liguria; • = Campania

Figure S14. Results of PCA of Chenomx 500 MHz custom library (CCL) metabolites measured in 111 samples: biplot of Principal Components 3 and 4 (17% of explained variance). \times = Liguria; • = Campania

Figure S15. Results of PCA of Chenomx 500 MHz custom library metabolites (CCL) measured in 111 samples: biplot of Principal Components 5 and 6 (14% of explained variance). $\mathbf{x} = \text{Liguria}; \mathbf{\bullet} = \text{Campania}$

Figure S16. SOM, U-matrix and maps for each Chenomx 500 MHz version 11 library metabolite (CL). Similar color gradations indicate highly correlated variables.

CL1: alanine; CL2: acetate; CL3: malate; CL4: malonate; CL5: choline; CL6: fructose; CL7: sucrose; CL8: fumarate; CL9: valine; CL10: proline; CL11: asparagine.

Supplementary Material

Figure S17. SOM: Graphical representation of map for Chenomx 500 MHz version 11 library metabolites (CL).

A. SOM output map with color code association. Similar colors have similar characteristics, numbers correspond to hit numbers. Dimensions of hexagons are related to the distance between neurons (biggest indicates greater distance); B. principal Component projection of the map; C. labelled SOM output map, for each neuron the corresponding accession number and number of replicates (in parentheses) are shown.

Figure S18. SOM: Map clusterization for Chenomx 500 MHz version 11 library metabolites (CL). A. Davies-Bouldine index progression: minimum value fits the best number of clusters. B. 6 clusters.

Figure S19. U-matrix and maps for each Chenomx 500 MHz custom library (CCL) metabolite. Similar color gradations indicate highly correlated variables. CCL1: 12-*O*-methylcarnosic acid; CCL2: 7-*O*-methylrosmanol; CCL3: methylrosmarinate; CCL4: genkwanin; CCL5: epicatechin; CCL6: isorhamnetin-3-*O*-β-D-rutinoside; CCL7: carnosic acid; CCL8: diosmetin; CCL9: luteolin; CCL10: scutellarein; CCL11: acacetin; CCL12: carnosol; CCL13: catechin hydrate; CCL14: gallic acid; CCL15: rosmarinic acid; CCL16: ferulic acid; CCL17: caffeic acid; CCL18: coumaric acid; CCL19: chlorogenic acid; CCL20: rutin; CCL21: quercetin; CCL22: apigenin; CCL23: isorosmanol; CCL24: apigenin-7-*O*-β-D-glycoside; CCL25: kaempferol; CCL26: isorhamnetin-3-*O*-rutinoside (narcissin); CCL27: epiisorosmanol.

Figure S20. Graphical representation of Chenomx 500 MHz custom library (CCL) metabolites on map. A. SOM output map with colour code association. Similar colours have similar characteristics, numbers correspond to hit numbers. Dimensions of hexagons are related to the distance between neurons (biggest indicates greater distance); B. Principal component projection of the map; C. Labelled SOM output map, for each neuron the corresponding accession number (listed in Table S1, Supplementary Material) and number of replicates (in parentheses) are shown.

Figure S21. Map clusterization. A. Davies-Bouldine index progression: minimum value fits the best number of clusters; B. 2 clusters.

Supplementary Material

а

b

c

Figure S22. Bacterial soft rot assay (a) and graphs of the results (b, c): potato tuber slices inoculated with the bacterial suspension of *P. carotovorum* subsp. *carotovorum* after 5 days of incubation at 25 °C.

The filter paper discs 10 mm in diameter were soaked with a bacterial suspension previously exposed for 5 minutes to the solutions of rosemary extracts (Table S1: 1, 3, 5, 6, 7, 9, 20, 22, 26, 28, 32) and pure compounds (Figure 6: CCL1: 12-*O*-methylcarnosic acid; CCL2: 7-*O*-methylrosmanol; CCL7: carnosic acid; CCL12: carnosol; CCL23: isorosmanol) in sterile distilled water and DMSO working solution (1:1 v/v); PC: positive control (paper disc was soaked with a solution of inoculated sterile distilled water and DMSO working solution 1:1 v/v PC); NC: negative control (paper disc soaked with a solution of not inoculated distilled water/DMSO working solution 1:1 v/v). The presence of tissue rotting, and the development of rot radius is directly correlated with the bacterial pectolytic activity. The exposure for 5 minutes to a solution of isorosmanol, carnosol and 7-*O*-methylrosmanol completely inhibited the bacterial pectolytic activity. At the same test conditions, 12-*O*-methylcarnosic acid inhibited the pectolytic activity by 70.3%, and carnosic acid by 30%, compared to the positive control (PC) (Table 2).

Figure S23. ProSA z-score (left) and Ramachandran plot (right) of the *P. carotovorum* pectate lyase 1 (PelA) homology model.

The z-score of -7.66 suggests that the homology model is properly folded and 99.6% of the protein residues being under the favoured region shows that almost all the protein residues are properly sterically placed in 3D space.

carnosol

7-O-methyl-rosmanol

isorosmanol

Figure S24. Binding pose (left) and interaction (right) of the selected compounds docked to ligand binding site of *P. carotovorum* pectate lyase 1 (PelA).

Left) The protein is reported as light-brown ribbons; the ligand is reported as capped sticks; H-bonds are presented as cyan dotted lines. Right) The ligand is surrounded by the protein residues represented as follows: the negatively charged residues are indicated in red, polar residues are in cyan, hydrophobic residues are shown in green; H-bonds are depicted as purple arrows.

7-O-methyl-rosmanol

carnosol

12-O-methyl-carnosic acid

isorosmanol

Figure S25. Binding pose (left) and interaction (right) of the selected compounds docked to ligand binding site of *P. carotovorum* endo-polygalacturonase (PehA).

Left) The protein is reported as light-brown ribbons; the ligand is reported as capped sticks; H-bonds are presented as cyan dotted lines. Right) The ligand is surrounded by the protein residues represented as follows: the negatively charged residues are indicated in red, polar residues are in cyan, hydrophobic residues are shown in green; H-bonds are depicted as purple arrows.

1.2 Supplementary Tables

Accessio	Ecotype or Cultivar name	Grower ^a	Location ^b	Soil texture
n				type ^c
number				
1	"Eretto Liguria"	CeRSAA	Albenga	clay
2	"Eretto Liguria"	CeRSAA	Albenga	clay
3	"Eretto Liguria"	local farmer	Savona	clay loam
4	"Eretto Liguria"	local farmer	Vessalico	clay
5	"Eretto Liguria"	local farmer	Vessalico	clay
6	'Prostratus' (Prostrata Group)	local farmer	Ruta di Camogli	clay
7	"Eretto" (local ecotype)	local farmer	Ruta di Camogli	clay
8	"Eretto" (local ecotype)	local farmer	Ruta di Camogli	clay
9	'Prostratus' (Prostrata Group)	local farmer	Ruta di Camogli	clay
10	'Prostratus' (Prostrata Group)	local farmer	Ruta di Camogli	clay
11	'Prostratus' (Prostrata Group)	local farmer	Ruta di Camogli	clay
12	"Eretto Liguria"	CREA	Sanremo	organic ^d
13	"Eretto Liguria"	CREA	Sanremo	organic ^d
14	"Eretto Liguria"	CREA	Sanremo	organicd
15	'Boule' (Prostrata Group, 'Rampant Boule')	CREA	Sanremo	organicd
16	'Boule' (Prostrata Group, 'Rampant Boule')	CREA	Sanremo	organicd
17	'Boule' (Prostrata Group, 'Rampant Boule')	CREA	Sanremo	organicd
18	'Joyce DeBaggio'	CREA	Sanremo	organicd
19	'Joyce DeBaggio'	CREA	Sanremo	organicd
20	'Joyce DeBaggio'	CREA	Sanremo	organic ^d
21	'Benenden Blue'	CREA	Sanremo	organic ^d
22	'Benenden Blue'	CREA	Sanremo	organic ^d
23	'Benenden Blue'	CREA	Sanremo	organic ^d
24	'Majorca Pink'	CREA	Sanremo	organic ^d
25	'Majorca Pink'	CREA	Sanremo	organic ^d
26	'Majorca Pink'	CREA	Sanremo	organic ^d
27	"Porto Alabe"	CREA	Sanremo	organic ^d
28	"Porto Alabe"	CREA	Sanremo	organic ^d
29	"Porto Alabe"	CREA	Sanremo	organic ^d
30	'Santa Barbara Blue'	CREA	Sanremo	organicd
31	'Santa Barbara Blue'	CREA	Sanremo	organicd
32	'Santa Barbara Blue'	CREA	Sanremo	organicd
33	"Porto Alabe"	local farmer	Pesco Sannita	clay loam
34	'Gorizia'	local farmer	Benevento	clay
35	'Boule' (Prostrata Group, 'Rampant Boule')	local farmer	Benevento	clay
36	'Farinole'	local farmer	San Marco di Castellabate	sand
37	'Capri' (Prostrata Group, 'Capri')	local farmer	Seiano di Vico Equense	sand

Table S1. List of rosemary accessions used in the study.

^{*a*} CeRSAA: Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; CREA - Research Centre for Vegetable and Ornamental Crops, Corso Inglesi 508, 18038 Sanremo, Italy.

^b Albenga (SV): latitude 44°02′56.81″N, longitude 8°12′46.86″E, elevation 5 m.a.s.l; Savona (SV): latitude 44°18′28.71″N, longitude 8°28′51.66″E, elevation 4 m.a.s.l; Vessalico (IM): latitude 44°02′46.74″N, longitude 7°57′43.43″E, elevation 197 m.a.s.l; Ruta di Camogli (GE): latitude 44°20′36.68″N, longitude 9°10′10.29″E, elevation 269 m.a.s.l; Sanremo (IM): latitude 43°49′05.23″N, longitude 7°′26.12″E, elevation 80 m.a.s.l; Pesco Sannita (BN): latitude 41°14′N, longitude 14°49′E, elevation 8393 m.a.s.l; Benevento (BN): latitude 41°08′N, longitude 14°47′E, elevation 135 m.a.s.l; San Marco di Castellabate (SA): latitude 40°16′02.64″N, longitude 14°56′20.33″E, elevation 15 m.a.s.l; Seiano di Vico Equense (NA): latitude 40°40′N, longitude 14 14°26′E, elevation 85 m.a.s.l. ^c (Yolcubal et al., 2004).

^d grown in the experimental fields of CREA, in the open air. The cultivars were propagated via stem cuttings and were grown in 20 L black plastic pots with a commercial substrate (Terfor Hochmoor® Vulcan Invernale pumex) suitable for nursery crops. A controlled release fertilizer (Geogreen Horti-Cote®Plus, 6 months release period, N–P–K–Mg 16–6–11–2 plus microelements) was added in the amount of 5 g/L of substrate. Fertigation was performed monthly with Ferty 1 (Planta Düngemittel GmbH, N–P–K–Mg 20–7–10–2, 1.5 g/L).

Table S2. Rosemary accessions data.

Ecotype or Cultivar name	Plant habitus	Status	Register type ^a / references	Synonyms ^b	Voucher ^c
"Eretto Liguria"	erect	Liguria (Italy) local ecotype	-	-	HMGBH. e/7219.20 23.006
'Prostratus' (Prostrata Group)	prostrate (matforming)	accepted, registered	COM (CPVO, 2022; RHS, 2022)	<i>R. officinalis</i> Prostratus Group; <i>R. officinalis</i> 'Corsica Prostratus'; <i>R. officinalis</i> 'Venzano Prostrate'; <i>R. corsicus</i> 'Prostratus'; <i>S. × lavandulacea</i> misapplied; <i>R. officinalis</i> lavandulaceus; <i>R. officinalis</i> repens; <i>R. officinalis</i> creeping; <i>R. × lavandulaceus</i> misapplied; <i>R. repens; R. officinalis</i> var. prostratus	HMGBH. e/7219.20 23.007
'Boule' (Prostrata Group, 'Rampant Boule')	prostrate (trailing)	accepted, registered	COM (CPVO, 2022; RHS, 2022)	Rosmarinus 'Boule'; R. officinalis (Prostratus Group) 'Rampant Boule'; R. officinalis (Prostratus Group) 'Boule'	HMGBH. e/7219.20 21.003
'Joyce DeBaggio'	erect (upright)	registered	COM (Begum et al., 2013; CPVO, 2022)	-	HMGBH. e/7219.20 21.002
'Benenden Blue' (Angustifolia Group, 'Benenden Blue')	erect (upright, bushy)	accepted, registered	COM (Begum et al., 2013; CPVO, 2022; RHS, 2022)	<i>R. officinalis</i> 'Benenden Blue'; <i>R. officinalis</i> 'Collingwood Ingram'; <i>R. officinalis</i> var. <i>angustissimus</i> 'Benenden Blue'; <i>S. rosmarinus</i> 'Collingwood Ingram'	HMGBH. e/7219.20 23.001)
'Majorca Pink'	semi-erect (upright, bushy)	accepted, registered	COM (Begum et al., 2013; CPVO, 2022; RHS, 2022)	R. officinalis 'Majorca Pink'	HMGBH. e/7219.20 17.003
"Porto Alabe"	semi-erect	Sardinia (Italy) local ecotype	-	-	HMGBH. e/7219.20 23.002
'Santa Barbara Blue'	erect	unresolved, registered	COM (Begum et al., 2013; CPVO, 2022; RHS, 2022)	R. officinalis 'Santa Barbara Blue'	HMGBH. e/7219.20 23.003
'Gorizia'	erect (upright, bushy)	accepted, registered	COM (CPVO, 2022; RHS, 2022)	R. officinalis 'Gorizia'	HMGBH. e/7219.20 21, 001
'Farinole'	semi-erect	accepted, registered	COM (CPVO, 2022; RHS, 2022)	R. officinalis 'Farinole'	HMGBH. e/7219.20 23.005
'Capri' (Prostrata Group, 'Capri')	trailing	accepted, registered	COM (CPVO, 2022)	R. officinalis (Prostratus Group) 'Capri'	HMGBH. e/7219.20 23.004

^a COM = Commercial register
^b (RHS, 2022)
^c The vouchers of all the accessions were deposited at the Herbarium of Giardini Botanici Hanbury (La Mortola, Ventimiglia, Italy)

Cultivar	Common name	Origin	Description
'Prostratus' (Prostrata	Rosemary Prostrata	Mediterranean area	Compact evergreen shrubs of prostrate mat-forming habit, with
Group).	Group (RHS, 2022)		narrowly linear, aromatic thick, needle-like leaves, spirally arranged
			around thin woody stems. Pale blue flowers in small axillary clusters in
			spring and summer, occasionally in autumn. (RHS, 2022)
'Boule'	Rosemary	France	Prostrate (trailing) habitus, 60 cm high at maturity. Highly pubescent
	'Rampant Boule'		internode, 8.8-10.6 mm long and 2.6-3.4 mm wide. Elliptical dark green
	(RHS, 2022)		leaves 19.6-24.0 mm long and 2.4-2.8 mm wide; acute apex.
			Inflorescence 14.8-17.8 mm long. Calix 5.0-6.1 mm long, and highly
			public control of the purphism blue corolla (UPOV 50)" 10.5-11.2 long; 5.8-
			dark numlish blue discontinuous lateral strings (LIPOV 52) ^a (Cervelli
			and Masselli 2013)
'Joyce DeBaggio'	Rosemary, Golden	Virginia (USA) – cultivar selected by	Semi - unright habitus, 90 cm high at maturity. Highly pubescent
soyee Debuggio	Rain (Begum et al	Thomas De Baggio	internode 10.8-13.2 mm long and 3.3-4.5 mm wide. Variegated leaves
	2013)	66	(light green in central zone and golden-yellow at leaf margins) 28.2-
	,		33.4 mm long and 1.8-2.4 mm wide; acute apex. Inflorescence 12.3-
			14.6 mm long. Calix 4.0-4.6 mm long, and highly pubescent. Pale
			purplish-blue corolla (UPOV 50) ^a 7.3-9.1 long; 5.4-6.6 mm wide, lower
			lip with moderate concavity, white central stripe, and dark purplish blue
			lateral stripes (UPOV 52) ^{<i>a</i>} (Begum et al., 2013; Cervelli and Masselli,
	-	~ . ~	2013).
Benenden Blue	Rosemary,	Corsica. Cultivar deriving from a	Upright or semi - upright habitus, 90 cm high at maturity. Poorly
	Benenden Blue	La grand (UK) in 1020	public public public provide 10.5-13.1 mm long and 2.3-2.5 mm wide. Light
	(Deguin et al., 2012: DUS 2022)	Ingrain (OK) in 1930	Inflorescence 18.0.20.0 mm long Calix 4.2.5.2 mm long and poorly
	2013, K113, 2022)		nubescent. Pale nurplish-blue corolla (UPOV 50) ^a 9 2-10 1 long: 4 2-
			5.2 mm wide lower lip with high concavity, white central stripe, and
			discontinuous lateral stripes and medium purplish-blue dots (UPOV
			51) ^a (Begum et al., 2013; Cervelli and Masselli, 2013).
'Majorca Pink'	Rosemary, Spanish	Spain	Urpright (bushy) or semi - upright habitus, 110 cm high at maturity.
	(Begum et al.,		Highly pubescent internode 10.6-16.8 mm long and 2.1-3.9 mm wide.
	2013), rosemary		Elliptic light green leaves 10.3-14.7 mm long and 1.5-1.7 mm wide;
	'Majorca Pink'		acute apex. Inflorescence 16.6-18.2 mm long. Calix 4.1-4.9 mm long
	(RHS, 2022)		with highly pubescent. Pale violet corolla (UPOV 44) ^a 9.7-11.5 long;
			5.9-7.1 mm wide lower lip with moderate concavity, white central
			and Massalli 2012)
"Porto Alabe"	_	Sardinia (Italy) accession collected	Semi - upright habitus 70 cm high at maturity. Poorly pubescent
10100111000		and commercialized by an Italian	internode 10.0-12.8 mm long and 2.0-2.6 mm wide. Light green leaves
		farmer, "Il Bolfone", Cherasco (CN),	20.2-25.6 mm long and 1.9-2.2 mm wide; acute apex. Inflorescence
		and given to CREA collection	14.4-17.6 mm long. Calix 4.4-5.0 mm long and highly pubescent. Pale
			purplish-blue corolla (UPOV 50) ^a 9.9-10.9 long; 3.4-4.3 mm wide
			lower lip with moderate concavity, white central stripe, and lateral
			stripes and medium purplish-blue dots $(UPOV 51)^a$ (Cervelli and
'Santa Dashara Dhua'			Masselli, 2013).
Santa Barbara Blue	-	USA	0.3.11.5 mm long and 2.4.3.2 mm wide. Light green lower 24.1.20.3
			mm long and 2 1-2 7 mm wide: acute anex Inflorescence 15 9-18 9 mm
			long Calix 4 6-5.3 mm long and highly nubescent. Medium light blue
			corolla (UPOV 54) ^{<i>a</i>} 9.5-10.8 long; 5.2-6.5 mm wide lower lip with
			moderate concavity, white central stripe, and medium purplish blue
			lateral stripes (UPOV 51) ^a (Cervelli and Masselli, 2013).
'Gorizia'	Rosemary Gorizia	-	'Gorizia' is a vigorous, aromatic, evergreen shrub with narrow, upright
	(Begum et al.,		shoots to 1.5m. Internode 12.0-19.5 mm long and 4.5-6.5 mm wide.
	2013; RHS, 2022)		Fragrant dark green leaves twice the size of most cultivars: 22.8-33.8
			mm long and 3.0-4.5 mm wide; acute apex. Inflorescence 15.3-22.7 mm
			long. Calix 6.2-7.6 mm long and highly pubescent. Relatively large,
			lower lin with moderate concentry, white central string, and medium
			numlish blue lateral strings (UPOV 51) ^a appear in spring and often
			again in autumn (Begum et al., 2013; RHS, 2022)
'Farinole'	Rosemarv	Corse (France)	Perennial evergreen shrub, with fine foliage, and very fragrant essential
	'Farinole'(RHS,	- ()	oil. The flower is blue. The plant reaches a maximum height of 30 - 35
	2022)		cm (Malcuit and Deleuil, 1957; Paradis, 2004; Jeanmonod, 2015).
'Capri' (Prostrata Group,	Rosemary 'Capri'	-	'Capri' is a highly aromatic, low, spreading, evergreen shrub to about
'Capri')	(RHS, 2022)		15cm high and a metre or more across, with bright green, needle-like
			foliage. Small, pale blue flowers are produced in spring and often again
			in autumn (RHS, 2022).

Table S3. Brief description of the commercial cultivars used in the study.

^{*a*} UPOV color group (UPOV, 2018)

Common name	Origin	Description
"Eretto Liguria"	Unknown - mostly cultivated in Ligurian region	Ecotype with upright habitus, 120 cm high at maturity. Poorly pubescent internode 12.9-14.3 mm long and 2.3-3.2 mm wide. Elliptical light green leaves 23.5-29.1 mm long and 2.4-3.1 mm wide; acute apex. Inflorescence 15.6-23.2 mm long. Calix 5.1-5.8 mm long with anthocyanin colouration and highly pubescent. Pale purplish-blue corolla (UPOV 50) ^{<i>a</i>} 10.5-11.7 long; 5.1-6.0 mm wide lower lip with moderate concavity, white central stripe, and purplish blue discontinuous lateral stripes (UPOV 51) ^{<i>a</i>} .

Table S4. Morphological	traits of the ecotype	"Eretto Liguria".
-------------------------	-----------------------	-------------------

^{*a*} UPOV color group (UPOV, 2018)

Salvia rosmarinus "Eretto Liguria"

CCL number	metabolite	selected characteristic NMR chemical shifts in ppm (multiplicity, D	other chemical shifts in ppm (multiplicity, <i>J</i>)	MSI Status ^b	references
1	12-O-methylcarnosic acid	3.69 (s)	6.48 (s), 3.43 (m), 3.16 (m), 2.77 ^{<i>a</i>} , 2.75 ^{<i>a</i>} , 2.55 (m), 1.91 (m), 1.60 (m), 1.52 ^{<i>a</i>} , 1.47 ^{<i>a</i>} , 1.32 ^{<i>a</i>} , 1.16 (d, $J = 6.5$ Hz), 1.14 ($d = 6.5$ Hz), 1.10 ^{<i>a</i>}	1	(Richheimer et al., 1996; Pukalskas et al., 2005)
2	7-O-methylrosmanol	3.67 (s)	1.14 (d, $J = 0.5$ Hz), 1.10 6.79 (s), 4.87 (d, $J = 3.2$ Hz), 4.31 (d, $J = 3.2$ Hz), 3.27 ^{<i>a</i>} , 3.19 ^{<i>a</i>} , 1.95 ^{<i>a</i>} , 1.93 ^{<i>a</i>} , 1.62 (m), 1.45 ^{<i>a</i>} , 1.42 ^{<i>a</i>} , 1.25 (m), 1.19 ^{<i>a</i>} , 1.17 ^{<i>a</i>} 1.02 (s), 0.91 (s)	1	(Richheimer et al., 1996)
3	methylrosmarinate	7.01 (dd, <i>J</i> = 8.0, 1.8 Hz)	$\begin{array}{l} 1.17 & 1.02 & (s), \ 0.91 & (s) \\ 7.56 & (d, J = 15.9 & Hz), \ 7.10 & (d, J = 1.8 & Hz), \ 6.85 & (dd, J = 8.0, \\ 1.8 & Hz), \ 6.77 & 6.76 & 6.61 \\ (d, J = 8.0 & Hz), \ 6.29 & (d, J = \\ 15.9 & Hz), \ 5.21 & (dd, J = 7.7, \\ 5.0 & Hz), \ 3.73 & (s), \ 3.08 & 3.03 \\ a \end{array}$	1	(Kuo et al., 2000; Correia et al., 2020)
4	genkwanin	3.92 (s)	7.92 (dd, $J = 8.4$, 2.0 Hz), 7.00 (dd, $J = 8.4$, 2.0 Hz), 6.72 (d, $J = 2.2$ Hz), 6.70 (s), 6.40 (d, $J = 2.2$ Hz)	1	(Gomes et al., 2011)
5	epicatechin	4.23 (s)	6.40 (d, $J = 2.2$ Hz), 6.99 (br s), 6.83 (br s), 6.83 (br s), 6.01 (d, $J = 1.8$ Hz), 5.97 (d, $J = 1.8$ Hz), 4.84 (s), 4.23 (m), 2.87 (dd, $J = 16.8$, 4.5 Hz), 2.71 (dd, $J = 16.8$, 3.1 Hz)	1	(Abd El-Razek, 2007)
6	isorhamnetin-7- <i>O</i> - rutinoside	1.09 (d, <i>J</i> = 6.2 Hz)	7.89 (d, $J = 1.8$ Hz), 7.64 (dd, J = 8.7, 1.8 Hz), 6.97 (d, $J = 8.7$ Hz), 6.46 (s), 6.25 (s), 5.14 ^{<i>a</i>} , 5.13 ^{<i>a</i>} , 3.95 (s), 3.79 (d, $J = 10.9$ Hz), 3.70 – 3.20 ^{<i>a</i>} (sugar protons), 1.09 (d, $J = 6.2$ Hz)	1	(Mohamed et al., 2020)
7	carnosic acid	6.44 (s)	$3.40 \text{ (m)}, 3.15 \text{ (m)}, 2.72 \text{ (m)}, 2.54 \text{ (m)}, 1.87 \text{ (m)}, 1.77 \text{ (m)}, 1.44 - 1.60^{a}, 1.29^{a}, 1.15 \text{ (s)}, 1.14 \text{ (c)}, 0.96 \text{ (c)}, 0.93 \text{ (c)}, 2.54 \text{ (c)}, 0.93 \text{ (c)}, 0$	1	(Pukalskas et al., 2005)
8	diosmetin	3.94 (s)	7.54 (dd, $J = 8.5, 2.3$ Hz), 7.41 (d, $J = 2.3$ Hz), 7.11 (d, J = 8.5 Hz), 6.62 (s), 6.50 (d, J = 2.3 Hz), 6.24 (d, $J = 2.2$ Hz)	1	(Park et al., 2007)
9	luteolin	6.59 (s)	7.43 (m), 6.96 (dd, $J = 8.9$, 1.6 Hz), 6.69 (s), 6.49 (d, $J = 2.2$ Hz), 6.24 (d, $J = 2.0$ Hz)	1	(Lin et al., 2015)
10	scutellarein	6.63 (br s)	7.88 (dd, <i>J</i> = 8.4, 2.0 Hz), 6.98 (dd, <i>J</i> = 8.4, 1.8 Hz), 6.63 (br s)	1	(Li et al., 2006)
11	acacetin	6.69 (s)	7.98 (dd, $J = 8.5$, 1.8 Hz), 7.13 (dd, $J = 8.5$, 2.0 Hz), 6.52 (d, $J = 2.2$ Hz), 6.26 (d,	1	(King-Díaz et al., 2015)
12	carnosol	6.73 (s)	$\begin{aligned} & 5 - 2.2 \ \text{Tr}Z_{2}, \ 5.91 \ (\text{s}) \\ & 5.48 \ (\text{m}), \ 3.23 \ (\text{m}), \ 2.77 \ (\text{m}), \\ & 2.53 \ (\text{ddd}, J = 14.0, \ 13.9, \ 4.4 \\ & \text{Hz}), \ 2.22 \ (\text{ddd}, J = 14.2, \ 4.9, \\ & 4.9 \ \text{Hz}), \ 1.87^{a}, \ 1.83^{a}, \ 1.68 \\ & (\text{m}), \ 1.61 \ (\text{m}), \ 1.50 \ (\text{m}), \ 1.31 \\ & (\text{m}), \ 1.19 \ (\text{d}, J = 3.6 \ \text{Hz}), \ 1.18 \\ & (\text{d}, J = 3.6 \ \text{Hz}), \ 0.86 \ (\text{s}), \ 0.85 \end{aligned}$	1	(Pukalskas et al., 2005)
13	catechin hydrate	6.83 (d, <i>J</i> = 8.2 Hz)	(5) 6.86 (d, $J = 2.0$ Hz), 6.75 (dd, J = 8.2, 2.1 Hz), 5.99 (br s), 5.90 (br s), 4.63 (d, $J = 7.4$ Hz), 4.05 (m), 2.83 (dd, $J =$ 16.2, 5.41 Hz), 2.51 (dd, $J =$ 16.2, 7.8 Hz),	1	(Kiehlmann and Tracey, 1986)
14 15	gallic acid rosmarinic acid	7.05 (s) 6.80 (s)	7.50 (d, $J = 16.0$ Hz), 7.09 50 (d, $J = 2.0$ Hz), 6.98 (dd, $J = 8.2$, 2.0 Hz), 6.83 (d, $J = 8.2$ Hz), 6.80 (br s), 6.73 (d, $J = 10.0$	1 1	(López-Martínez et al., 2015) (Lecomte et al., 2010)

8.1 Hz), 6.67 (dd. J = 8.1, 2.0

Table S5. ¹H NMR chemical shifts (δ) and coupling constants (Hz) of Chenomx 500 MHz custom library metabolites (CCL) identified by using 1D spectra in CD₃OD-KH₂PO₄ in D₂O at pH 6.0, 500 MHz.

Supplementary Material

			Hz), 6.29 (d, <i>J</i> = 16.0 Hz), 5.03 (dd, <i>J</i> = 10.0, 3.3 Hz), 3.09 (dd, <i>J</i> = 14.5, 3.3 Hz), 2.92 (dd, <i>J</i> = 14.5, 10.0 Hz)		
16	ferulic acid	7.07 (dd, <i>J</i> = 8.2, 1.5 Hz)	7.46 (d, $J = 15.9$ Hz), 7.18 (d, J = 1.5 Hz), 6.85 (d, $J = 8.2Hz), 6.34 (d, J = 15.9 Hz),3.89 (c)$	1	(López-Martínez et al., 2015)
17	caffeic acid	7.42 (d, <i>J</i> = 15.9 Hz)	7.07 (d, J = 1.7 Hz), 6.96 (d, J = 8.3 Hz)	1	(López-Martínez et al., 2015)
18	<i>p</i> -coumaric acid	7.52 (d, <i>J</i> = 15.9 Hz)	7.48 (dd, $J = 8.2$, 1.0 Hz), 6.85 (dd, $J = 8.2$, 1.2 Hz), 6.32 (d, $J = 15.9$ Hz)	1	(López-Martínez et al., 2015)
19	chlorogenic acid	7.59 (d, <i>J</i> = 15.9 Hz)	7.11 (d, $J = 1.6$ Hz), 7.01 (dd, J = 8.3, 1.6 Hz), 6.84 (dd, $J = 8.3, 1.6$ Hz), 6.34 (d, $J = 15.9Hz), 5.34 (dd, J = 10.7, 10.7, 1.9 Hz), 4.16 (ddd, J = 4.0, 3.5, 3.4 Hz), 3.75 (dd, J = 9.0, 3.3 Hz), 2.14 a, 2.10 a, 2.01 a, 1.98 a$	1	(Pauli et al., 1999)
20	rutin	6.94 (d, <i>J</i> = 8.5 Hz)	7.67 (d, $J = 2.2$ Hz), 7.61 (dd, J = 8.5, 2.3 Hz), 6.46 (d, $J = 2.1$ Hz), 6.25 (d, $J = 2.1$ Hz), 5.04 (d, $J = 7.7$ Hz), 4.53 (br s), 3.80 – 3.25 ^{<i>a</i>} (sugar protons) 1.11 (d, $J = 6.2$ Hz)	1	(Napolitano et al., 2012)
21	quercetin	7.72 (d, <i>J</i> = 2.1 Hz)	7.63 (dd, $J = 8.5, 2.1$ Hz), 6.95 (d, $J = 8.5$ Hz), 6.46 (d, J = 1.9 Hz), 6.24 (d, $J = 1.9Hz)$	1	(Napolitano et al., 2012)
22	apigenin	7.89 (dd, <i>J</i> = 8.5, 1.2 Hz)	6.98 (dd, J = 8.5, 1.2 Hz), 6.64 (s), 6.50 (d, J = 2.2 Hz), 6.24 (d, J = 2.1 Hz)	1	(Shen et al., 1993)
23	isorosmanol	1.42 (m)	7.88 (s), 6.98 (s), 4.16 (dd, J = 11.5, 4.2 Hz), 4.07 (dd, J = 11.5, 6.2 Hz), 3.23 (m), 2.39 (m), 1.99 ^{<i>a</i>} , 1.97 ^{<i>a</i>} , 1.60 (m), 1.23 (s), 1.22 (s)	1	(Pukalskas et al., 2005)
24	apigenin-7- <i>Ο</i> -β-D- glycoside	7.92 (dd, <i>J</i> = 8.4, 1.2 Hz)	6.99 (dd, J = 8.4, 1.2 Hz), 6.86 (d, J = 2.1 Hz), 6.55 (d, J = 2.1 Hz), 5.14 (d, J = 7.1 Hz), 3.94 (br d, J = 10.4 Hz), 3.75 (dd, J = 12.4, 5.6 Hz), 3.65-3.42 a (sugar protons)	1	(Liu et al., 2012; Peng et al., 2016)
25	kaempferol	8.07 (dd, <i>J</i> = 8.4, 1.2 Hz)	6.96 (dd, J = 8.4, 1.2 Hz), 6.46 (d, J = 2.1 Hz), 6.24 (d, J = 2.2 Hz)	1	(Napolitano et al., 2012)
26	isorhamnetin-3- <i>O</i> -β-D- rutinoside (narcissin)	6.97 (dd, <i>J</i> = 8.0, 2.0 Hz)	7.89 (d, $J = 2.0$ Hz), 7.64 (d, J = 8.0 Hz), 6.44 (d, $J = 1.8Hz), 6.23 (d, J = 1.8 Hz),5.14 (d, J = 7.4 Hz), 4.53 (brs), 3.95 (s), 3.90 – 3.26a(sugar protons), 1.09 (d, J = 6.2 Hz)$	1	(Rastrelli et al., 1995)
27	epiisorosmanol	5.21 (d, <i>J</i> = 4.3 Hz)	6.81 (s), 4.34 (m), 3.23 (m), 2.73 (br d, $J = 14.4$ Hz), 2.54 (ddd, $J = 14.4$, 14.2, 4.4 Hz) 1.80 (m), 1.61 (m),1.38-1.52 ", 1.21 (br s), 1.19 (br s), 1.02 (s), 0.88 (s)	1	(Pukalskas et al., 2005)

^a Overlapped signals
 ^b MSI level of identification according to Sumner et al. (Sumner et al., 2007)

CL number	metabolite	selected characteristic NMR chemical shifts in ppm (multiplicity, J)	other chemical shifts in ppm (multiplicity, <i>J</i>)	MSI Status ^a	references
1	alanine	1.47 (d, <i>J</i> = 7.3 Hz)	3.78 (m)	2	(Govindaraju et al., 2000; Xiao et al., 2008)
2	acetate	1.91 (s)		2	(Govindaraju et al., 2000; Xiao et al., 2008)
3	malate	4.30 (d, <i>J</i> = 10.2, 3.1 Hz)	2.68 (dd, <i>J</i> = 15.4, 3.1 Hz), 2.37 (dd, <i>J</i> = 15.4, 10.2 Hz),	2	(Xiao et al., 2008)
4	malonate	3.12 (s)		2	(Xiao et al., 2008)
5	choline	4.06 (m)	3.50 (m), 3.19 (m)	2	(Govindaraju et al., 2000; Deborde et al., 2021)
6	fructose	4.11 (d, <i>J</i> = 4.0 Hz)	3.88 (dd, <i>J</i> = 10.0, 3.4 Hz)	2	(Xiao et al., 2008)
7	sucrose	4.21 (d, <i>J</i> = 8.7 Hz)	5.40 (d, <i>J</i> = 3.9 Hz), 4.04 (t, <i>J</i> = 8.4, 8.4 Hz)	2	(Xiao et al., 2008)
8	fumarate	6.51 (s)		2	(Xiao et al., 2008)
9	valine	0.98 (d, $J = 7.0$ Hz) and 1.03 (d, $J = 7.0$ Hz)	3.60 (d, <i>J</i> = 4.4 Hz), 2.26 (m)	2	(Govindaraju et al., 2000; Xiao et al., 2008)
10	proline	3.41 (m)	4.14 (m), 3.32 (m), 2.34 (m), 2.02 (m), 1.97 (m)	2	10
11	asparagine	4.00 (m)	2.96 (dd, J = 16.1, 4.6 Hz), 2.86 (dd, J = 16.1, 7.6 Hz),	2	(Xiao et al., 2008)

Table S6. Selected ¹H NMR chemical shifts (δ) and coupling constants (Hz) of Chenomx 500 MHz version 11 library metabolites (CL).

^a MSI level of identification according to Sumner et al. (Sumner et al., 2007)

Table S7. Pearson correlation coefficients among 500 MHz version 11 Chenomx library metabolites (CL).^a

	alanine	acetate	malate	malonate	choline	fructose	sucrose	fumarate	valine	proline	asparagine
alanine	1.000	-	-	-	-	-	-	-	-	-	-
acetate	-0.144	1.000	-	-	-	-	-	-	-	-	-
malate	0.084	0.133	1.000	-	-	-	-	-	-	-	-
malonate	0.159	-0.197	0.307	1.000	1	-	-	-	-	-	-
choline	-0.050	-0.202	0.005	0.581	1.000	-	-	-	-	-	-
fructose	0.383	0.298	-0.144	0.015	0.160	1.000	-	-	-	-	-
sucrose	0.243	-0.510	-0.030	0.197	0.447	0.279	1.000	-	-	-	-
fumarate	0.405	-0.289	0.218	0.404	0.054	-0.019	0.141	1.000	-	-	-
valine	0.664	0.048	0.154	0.563	0.312	0.117	0.071	0.279	1.000	-	-
proline	-0.087	0.021	0.074	0.625	0.828	0.150	0.182	-0.066	0.406	1.000	-
asparagine	0.072	-0.091	0.106	0.747	0.872	0.250	0.250	0.089	0.494	0.919	1.000

^{*a*} significant values (p < 0.05) are reported in bold character.

Table S8. Pearson correlation coefficients among custom 500 MHz version 11 Chenomx library (CCL) metabolites.^a

	12-O-methylcar	nosic	7- <i>0-</i>	rosmarinate	genkwanin	epicatechin	isorha	mnetin- tinoside	carnosic	diosmetin	luteolin	scutellarein	acacetin	carnosol	catechin	gallic
12-O-methylcarnosic acid	1 000	metho		_	_	_	7-0-14	linosiae	-		_	_	1		nyurate	aciu
7-0-methylrosmanol	0.787					_			_		_	_				
methylrosmarinate	0.588		1.593	1.000	_	_		_	_	_	_	_				
genkwanin	0.773).822	0.503	1.000	_		-	_	-	-	-				
enicatechin	0.524	() 193	0.254	0.346	1 000		_	_	_	_	_				
isorhamnetin-7-0-rutinoside	0.253) 421	0.085	0.381	0.066	1	000	_	_	_	_				
carnosic acid	-0.032	(0.130	-0.124	0.035	0.025	0.	733	1.000	-	-	-				
diosmetin	0.546	(0.509	0.121	0.799	0.332	0.	467	0.185	1.000	-	-				
luteolin	-0.118	-	0.099	-0.129	0.018	-0.086	-0.	037	0.078	-0.083	1.000	-				
scutellarein	0.208	(0.110	0.336	0.084	0.252	0.	150	0.183	0.043	0.327	1.000				
acacetin	0.533	().638	0.898	0.464	0.056	0.	102	-0.159	0.054	-0.098	0.329	1.000			
carnosol	0.546	().746	0.832	0.567	0.010	0.	237	-0.066	0.188	-0.124	0.232	0.925	1.000		
catechin hydrate	0.589	().411	0.793	0.371	0.394	-0.	039	-0.226	0.061	-0.019	0.530	0.780	0.630	1.000	
gallic acid	0.416	().387	0.819	0.343	0.178	0.	060	0.019	0.091	0.075	0.466	0.611	0.549	0.590	1.000
rosmarinic acid	0.598	().583	0.911	0.454	0.250	0.	111	-0.165	0.062	-0.099	0.407	0.943	0.836	0.884	0.620
ferulic acid	0.544	().612	0.977	0.470	0.139	0.	092	-0.158	0.063	-0.143	0.281	0.947	0.886	0.765	0.766
caffeic acid	0.035	-	0.064	0.269	-0.078	0.194	-0.	033	0.096	-0.067	0.123	0.673	0.226	0.136	0.446	0.379
coumaric acid	0.561	().663	0.916	0.492	0.133	0.	120	-0.167	0.071	-0.170	0.220	0.970	0.914	0.747	0.580
chlorogenic acid	0.655	(0.672	0.940	0.546	0.311	0.	170	-0.095	0.149	-0.071	0.398	0.911	0.829	0.819	0.715
rutin	0.602		0.589	0.987	0.491	0.270	0.	101	-0.132	0.106	-0.114	0.377	0.918	0.832	0.839	0.780
quercetin	-0.012	-	0.022	0.117	-0.030	0.028	0.)37	0.069	-0.041	0.049	0.289	0.127	0.159	0.184	0.190
apigenin	0.195	(0.157	0.444	0.173	0.395	0.	206	0.256	0.064	0.180	0.482	0.231	0.187	0.310	0.674
isorosmanol	-0.212	-	0.200	-0.194	-0.010	-0.149	-0.	230	-0.207	-0.225	0.570	-0.174	-0.175	-0.136	-0.177	-0.170
apigenin-7- <i>O</i> -β-D-glycoside	0.333	().294	0.517	0.281	0.403	0.	242	0.256	0.137	0.197	0.555	0.321	0.268	0.401	0.740
kaempferol	0.247	(0.207	0.427	0.257	0.438	0.	222	0.220	0.129	0.050	0.357	0.198	0.214	0.287	0.554
isorhamnetin-3-O-rutinoside	0.604		0.588	0.983	0.486	0.263	0.	092	-0.135	0.104	-0.097	0.402	0.922	0.832	0.859	0.789
epiisorosmanol	-0.302	-	0.364	-0.300	-0.101	f0.261	-0.	322	-0.527	-0.010	0.107	-0.317	-0.258	-0.255	-0.233	-0.286
	rosmarinic acid	ferulic acid	caffeic acid	coumaric acid	chlorogenic acid	rutin	quercetin	apigenin	isorosmano	apigenin glyg	1-7- <i>0</i> -β-D- coside	kaempferol	isorhamneti rutinosi	in-3- <i>0</i> - ide	epirosm	anol
12- <i>O</i> -methylcarnosic acid	rosmarinic acid	ferulic acid	caffeic acid	coumaric acid	chlorogenic acid	rutin _	quercetin	apigenin _	isorosmano	ol apigenin glyc	a-7- <i>O</i> -β-D- coside	kaempferol	isorhamneti rutinosi	in-3- <i>0</i> - ide	epirosm	anol
12-0-methylcarnosic acid 7-0-methylrosmanol	rosmarinic acid _	ferulic acid –	caffeic acid 	coumaric acid 	chlorogenic acid 	rutin 	quercetin 	apigenin 	isorosmano 	apigenin glyc	-7- <i>Ο</i> -β-D- coside 	kaempferol 	isorhamneti rutinosi –	in-3- <i>O</i> - ide	epirosm 	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate	rosmarinic acid – –	ferulic acid _ _ _	caffeic acid – –	coumaric acid – –	chlorogenic acid – –	rutin 	quercetin _ _ _	apigenin 	isorosmano 	apigenin glyc	1-7- <i>Ο</i> -β-D- coside _ _ _	kaempferol _ _ _	isorhamneti rutinosi – –	in-3- <i>0</i> - ide	epirosm 	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin	rosmarinic acid – – – –	ferulic acid 	caffeic acid - - -	coumaric acid – – –	chlorogenic acid – – – –	rutin 	quercetin 	apigenin 	isorosmano 	apigenin glyc	1-7- <i>Ο</i> -β-D- coside 	kaempferol 	isorhamneti rutinosi – – –	in-3- <i>O</i> - ide	epirosm 	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin	rosmarinic acid – – – – – –	ferulic acid - - - -	caffeic acid – – – – –	coumaric acid – – – – –	chlorogenic acid – – – – –	rutin 	quercetin 	apigenin 	isorosmano 	apigenin glyc	- 7-Ο-β-D- 	kaempferol 	isorhamneti rutinosi – – – – –	in-3-O- ide	epirosm 	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside	rosmarinic acid - - - - - -	ferulic acid - - - - - - -	caffeic acid 	coumaric acid – – – – – – –	chlorogenic acid – – – – – – – –	rutin 	quercetin 	apigenin 	isorosmano 	apigenin glyc	-7- Ο -β-D- coside - - - - - - -	kaempferol 	isorhamneti rutinosi – – – – – –	in-3-O- ide	epirosm 	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhametin-7-O-rutinoside carnosic acid	rosmarinic acid 	ferulic acid 	caffeic acid 	coumaric acid 	chlorogenic acid - - - - - - - - - - - - - - - - -	rutin 	quercetin	apigenin 	isorosmano — — — — — — — — —	apigenin glyc	- 7-Ο-β-D- 	kaempferol	isorhamneti rutinosi – – – – – – –	in-3- <i>O</i> - ide	epirosm 	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin	rosmarinic acid 	ferulic acid - - - - - - - - - -	caffeic acid -	coumaric acid 	chlorogenic acid - - - - - - - - - - - - - - - - - -	rutin 	quercetin	apigenin 	isorosmano 	apigenin glyc	1-7-<i>O</i>-β-D- coside 	kaempferol 	isorhamneti rutinosi – – – – – – – –	in-3-O- ide	epirosm 	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin	rosmarinic acid 	ferulic acid 	caffeic acid 	coumaric acid 	chlorogenic acid -	rutin 	quercetin	apigenin	isorosmano 	apigenin glyc	I-7-O-β-D- ooside 	kaempferol 	isorhamneti rutinosi – – – – – – – – – –	in-3-O- ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein	rosmarinic acid 	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid 	coumaric acid 	chlorogenic acid -	rutin 	quercetin	apigenin	isorosmand	apigenin glyc	I-7-O-β-D- ooside - - - - - - - - - - - - -	kaempferol 	isorhamneti rutinosi – – – – – – – – – – – –	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhametin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid - - - - - - - - - - - - - - - - - -	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid 	chlorogenic acid -	rutin 	quercetin	apigenin	isorosmand	ol apigenin glyc	1-7-Ο-β-D- 	kaempferol	isorhamneti rutinosi – – – – – – – – – – – – – – – – – –	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhametin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid - - - - - - - - - - - - - - - - - - -	chlorogenic acid -	rutin 	quercetin - - - - - - - - - - - - -	apigenin	isorosmand	apigenin glyc		kaempferol	isorhamneti rutinosi – – – – – – – – – – – – – – – – – – –	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid 	coumaric acid — — — — — — — — — — — — — — — — — — —	chlorogenic acid -	rutin 	quercetin	apigenin	isorosmand 	apigenin glyc	a-7-0-β-D- coside 	kaempferol 	isorhamneti rutinosi – – – – – – – – – – – – – – – – – – –	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid	rosmarinic acid 	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid 	coumaric acid -	chlorogenic acid -	rutin 	quercetin 	apigenin	isorosmand 	ol apigenin glyc		kaempferol	isorhamneti rutinosi – – – – – – – – – – – – – – – – – – –	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scuttellarein acacetin carnosol catechin hydrate gallic acid rosmarinic acid	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid -	coumaric acid -	chlorogenic acid -	rutin 	quercetin	apigenin	isorosmand	ol apigenin glyc	 	kaempferol	isorhamneti rutinosi – – – – – – – – – – – – – – – – – – –	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid rosmarinic acid ferulic acid	rosmarinic acid 	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid - - - - - - - - - - - - - - - - - - -	chlorogenic acid -	rutin 	quercetin	apigenin	isorosmand	apigenin glyc glyc glyc glyc glyc glyc glyc glyc		kaempferol	isorhamneti rutinosi – – – – – – – – – – – – – – – – – – –	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid ferulic acid caffeic acid	rosmarinic acid 	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid 	coumaric acid -	chlorogenic acid -	rutin 	quercetin 	apigenin	isorosmano 	apigenin glyc		kaempferol	isorhamneti rutinosi – – – – – – – – – – – – – – – – – – –	in-3-O- ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid rosmarinic acid ferulic acid caffeic acid commaric acid	rosmarinic acid 	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid 	coumaric acid - <	chlorogenic acid -	rutin 	quercetin 	apigenin	isorosmand 	apigenin glyc glyc glyc glyc glyc glyc glyc glyc		kaempferol	isorhamneti rutinosi 	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid ferulic acid ferulic acid comarine acid comarie acid colorence acid	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid - <	chlorogenic acid -	rutin	quercetin 	apigenin	isorosmand	apigenin glyc glyc glyc glyc glyc glyc glyc glyc	 	kaempferol	isorhamneti rutinosi – – – – – – – – – – – – – – – – – – –	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid ferulic acid ferulic acid comarinic acid chlorogenic acid rutin	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid - <	chlorogenic acid -	rutin	quercetin	apigenin	isorosmand	apigenin glyc glyc glyc glyc glyc glyc glyc glyc	 	kaempferol	isorhamneti rutinosi 	in-3- <i>O</i> - ide	epirosm	
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid ferulic acid ferulic acid caffeic acid comarine acid chlorogenic acid rutin quercetin	rosmarinic acid 	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid 	coumaric acid - <	chlorogenic acid -	rutin	quercetin	apigenin	isorosmand 	apigenin glyc glyc glyc glyc glyc glyc glyc glyc		kaempferol	isorhamneti rutinosi 	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylcosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid rosmarinic acid ferulic acid caffeic acid commaric acid chorogenic acid rutin quercetin apigenin	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid 	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid - <	chlorogenic acid -	rutin	quercetin	apigenin	isorosmand	apigenin glyc glyc glyc glyc glyc glyc glyc glyc	 	kaempferol	isorhamneti rutinosi 	in-3- <i>O</i> - ide	epirosm	anol
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid ferulic acid ferulic acid comarinic acid coloregenic acid rutin querectin apigenin isorosmanol	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid - 1.000 0.936 0.090 0.222 -0.169	chlorogenic acid - 0.010 0.423	rutin	quercetin	apigenin	isorosmand	apigenin glyc glyc glyc glyc glyc glyc glyc glyc		kaempferol	isorhamneti rutinosi – – – – – – – – – – – – – – – – – – –	in-3- <i>O</i> - ide	epirosm	
12-O-methylcarnosic acid 7-O-methylcosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid ferulic acid cosmarinic acid ferulic acid colorogenic acid rutin quercetin apigenin isorosmanol apigenin-7-O-g-D-glycoside	rosmarinic acid 	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid - 1.000 0.934 0.936 0.0298 0.295	chlorogenic acid 1.000 0.423 -0.191 0.537	rutin	quercetin	apigenin	isorosmand	apigenin glyc	 	kaempferol	isorhamneti rutinosi 	in-3- <i>O</i> - ide	epirosm	
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid ferulic acid caffeic acid comaric acid chlorogenic acid quercetin apigenin isorosmanol apigenin-7-O-β-D-glycoside kaempferol	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid - 1.000 0.936 0.020 0.228 0.225 0.230	chlorogenic acid -	rutin	quercetin	apigenin	isorosmand	apigenin glyc glyc glyc glyc glyc glyc glyc glyc		kaempferol	isorhamneti rutinosi 	in-3- <i>O</i> - ide	epirosm	
12-O-methylcarnosic acid 7-O-methylrosmanol methylrosmarinate genkwanin epicatechin isorhamnetin-7-O-rutinoside carnosic acid diosmetin luteolin scutellarein acacetin carnosol catechin hydrate gallic acid rosmarinic acid ferulic acid caffeic acid coumaric acid chlorogenic acid rutin quercetin apigenin isorosmanol apigenin-7-O-β-D-glycoside kaempferol isorhamnetin-3-O-rutinoside	rosmarinic acid - - - - - - - - - - - - - - - - - - -	ferulic acid - - - - - - - - - - - - - - - - - - -	caffeic acid - - - - - - - - - - - - - - - - - - -	coumaric acid - <	chlorogenic acid - 0.0423 -	rutin	quercetin	apigenin	isorosmand	apigenin glyc glyc - - -		kaempferol	isorhamneti rutinosi 	in-3- <i>O</i> - ide	epirosm	

 a significant values (p<0.05) are reported in bold character.

Preliminary test carried out to define the working concentration for the soft rot assay

This assay was carried out to define the working concentration of extracts (Table S1) and pure compounds to be used during the sof rot assay aiming to evaluate their potential activity in inhibiting the pectolytic activity of *Pectobacterium carotovorum* subsp. *carotovorum*.

P. carotovorum subsp. *carotovorum* was cultured at 28 °C on a nutrient agar medium (NYDA: 8.0 g nutrient broth, 1.5 g glucose, 20.0 g agar, 4.0 g yeast extract, and 1 L deionized water) in Petri dishes for 2 days at 28 °C. The bacterial inoculum was prepared from a 2 day-old cultured bacteria in a vial containing Buffered Pepton Water (Generon-Italy) at the concentration of 10^8 CFU/mL.

Extracts and pure compounds and were dissolved separately in a solution of sterile distilled water and DMSO working solution (1:1 v/v) to obtain, after the inoculation, a concentration of 1000 ppm, 500 ppm, 50 ppm and 0 ppm respectively. These solutions were then inoculated with the bacterial suspension to obtain a final concentration of 10^7 CFU/mL of *P. carotovorum* subsp. *carotovorum*.

After 5 min of exposure, each suspension was quantified by serial dilutions plating method.

Serial dilutions were made in peptone water (from 10^{-1} to 10^{-9}); 0.1 mL of different dilutions were plated on NYDA agar plates in triplicate (3 plates each dilution) and incubated for 2 days at 28°C. Not inoculated solution at 0 ppm was also evaluated to verify the absence of activity of DMSO.

For each dilution, the CFU (Colony Forming Unit) of *P. carotovorum* subsp. *carotovorum* per mL of suspension was obtained. Final CFU of *P. carotovorum* subsp. *carotovorum* per mL of suspension for each single treatment and concentration was calculated as the average of the CFU/mL of the 3 replicates (data related to the dilutions are not reported).

Table S9. Quantification in CFU/mL of Pectobacterium carotovorum subsp. carotovorum after the exposure to
the extracts / pure compounds at 1000 ppm, 500 ppm, 50 ppm and 0 ppm, respectively.

Extracts / pure compounds	Concentration (ppm)	Average of the replicates (CFU/mL)	Standard Deviation	Abbott index (%) ^d
1	50	2.70×10^7	1.00×10^{6}	0
1	500	8.67×10^{6}	2.89×10^{5}	68
1	1000	1.90×10^{6}	0.00	93
3	50	2.70×10^7	1.32×10^{6}	0
3	500	2.40×10^7	1.00×10^{6}	11
3	1000	2.17×10^{7}	1.53×10^{6}	20
5	50	2.69×10^7	2.20×10^{6}	0
5	500	2.37×10^{7}	2.08×10^{6}	12
5	1000	2.13×10^{7}	2.52×10^{6}	21
6	50	2.67×10^7	1.53×10^{6}	1
6	500	1.83×10^{7}	7.64×10^{6}	32
6	1000	1.50×10^{7}	0.00	44
7	50	2.67×10^{7}	1.15×10^{6}	1
7	500	2.40×10^7	1.00×10^{6}	11
7	1000	8.73×10^{6}	6.69×10^{6}	68
9	50	2.70×10^7	2.65×10^{6}	0
9	500	2.37×10^{7}	4.04×10^{6}	12
9	1000	1.37×10^{7}	7.29x10 ⁶	49
16	50	2.68×10^7	7.64x10 ⁵	1
16	500	2.47×10^{7}	5.77x10 ⁵	9
16	1000	1.34×10^{7}	7.54×10^{6}	50
20	50	2.67×10^7	1.15×10^{6}	1
20	500	2.33x10 ⁷	1.53×10^{6}	14
20	1000	9.67×10^{6}	5.77x10 ⁵	64
22	50	2.68×10^7	1.26×10^{6}	1
22	500	1.77×10^{7}	6.81×10^{6}	35
22	1000	1.15×10^{7}	3.01×10^{6}	57
26	50	2.67×10^7	3.21×10^{6}	1
26	500	2.40×10^7	1.00×10^{6}	11
26	1000	1.21×10^{7}	3.35×10^{6}	55
28	50	2.65×10^7	5.00×10^5	2

Supplementary Material

28	500	2.07×10^7	5.77×10^{5}	23
28	1000	7.93×10^{6}	9.29x10 ⁵	71
32	50	2.60×10^7	5.20×10^{6}	4
32	500	1.80×10^{7}	2.65×10^{6}	33
32	1000	1.04×10^{7}	8.92x10 ⁶	61
isorosmanol	50	2.69×10^7	3.82x10 ⁵	0
isorosmanol	500	2.05×10^{7}	8.66x10 ⁵	24
isorosmanol	1000	8.08×10^{6}	7.22x10 ⁵	70
12-O-methylcarnosic acid	50	2.67×10^7	7.64×10^{6}	1
12-O-methylcarnosic acid	500	1.83×10^{7}	1.53×10^{6}	32
12-O-methylcarnosic acid	1000	1.06×10^{7}	8.71×10^{6}	61
carnosic acid	50	2.63×10^7	5.77x10 ⁵	2
carnosic acid	500	2.03×10^7	6.43×10^{6}	25
carnosic acid	1000	1.11×10^{7}	8.78×10^{6}	59
carnosol	50	2.67×10^7	5.77x10 ⁵	1
carnosol	500	2.40×10^7	1.00×10^{6}	11
carnosol	1000	9.93×10^{6}	1.15x10 ⁵	63
7-0-methylrosmanol	50	2.63×10^{7}	3.06×10^{6}	2
7-O-methylrosmanol	500	1.29×10^{7}	5.25×10^{6}	52
7-O-methylrosmanol	1000	7.03×10^{6}	8.62x10 ⁵	74
DW (PC) ^a	0	2.70×10^7	1.73×10^{6}	0
DW (NC) ^b	0	2.70×10^{7}	2.00×10^{6}	0

The test was performed in 3 replicates. ^a DW (PC): inoculated distilled water/DMSO working solution 1:1 v/v (Positive Control); ^b DW (NC): not inoculated distilled water/DMSO working solution 1:1 v/v (Negative Control); ^c different letters indicate significant difference among treatments ($p \le 0.05$, Tukey HSD test), ^d Abbott index % = (average CFU/mL x 100) / average CFU/mL of PC.

The exposure for 5 minutes of a liquid suspension of *P. carotovorum* subsp. *carotovorum* (10^7 CFU/mL) to a solution of the treatments at the concentration of 50 ppm did not significantly inhibit the growth of the bacteria.

The exposures at the concentration of 500 ppm and 1000 ppm inhibited the growth of this bacteria from 9% to 68% and from 20% to 93%, respectively, compared to the untreated control (PC). The concentration of 1000 ppm was then selected as working concentration for further assay.

	Concentration (ppm and mg/mL)						
Extracts / pure compounds	0 ppm	16 ppm	50 ppm	250 ppm	500 ppm	1000 ppm	2000 ppm
	0 mg/mL	0.016 mg/mL	0.050 mg/mL	0.250 mg/mL	0.500 mg/mL	1 mg/mL	2 mg/mL
1	-	-	-	7.7±0.6 (-)	9.3±0.6 (+)	14±1.0 (+)	17.3±1.5 (++)
3	-	-	-	-	-	7.0±0.0 (-)	9.0±0.0 (+)
5	-	-	-	-	-	-	9.0±0.0 (+)
6	-	-	-	7.0±0.0 (-)	8.3±0.6 (-)	9.3±0.6 (+)	11.3±2.1 (+)
7	-	-	-	7.7±0.6 (-)	9.3±0.6 (+)	11±1.0 (+)	12.0±1.0 (+)
9	-	-	-	-	-	-	9.0±0.0 (+)
16	-	-	-	-	10.3±0.6 (+)	13.3±0.6 (+)	16.3±1.2 (++)
20	-	-	-	8.0±1.0 (-)	10.0±0.0 (+)	12.3±0.6 (+)	12.7±0.6 (+)
22	-	-	-	8.7±0.6 (-)	10.7±0.6 (+)	11.3±0.6 (+)	13.3±0.6 (+)
26	-	-	-	11.7±0.6 (+)	13±0.0 (+)	13.3±0.6 (+)	14.7±0.6 (+)
28	-	-	-	-	10.3±0.6 (+)	11.3±0.6 (+)	13.3±0.6 (+)
32	-	-	-	-	-	-	9.0±0.0 (+)

Table S10. Disk diffusion test.

isorosmanol	-	-	-	9.3±0.6 (+)	12±0.0 (+)	14±1.0 (+)	16.3±0.6 (++)
12-O-methylcarnosic acid	-	-	-	7.3±0.6 -)	8.3±0.6 (-)	11±1.0 (+)	14.3±0.6 (+)
carnosic acid	-	-	7.3±0.6 (-)	9.0±0.0 (+)	12±0.0 (+)	15±1.0 (+)	16.7±0.6 (++)
carnosol	-	-	7.0±0.0 (-)	8.7±0.6 (+)	12±0.0 (+)	13.5±0.7 (+)	15.3±0.6 (++)
7-O-methylrosmanol	-	-	-	-	-	9±0.0 (+)	11.7±0.6 (+)

Diameter in mm of the growth inhibition zone of *Pectobacterium carotovorum* subsp. *carotovorum* after the exposure to the extracts / pure compounds at 2000 ppm, 1000 ppm, 500 ppm, 250 ppm, 50 ppm, 16 ppm and 0 ppm, respectively, expressed as the average of three independent repetitions with a standard deviation value and the classification of sensitivity (-), (+) or (++).

Although all extracts and pure compounds at concentrations ranging from 250 ppm to 2000 ppm can inhibit *P. carotovorum* subsp. *carotovorum*, extracts 1 and 16 and the pure compounds isorosmanol, carnosic acid and carnosol show higher antimicrobial potency at 2000 ppm against this microorganism.

Doforonaa		Concentration (ppm and mg/mL)						
compound	0 ppm 0 mg/mL	1 ppm 0.001 mg/mL	8 ppm 0.008 mg/mL	16 ppm 0.016 mg/mL				
ampicillin	-	14.3±0.6(+)	16±1.0(++)	19±0.6(++)				

Diameter in mm of the growth inhibition zone of *Pectobacterium carotovorum* subsp. *carotovorum* after the exposure to ampicillin at 16, 8 and 1 ppm and 0 ppm expressed as the average of three independent repetitions with a standard deviation value and the classification of sensitivity (-), (+) or (++).

References

- Abd El-Razek, M.H. (2007). NMR assignments of four catechin epimers. *Asian Journal of Chemistry* 19, 4867-4872.
- Begum, A., Sandhya, S., Shaffath Ali, S., Vinod, K.R., Reddy, S., and Banji, D. (2013). An in-depth review on the medicinal flora *Rosmarinus officinalis* (Lamiaceae). *Acta Scientiarum Polonorum. Technologia Alimentaria* 12 1, 61-73.
- Cervelli, C., and Masselli, L. (Year). "Characterization of rosemary cultivars for ornamental purposes", in: *VII International Symposium on New Floricultural Crops*, eds. G. Facciuto & M.I. Sánchez: ISHS Acta Horticulturae), 107-114.
- Correia, F.C.S., Targanski, S.K., D., B.T.R., da Silva, Y.S.A.D., Violante, I.M.P., de Carvalho, M.G., et al. (2020). Chemical constituents and antimicrobial activity of branches and leaves of *Cordia insignis* (Boraginaceae). *Revista virtual de Quimica* 12(3), 809-816.
- CPVO (2022). "CPVO Variety Finder, Commercial registers". (Angers, France: Community Plant Variety Office).
- Gomes, R., Ramirez, R., Maciel, J., Agra, M., Souza, M., Falcão-Silva, V., et al. (2011). Phenolic compounds from *Sidastrum micranthum* (A. St.-Hil.) Fryxell and evaluation of acacetin and 7,4'-di-O-methylisoscutellarein as motulator of bacterial drug resistence. *Química Nova* 34, 1385-1388. doi: 10.1590/S0100-40422011000800016.
- Govindaraju, V., Young, K., and Maudsley, A.A. (2000). Proton NMR chemical shifts and coupling constants for brain metabolites. *NMR in Biomedicine* 13(3), 129-153. doi: 10.1002/1099-1492(200005)13:3<129::aid-nbm619>3.0.co;2-v.
- Jeanmonod, D. (2015). Notes à La Flore de Corse, XXV. Candollea 70(1), 109-140.
- Kiehlmann, E., and Tracey, A.S. (1986). Proton magnetic resonance spectra of catechin and bromocatechin derivatives: C6- vs. C8-substitution. *Canadian Journal of Chemistry* 64(10), 1998-2005. doi: 10.1139/v86-330.
- King-Díaz, B., Granados-Pineda, J., Bah, M., Rivero-Cruz, J.F., and Lotina-Hennsen, B. (2015). Mexican propolis flavonoids affect photosynthesis and seedling growth. *Journal of Photochemistry and Photobiology B: Biology* 151, 213-220. doi: <u>https://doi.org/10.1016/j.jphotobiol.2015.08.019</u>.
- Kuo, Y.-H., Lee, S.-M., and Lai, J.-S. (2000). Constituents of the whole herb of *Clinoponium laxiflorum. Journal of the Chinese Chemical Society* 47(1), 241-246. doi: <u>https://doi.org/10.1002/jccs.200000028</u>.
- Lecomte, J., Giraldo, L.J.L., Laguerre, M., Baréa, B., and Villeneuve, P. (2010). Synthesis, characterization and free radical scavenging properties of rosmarinic acid fatty esters. *Journal* of the American Oil Chemists' Society 87(6), 615-620. doi: <u>https://doi.org/10.1007/s11746-010-1543-8</u>.
- Li, N., Huang, J., Weng, W., Su, S., and Yu, Y. (2006). Preparation and identification of scutellarein by HPLC with an enzymolysis reaction. *Journal of Liquid Chromatography & Related Technologies* 29(9), 1297-1305. doi: 10.1080/10826070600598878.

- Lin, L.-C., Pai, Y.-F., and Tsai, T.-H. (2015). Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats. Journal of Agricultural and Food Chemistry 63(35), 7700-7706. doi: 10.1021/jf505848z.
- Liu, J., Chen, L., Cai, S., and Wang, Q. (2012). Semisynthesis of apigenin and acacetin-7-*O*-β-D-glycosides from naringin and their cytotoxic activities. *Carbohydrate Research* 357, 41-46. doi: <u>https://doi.org/10.1016/j.carres.2012.05.013</u>.
- López-Martínez, L., Santacruz, H., Navarro, R., Sotelo-Mundo, R., and Aguilar, G. (2015). A 1H NMR Investigation of the interaction between phenolic acids found in mango (*Manguifera indica* cv Ataulfo) and papaya (*Carica papaya* cv Maradol) and 1,1-diphenyl- 2picrylhydrazyl (DPPH) Free Radicals. *PLoS ONE* 10, e0140242. doi: 10.1371/journal.pone.0140242.
- Malcuit, G., and Deleuil, G. (1957). A propos de nouvelles localités de Pin d'Alep en Corse. *Bulletin de la Société Botanique de France* 104(7-8), 527-529. doi: 10.1080/00378941.1957.10835141.
- Mohamed, E.M., Hetta, M.H., Rateb, M.E., Selim, M.A., M. AboulMagd, A.A., Badria, A.F., et al. (2020). Bioassay-guided isolation, metabolic profiling, and docking studies of hyaluronidase inhibitors from *Ravenala madagascariensis*. *Molecules* 25(7), 1714. doi: 10.3390/molecules25071714.
- Napolitano, J.G., Lankin, D.C., Chen, S.N., and Pauli, G.F. (2012). Complete 1H NMR spectral analysis of ten chemical markers of *Ginkgo biloba*. *Magnetic Resonance in Chemistry* 50(8), 569-575. doi: 10.1002/mrc.3829.
- Paradis, G. (2004). 32èmes sessions extraordinaires 2003- le nord de la Corse Bulletin de la Société Botanique du Centre-Ouest. Nouvelle Série 35, 419-562.
- Park, Y., Moon, B.H., Yang, H., Lee, Y., Lee, E., and Lim, Y. (2007). Complete assignments of NMR data of 13 hydroxymethoxyflavones. *Magnetic Resonance in Chemistry* 45(12), 1072-1105. doi: 10.1002/mrc.2063.
- Pauli, G.F., Kuczkowiak, U., and Nahrstedt, A. (1999). Solvent effects in the structure dereplication of caffeoyl quinic acids. *Magnetic Resonance in Chemistry* 37(11), 827-836. doi: <u>https://doi.org/10.1002/(SICI)1097-458X(199911)37:11</u><827::AID-MRC568>3.0.CO;2-W.
- Peng, H.Y., Zhang, X.H., and Xu, J.Z. (2016). Apigenin-7-O-β-D-glycoside isolation from the highly copper-tolerant plant *Elsholtzia splendens*. *Journal of Zhejiang University-SCIENCE B* (*Biomedicine & Biotechnology*) 17(6), 447-454. doi: 10.1631/jzus.B1500242.
- Pukalskas, A., van Beek, T.A., and de Waard, P. (2005). Development of a triple hyphenated HPLCradical scavenging detection–DAD–SPE–NMR system for the rapid identification of antioxidants in complex plant extracts. *Journal of Chromatography A* 1074(1), 81-88. doi: <u>https://doi.org/10.1016/j.chroma.2005.03.089</u>.
- Rastrelli, L., Saturnino, P., Schettino, O., and Dini, A. (1995). Studies on the constituents of *Chenopodium pallidicaule* (Canihua) seeds. Isolation and characterization of two new flavonol glycosides. *Journal of Agricultural and Food Chemistry* 43(8), 2020-2024. doi: 10.1021/jf00056a012.
- RHS (2022). "Plants". (London, UK: Royal Horticultural Society).

- Richheimer, S.L., Bernart, M.W., King, G.A., Kent, M.C., and Beiley, D.T. (1996). Antioxidant activity of lipid-soluble phenolic diterpenes from rosemary. *Journal of the American Oil Chemists' Society* 73(4), 507-514. doi: <u>https://doi.org/10.1007/BF02523927</u>.
- Shen, C.-C., Chang, Y.-S., and Hott, L.-K. (1993). Nuclear magnetic resonance studies of 5,7dihydroxyflavonoids. *Phytochemistry* 34(3), 843-845. doi: <u>https://doi.org/10.1016/0031-</u> 9422(93)85370-7.
- Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R., Daykin, C.A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). *Metabolomics* 3(3), 211-221. doi: 10.1007/s11306-007-0082-2.
- UPOV (2018). "Revision of document TGP/14: Section 2: Botanical terms: Subsection 3: Color: Annex: Color names for the rhs colour chart", in: *TC/49/36*. (ed.) I.u.f.t.p.o.n.v.o. plants. (Geneva).
- Xiao, C., Dai, H., Liu, H., Wang, Y., and Tang, H. (2008). Revealing the metabonomic variation of rosemary extracts using 1H NMR spectroscopy and multivariate data analysis. *Journal of Agricultural and Food Chemistry* 56(21), 10142-10153. doi: 10.1021/jf8016833.
- Yolcubal, I., Brusseau, M.L., Artiola, J.F., Wierenga, P., and Wilson, L.G. (2004). "12 -Environmental physical properties and processes," in *Environmental Monitoring and Characterization*, eds. J.F. Artiola, I.L. Pepper & M.L. Brusseau. (Burlington: Academic Press), 207-239.