
1.1 Kienker Transformations

It is standard to represent Markov models by the gen-
erator matrix, Q, whose elements, Qij are the rates of
transition from state i to state j if i 6= j and with diag-
onal elements Qii = −∑

j 6=iQij . Then taking Pij(t) to
be the probability that the system is in state j at time
t given that it was in state i at time 0, we can write

dP

dt
= PQ (3)

with the initial condition P (0) equals the identity ma-
trix. Pairs of states i, j for which Qij and Qji are non-
zero are linked by an allowed state transition, assumed
to be a reversible reaction, and are connected by a line
in a reaction diagram. It is also standard, for an aggre-
gated Markov process with aggregates O and C, to par-
tition Q into four submatrices [1–5]: Qoo, Qoc, Qco, and
Qcc corresponding respectively to open-to-open transi-
tions, etc.:

Q =
(
Qoo Qoc

Qco Qcc

)
. (4)

We consider regular ergodic Markov processes so that
Q has a one dimensional null space. The left null vector
w contains the equilibrium probabilities. We denote the
right null vector by u, and it contains all ones: ui = 1 for
all i. Thus, we have wQ = 0 and Qu = 0. Sometimes
we will write w = (wo, wc) where wo and wc give the
components of the equilibrium corresponding to open
and closed states, respectively. Similarly uo and uc are
column vectors consisting of all ones.

Fredkin and Rice’s result [3], that the two dimen-
sional dwell time distributions fully characterize the
steady-state data, requires the spectra of Qoo and Qcc

to be non-degenerate and the coefficients in the one-
dimensional distribution functions (analogous to the αij

in the two-dimensional distribution in Equation 1 in
the main text) to all be non-zero. We will refer to these
conditions, also assumed by Kienker [5], as the Fredkin-
Rice-Kienker (FRK) conditions. Kienker proved that
two models with generatorsQ and Q̃ satisfying the FRK
conditions are equivalent if and only if they can be re-
lated by a similarity transformation:

Q̃ = S−1QS (5)

where S is a matrix of the form:

S =
(
Soo 0
0 Scc

)
(6)

with
Su = u, (7)

i.e., rows of S sum to one, which ensures that Q̃u = 0.
Here Soo and Scc are No × No and Nc × Nc matri-
ces respectively. The above imply Q̃oo = S−1

oo Qoo Soo,

and Q̃oc = S−1
oo Qoc Scc with similar expressions for Q̃co

and Q̃cc. We call similarity transformations of the form
given in Eq. 6 and satisfying Su = u “Kienker” trans-
formations.

Theorem 1. Under the FRK conditions, BKU form is
identifiable.

Proof. With non-degenerate Qoo and Qcc, the Kienker
transformation S to BKU form must be constructed
from the distinct eigenvectors of Qoo and Qcc. The am-
plitudes of the various eigenvectors in S are fixed by
requiring Su = u. Different orderings of these eigen-
vectors in S simply permute the states and do not alter
the model topology or rate constants.

1.2 Manifest Interconductance Rank
Form

To show that MIR form is a valid canonical form, we
must show how to transform almost any model (i.e. ex-
cept for a set of measure zero) into MIR form. To do
this we first put Qoc and Qco into what we call gener-
alized diagonal form, in which at most one element in
each row and each column of these non-square matrices
can be non-zero. The total number of non-zero elements
will be R.

Theorem 2. The off-diagonal blocks Qoc and Qco can
be made generalized diagonal by the Kienker transfor-
mation with Soo and Scc chosen to diagonalize the prod-
ucts QocQco and QcoQoc, respectively, provided their
nonzero eigenvalues are distinct.

Expressed in equations, if S−1
oo QocQcoSoo = Λoo and

S−1
cc QcoQocScc = Λcc, where Λoo and Λcc are both di-

agonal matrices, then the theorem states

S−1
oo QocScc = Λoc

S−1
cc QcoSoo = Λco,

where Λoc and Λco are generalized diagonal non-square
matrices. In fact this transformation not only results in
Qoc and Qco generalized diagonal, but also their non-
zero entries will correspond to reversible transitions:
non-zero entries of Qco are in the same locations as the
non-zero entries of QT

oc.
The transformations Soo and Scc that diagonalize

QocQco and QcoQoc are not unique because they have
No−R and Nc−R dimensional nullspaces respectively.
Thus the full transformation to MIR form can be writ-
ten as a two step operation SMIR = SŜ. Ŝ is a Kienker
transformation applied to diagonalize the (No − R) ×
(No −R) block of Qoo and the (Nc −R)× (Nc −R) of
Qcc.



Proof. (Theorem 2): Assuming QocQco has distinct
non-zero eigenvalues, from S−1

oo Qoc QcoSoo = Λoo, we
can have QcoQocQcoSoo = QcoSooΛoo. This shows that
columns of QcoSoo are eigenvectors of QcoQoc, as are
the columns of Scc. Let n and k be the number of
non-zero eigenvalues and the algebraic multiplicity of
the zero eigenvalue of QcoQoc, respectively. Applying a
permutation, we can write Λoo as:

Λoo = diag(λ1, λ2, · · · , λn, 0, 0, · · · , 0︸ ︷︷ ︸
k

). (8)

Note that QocQco and QcoQoc have the same non-
zero eigenvalues. We assume the nonzero eigenvalues
in Λoo and Λcc are in the same order (again using
post-diagonalization permutations), and thus can write
QcoSoo = SccΛco, which implies that Λco = S−1

cc QcoSoo

is a Nc by No block diagonal matrix with the structure:

Λco =
(
Dco

Zco

)
, (9)

where Dco is a n by n diagonal matrix and Dco =
diag(α1, α2, · · · , αn) and Zco is a Nc − n by k ma-
trix. Similarly, we can have a No by Nc block diago-
nal matrix Λoc = S−1

oo QocScc having a structure similar
to Λco, namely Λoc = diag(Doc, Zoc), where ZcoZoc =
0, ZocZco = 0. If rank(Qco) = rank(Qoc) = n,∗ then
clearly, rank(Zco) = rank(Zoc) = 0, i.e., Zco and Zoc

are zero matrices.
If the ranks of Qoc and Qco are not equal, or if some

of the λi in Eq 8 are equal, the above procedure may not
result in generalized diagonal Qoc and Qco. However,
in some—but not all—such cases this aim can still be
achieved by a suitable transformation on the degenerate
subspace or subspaces.

To complete the claim that MIR form is a canonical
form, we still need:

Theorem 3. Except for a set of measure zero, MIR
form is identifiable.

The set of measure zero will be seen to consist of
degeneracies and cases where some of the R O–C links
have zero rates, causing the true rank to be less than
R.

Proof. To prove that MIR form is canonical, we show
that the only transformation which transforms an MIR
form into MIR form is permutation. Let Q be in MIR
form, thus we have:

QcoQoc =
(

Λ 0
0 0

)
, (10)

∗For reversible reactions, the ranks are equal except for a set
of measure zero. Under DB the ranks must be equal because
WQ = QT W implies WoQoc = QT

coWc ⇐⇒ Qoc = W−1
o QT

coWc.
Hence, rank(Qoc)=rank(QT

co)=rank(Qco).

where Λ is a diagonal block matrix with non-zero and
distinct eigenvalues. To diagonalize QcoQoc that is al-
ready diagonal and maintain the non-zero eigenvalues
in upper left corner, it is easy to show that the similarity
transformation must be in the form:

Scc =
(
p 0
0 X

)
, (11)

where p is a permutation matrix (possibly the identity).

Column vectors in
(

0
X

)
span the nullspace of QcoQoc.

X must be a full rank matrix for Scc to be invertible.
We partition Qcc in the same way as for Scc, thus we
have:

Q̃cc = S−1
cc QccScc (12)

=
(
pT 0
0 X−1

)(
Q11 Q12

Q21 Λ22

)(
p 0
0 X

)
(13)

=
(
pTQ11p pTQ12X
X−1Q21p X−1Λ22X

)
(14)

where
Q̃22 = X−1Λ22X. (15)

Because Λ22 is diagonal, it is clear that the only trans-
formation X that keeps Q̃22 diagonal is a permutation
(cases where eigenvalues of Λ22 are non-distinct are part
of the set of measure zero). Thus, Scc must be a per-
mutation. The same holds for Soo.

1.3 Rank and Independent Reactions

We define the number nI of independent links (or re-
versible reactions) to be the largest number of links that
can be identified, such that none of them share any
states as common endpoints. We claim the matrix rank
R of Qoc, assumed to equal the rank of Qco, satisfies:

Theorem 4. Except for a set of measure zero where
the reaction rates have linear dependencies,

R = nI . (16)

Proof. Because there are nI independent entries in Qoc,
each in its own row and column, we have R ≥ nI . To
show R ≤ nI , we identify R independent links by the
following construction. Because rank(Qoc) = R we can
identify R independent rows of Qoc, and this R × Nc,
rank R submatrix must have R independent columns.
This identifies an R×R rank R submatrix of Qoc, which
we call A. Expanding the determinant of A by minors,
we have for any i:

det(A) =
R∑

j=1

(−1)i+jAijMij , (17)



whereMij is a “minor” of A, equal to the determinant of
the submatrix of A without the ith row and jth column.
det(A) is non-zero (otherwise A would have rank less
than R), so at least one term in the sum must be non-
zero. Such a term must have Aij and Mij non-zero,
and (i, j) can be identified as an independent link. The
same expansion is then carried out replacing A by the
(R − 1) × (R − 1) rank R − 1 matrix Mij . Continuing
in this way identifies R independent links .

1.4 Detailed Balance

The DB conditions can be written: wiqij = wjqji.
Defining W as the diagonal matrix W = diag(w) we
rewrite the DB condition:

WQ = (WQ)T . (18)

We would like to know which Kienker transforms pre-
serve DB. If Q satisfies DB, plugging Q̃ = S−1QS (with
left null vector w̃ = wS W̃ = diag(w̃)) into Eq. 18 and
rearranging gives STWSQ̃ = Q̃TSTWS. If STWS is
diagonal then this equation has the form of Eq. 18 and
DB is preserved; furthermore,

W̃ = STWS (19)

which is seen by multiplying both sides of Eq. 19 on the
left by uT , noting that uTST = uT , w = uTW , and
wS = w̃ = uT W̃ .

Thus, to show that DB is preserved under a transfor-
mation S it is sufficient to show that STWS is diagonal.
(In fact this condition is also necessary assuming non-
degeneracy conditions hold.) First we present the main
theorem of this section:

Theorem 5. If Q is a generator matrix satisfying DB,
then the transformation to BKU and MIR forms pre-
serve detailed balance, provided Q satisfies the condi-
tions for identifiability of those forms.

Proof. Let Q̃ be the generator after a similarity trans-
formation, i.e., Q̃ = S−1QS. We would like to show,
under condition stated in either (1) or (2), that W̃ Q̃ =
Q̃T W̃ , where W̃ is a diagonal matrix and its diago-
nal entries are equilibrium distribution for the resulting
model. Here we note that the law of DB WQ = QTW
can be written as WSQ̃ = QTWS. Its partitioned form
is:
(
WoSooQ̃oo WoSooQ̃oc

WcSccQ̃co WcSccQ̃cc

)
=

(
QT

ooWoSoo QT
coWcScc

QT
ocWoSoo QT

ccWcScc

)
.

(20)
We now consider the two canonical forms separately.

BKU Form: In this case, from the above equation
(20), we have WoSooQ̃oo = QT

ooWoSoo. Since Q̃oo

is diagonal, it is clear that column vectors of WoSoo

are eigenvectors of QT
oo. From the similarity transfor-

mation, we know that Q̃oo = ST
ooQ

T
ooS

−T
oo , hence col-

umn vectors of S−T
oo are eigenvectors of QT

oo. Since
Qoo has distinct eigenvalues, we can write WoSoo =
S−T

oo Λo, where Λ = diag(α1, α2, ..., αno
), each αi, for

i = 1, 2, ..., no, is scalar. Similarly, we have WcScc =
S−T

cc Λc. The law of DB WQ = QTW can be yet writ-
ten into STWSQ̃ = Q̃TSTWS, thus ΛQ̃ = Q̃T Λ, where

Λ = STWS =
(

Λo 0
0 Λc

)
. Let u be a column vec-

tor with all entries being ones, uT Λ = uTSTWS =
uTWS = wS = w̃, thus Λ = W̃ .

MIR form: In this case, from Eq. 20, we have:

WoSooQ̃oc = QT
coWcScc

WcSccQ̃co = QT
ocWoSoo,

thus WoSooQ̃ocQ̃co = QT
coWcSccQ̃co = QT

coQ
T
ocWoSoo.

Since Q̃ocQ̃co is diagonal and has distinct non-zero
eigenvalues, the column vectors of WoSoo are either
eigenvectors of matrix QT

coQ
T
oc or in the null space which

could be eigenvector of zero eigenvalue or zero vector.
We also have Q̃ocQ̃co = ST

ooQ
T
coQ

T
ocS

−T
oo , thus it is clear

that columns of S−T
oo are also eigenvectors of QT

coQ
T
oc or

in the null space. We can write WoSoo = S−T
oo Λ. If

QT
coQ

T
oc is full rank, it is clear that Λ is diagonal. If

QT
coQ

T
oc is less than full rank, according to what has

been shown in (1), Λ is still a diagonal matrix because
Soo also diagonalizes the part of Qoo, which has the
dimension of No − rank(QT

coQ
T
oc).

Q̃ may have negative entries on the off-diagonals and
thus is strictly speaking not the generator for a Markov
process but for a generalized Markov process [6] with
negative reaction rates. With DB we have the following
corollary:

Corollary 1. If S preserves DB then all components
of w̃ = wS are positive.

This is so because if W̃ = STWS is diagonal then
each W̃ii is just the dot product of the the ith column
of W 1/2S with itself.

1.5 Real and Complex Rates

If DB holds, the eigenvalues of Q must all be real. This
is true because Eq. 18 also implies that W 1/2QW−1/2

is symmetric, and this must have the same spectrum as
Q. When the spectrum is real, the diagonalizations can
be carried out by real S, and the resulting rates will be
real.

If Q does not obey DB, a transformation to canon-
ical form may result in rates that are complex num-



bers. Histograms of gating statistics may show oscilla-
tions caused by complex eigenvalues in Qoo or Qcc. In
such cases BKU and MIR forms will have complex rates,
but Larget’s form [7] will not. However, Larget’s form
will have negative rates, and it is possible with negative
rates to avoid complex rates in the other forms without
adding new parameters.

In the complex versions of BKU and MIR forms, di-
agonal values will appear in complex conjugate pairs.
Two by two Kienker transformations that mix the cor-
responding pairs of states can obtain real Qs, at the
expense of relaxing the form to being block diagonal
with 2× 2 blocks. In fact there are algorithms for find-
ing this block diagonalization without using complex
numbers [8]. No new parameters are added, because in
this form the diagonal values in each block can be made
equal, and the off-diagonal elements will be negatives of
each other.

When fitting data to canonical form, especially in sys-
tems where DB violation my be suspected, it would be
wise to either allow complex rates or to repeat fits with
different numbers of pairs of diagonal elements replaced
by 2× 2 blocks with these constraints. The first option
may in practice reduce to the second, because it is un-
clear how to evaluate a non-real likelihood that might
arise if the eigenvalues are not in complex conjugate
pairs.

1.6 Rank 1

Definition 1. Given two topologies T1 and T2, if for
almost all models having topology T1, there is an equiv-
alent model having topology T2, and vice versa, then T1

and T2 are equivalent topologies.

“Almost all” means except for a set of measure zero;
this is motivated by the models with degenerate Qoo

or Qcc matrices that do not satisfy the FRK condi-
tions. When detailed balance is violated, such models
often violate the otherwise strict equivalence between
two topologies. For example, Qoo may not be diagonal-
izable, making transformation to BKU form impossible.
However, models having statistics arbitrarily close to
the original model can still be found in BKU form.

With this definition we can state simply:

Theorem 6. Rank one equivalence: All rank 1 topolo-
gies with fixed No and Nc are equivalent.

Proof. We know that we can transform from almost
any model to both MIR form (Theorem 2) and BKU
forms [5]. If we can show we can transform almost any
rank 1 model with one of these canonical forms to any
rank 1 topology, then we can transform between any
two rank 1 topologies using canonical form as an inter-
mediate, which will prove the theorem.
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Fig. 7. The two cases discussed in the proof of
Theorem 6. The boxes represent arbitrary topologies
containing the number of states given inside the box (n
or N for O states, M for C states). Both cases on the
left are equivalent to having the Os in canonical form,
as shown on the right.

Many rank 1 topologies have loops, but such topolo-
gies are never identifiable. Given a rank 1 topology
containing one or more loops, we can always choose to
transform to a special case of that topology where rates
of some reactions are zero, so that no loops remain. This
allows us to henceforth consider only those topologies
that do not contain loops.

The proof is by induction on the number of states.
We will start by holding fixed the number of Cs, and
call it M , and use induction on N , the maximum num-
ber of Os for which all rank 1 topologies are equivalent
to the topologies with the Cs unchanged, and the Os in
canonical form. (Since we can transform between BKU
and MIR forms, they are certainly equivalent.) Clearly
N ≥ 1 because the Os are already in canonical form
when there is only one. Now we show that if the equiv-
alence to canonical form for the Os holds for some N
then it also holds for N + 1, implying it must hold for
any number of Os.

There are two cases to consider with rank 1: either
the Cs links directly to only one O, or there is a gateway
C that links to more than one as shown in Figs 1.6a
and b. Because we assume there are no loops, the latter
case allows us to identify two separate O subnetworks,
of sizes n and N + 1 − n, as shown in Fig 1.6b, where
n is the number of Os linked to one of the Os linked to
the gateway C. N + 1 − n and n are both no greater
than N , so both subnetworks must be equivalent to
BKU form. To transform from almost any BKU-form
model to the desired topology, we apply the Kienker
transformation (which exists by induction) on the first
n Os in BKU form that will create the first subnetwork,
and then apply the Kienker transformation on the next
N + 1− n Os that will yield the second subnetwork.

In the former case (Fig 1.6a), the “gateway” O that
connects to the C also connects to a subnetwork of N
Os. To transform from almost any MIR-form model



to the desired topology, we consider the transformation
that would take No = N,Nc = 1 BKU form to the
size N subnetwork connected to a C rather than an
O. By induction this transformation is possible, and
when applied to the N Os leaving the gateway O and
the C network unchanged, it transforms from MIR form
model to the desired network.

This proves that for rank 1, all topologies with fixed
No and the same topology for the Cs are equivalent.
The same must be true with O and C interchanged.
Clearly by the definition, equivalence is transitive. So
if To is the O part of the topology, and Tc is the C
part, (To, Tc) ∼= (T ′o, Tc) ∼= (T ′o, T

′
c) implies (To, Tc) ∼=

(T ′o, T
′
c); taking the T ′o and T ′c to be MIR form shows

that any rank 1 topology is equivalent to MIR form.

The induction proves that it is possible to trans-
form between any two rank 1 topologies by a series
of transformations on various sub-networks, where each
transformation takes the sub-network into BKU or MIR
form. Using the following result, it follows that if de-
tailed balance holds, no negative rates will be intro-
duced when transforming between rank 1 topologies.

Theorem 7. Rank 1 models that satisfy detailed bal-
ance have positive rate constants in both BKU and MIR
forms.

Proof: for MIR form: Because Q is negative semi-
definite, and remains so after any similarity transfor-
mation, all its diagonal elements must always be less
than or equal to zero. For rank 1, all but two rows of
Q have only two entries in MIR form, and each row
sums to zero, implying all rates in those rows must
be non-negative. Of the two remaining rows, let us
first consider the one that includes one row of Qoo and
the one non-zero entry in Qoc. The off-diagonal en-
tries in this row of Qoo are positive because by DB
WoQoo = QT

ooWo and thus each entry equals a posi-
tive number times one of the rates already shown to
be non-negative. The entry in Qoc, when multiplied
by the equilibrium probability of being in the corre-
sponding open state, gives the steady state flux from
the open to closed aggregates. This is an experimen-
tally observable quantity that must be conserved when
transforming between equivalent models. Thus, if the
original model had all non-negative rate constants, the
transformed Qoc entry will be non-negative (and posi-
tive assuming ergodicity) as well. The same arguments
apply to the remaining row of Q.

for BKU form: Again write Qoc = vov
T
c and likewise

Qco = xcx
T
o . From the definition of DB WQ = QTW ,

and defining Wo and Wc to be the open and closed diag-
onal blocks of W , we can state WcQco = QT

ocWo. Thus,
Wcxcx

T
o = (vov

T
c )TWo so that xcx

T
o = W−1

c vcv
T
o Wo.

Both sides of this equation are rank 1 matrices formed
by outer products of two vectors. Therefore the vectors
must be equal up to a scalar factor γ, so

xc = γW−1
c vc, (21)

and xT
o = γ−1vT

o Wo. Recall that the rows of Q must
sum to zero, and in BKU form Qoo is diagonal with
negative entries. Thus, each row of Qoc must sum to a
positive value. The sum of the ith row can be expressed
as voiv

T
c uc. Thus, each entry of vo must have the same

sign as vT
c uc. Likewise each entry of xc must have the

same sign as xT
o uo. Then the entries of vc all have the

same sign as well by equation 21, since all the diagonal
entries of W are positive. Thus, all entries in Qoc have
the same sign, and they sum to a positive value, thus
they are all positive. The same is true of Qco.

Theorem 8. In BKU form, all rank 1 models have
2NONC nonzero rate constants.

Proof: A any rank one matrix can be written as an
outer product of two vectors so that Qoc = vov

T
c and

likewise Qco = xcx
T
o . If any component of any of these

vectors were zero, then either an entire row or column
of QOC or QCO would be all zeros, which would violate
ergodicity. To see this note that an entire row or column
of QOC or QCO being zero implies a row or column of Q
being all zeros except for the diagonal element. If a row
of Q is zero except for the diagonal element then there
is an absorbing state. If a column of Q is zero except
for the diagonal element then there is an unreachable
state.

1.6.1 None of C-O-O-C, O-C-C-O, and C-O-C-
O are equivalent to each other.

To see this note that C-O-O-C and O-C-C-O are both
subtopologies of the R = NO = NC = 2 MIR form
topology. Thus, if C-O-O-C were equivalent to O-C-
C-O it would violate MIR form identifiability because
MIR form would contain pairs of equivalent models dif-
ferent from the exceptions in the MIR form identifia-
bility proof. If C-O-C-O is not equivalent to C-O-O-C
then it is not equivalent to O-C-C-O by symmetry.

Here we show that the C-O-C-O 6= C-O-O-C. The
generator matrix, Q for C-O-C-O is of the form:

Q =




x 0 x x
0 x 0 x
x 0 x 0
x x 0 x


 (22)

while the generator Q′ for COOC is of the form

Q′ =




x x x 0
x x 0 x
x 0 x 0
0 x 0 x


 . (23)



Here the “x’s” represent nonzero elements. So we’re
looking for a similarity transformation from Q to Q’
with row sum of unity. First not that Qcc and Q′cc are
both diagonal. This means that Scc is either the identity
or the permutation operator. We treat only the identity
case.

In this case we have that Scc = I so that Q′oc =
S−1

oo Qoo. Note that

Qoc =
(
qoc
11 qoc

12

0 qoc
22

)
(24)

and that

Q′oc =
(
q′oc
11 0
0 q′oc

22

)
. (25)

We also have:

Qco =
(
q11 0
qco
21 qco

22

)
(26)

and

Q′co =
(
q′co
11 0
0 q′co

22

)
. (27)

The transformation from Qoo to Qoc doesn’t put any
constraints on Soo, which we write:

Soo =
(
x 1− x
y 1− y

)
(28)

so that

S−1
oo =

1
x− y

(
1− y x− 1
−y x

)
. (29)

The off-diagonal elements of Q′oc and Q′co are all zero
so that

0 = q′oc
12 = (S−1

oo Qoc)12

=
1

x− y
((1− y)qoc

12 + (x− 1)qoc
22

0 = q′oc
21 = (S−1

oo Qoc)21 =
1

x− y
(−yqoc

11)

0 = q′co
12 = (QcoSoo)12 = (1− x)qco

11

0 = q′co
21 = (QcoSoo)21 = xqco

21 + yqco
22.

The above set of four equations for x and y is overde-
termined. It is easy to check that it does not have a
solution.

1.7 C-O-O-C Has Negative Rates in
BKU Form

Here we prove that every physical C-O-O-C model when
transformed into BKU form has negative rates.

The blocks of the generator of C-O-O-C have the fol-
lowing structure:

Qoo =
(
qoo
11 qoo

21

qoo
21 qoo

22

)
(30)

Qoc =
(
qoc
11 0
0 qoc

22

)
(31)

Qco =
(
qco
11 0
0 qco

22

)
(32)

Qcc =
(
qcc
11 0
0 qcc

22

)
. (33)

Note that Qcc, Qco, and Qoc are all diagonal. So that
Scc is the identity matrix. To show that the equivalent
BKU form model has negative rates for every physical
C-O-O-C model it suffices to show that Q̃oc = SooQoc

has negative rates. Note that all elements of the gener-
ator for C-O-O-C are non-negative except for the diago-
nal ones of Qoo of Qcc. Thus, Qoc is a positive diagonal
matrix. Thus, to show that Q̃oc has at least one nega-
tive entry it suffices to show that Soo has at least one
negative entry. Note now that since Soo diagonalizes
Qoo it must be comprised of the eigenvectors of Qoo:

Qoo

(
ψ1i

ψ2i

)
= λi

(
ψ1i

ψ2i

)
. (34)

That is

Soo =
(
ψ11 ψ12

ψ21 ψ22

)
,

(
α1 0
0 α2

)
(35)

where the amplitudes (αi) are chosen so that Eq 7 is
satisfied. (i.e. the rows of Soo sum to 1). We need only
prove that Soo has at least one negative entry. To do
this it suffices to show that ψ21/ψ11 and ψ12/ψ22 have
opposite sign. The eigenvalue equations can be written:

(qoo
11 − λ1)ψ11 + qoo

12ψ21 = 0 (36)
qoo
21ψ12 + (qOO

22 − λ2)ψ22 = 0 (37)

so that
ψ21

ψ11
=
−(qoo

11 − λ1)
qoo
12

and
ψ12

ψ22
=
−(qoo

22 − λ2)
qoo
21

. (38)

Note that qoo
11 + qoo

22 = λ1 + λ2 so that (qoo
11 − λ1) =

−(qoo
22 − λ2) so that

ψ21

ψ11
=

(qoo
22 − λ2)
qoo
12

, (39)

from which it follows that that ψ21/ψ11 and ψ12/ψ22

have opposite sign (since qoo
12 and qoo

21 are positive by
assumption).



1.8 Identifiability and Equivalence of all
4-link Topologies with No = Nc =
R = 2.

Here we prove the assertion that the four topologies
shown in Fig. 6 of the main text are identifiable and
equivalent. The topologies shown in Fig. 6a and b are
the BKU and MIR canonical forms, respectively. Thus,
they are identifiable and equivalent. By symmetry if
topology 6d is identifiable then topology 6c is identifi-
able. If topology 6d is equivalent to topology 6a then
so is 6c, and then it would follow that all four topolo-
gies are equivalent to each other. Thus, we have only
to prove that topology 6d is identifiable and that it is
equivalent to 6a.

1.8.1 Identifiability

The blocks of the generator for topology 6d have the
following structure:

Qoo =
(
qoo
11 0
0 qoo

22

)

Qoc =
(
qoc
11 0
qoc
21 qoc

22

)

Qco =
(
qco
11 qco

12

0 qco
22

)

Qcc =
(
qcc
11 qcc

12

qcc
21 qcc

22

)
.

(40)

Note now that the preservation of the topology im-
plies that

Q̃oo =
(
q̃oo
11 0
0 q̃oo

22

)

Q̃oc =
(
q̃oc
11 0
q̃oc
21 q̃oc

22

)

Q̃co =
(
q̃co
11 q̃co

12

0 q̃co
22

)

Q̃cc =
(
q̃cc
11 q̃cc

12

q̃cc
21 q̃cc

22

)
.

(41)

Note thatQoo and Q̃oo are diagonal so that any trans-
formation from the topology 6d to itself must preserve
that diagonality. This means that Soo is either the iden-
tity or it is a permutation of the first row and column
with the second row and column. We treat the identity
case here. The permutation case is similar.

The closed-closed transitions do not constrain Scc

which thus can be written:

Scc =
(
x 1− x
y 1− y

)
. (42)

Now we check to see if the forms of the interconduc-
tance transition matrices Qoc and Qco constrain Scc.
We have:

Q̃oc = QocScc (43)

so that
(
q̃oc
11 0
q̃oc
21 q̃oc

22

)
=

(
qoc
11 0
qoc
21 qoc

22

)(
x 1− x
y 1− y

)
. (44)

To maintain the zero then we must have x = 1 (unless
qoc
11 = 0 which is both measure zero and non-ergodic).

To this point then we have determined that

Scc =
(

1 0
y 1− y

)
(45)

so that

S−1
cc =

1
1− y

(
1− y 0
−y 1

)
(46)

and now
Q̃co = S−1

cc Qco (47)

so that
(
q̃co
11 q̃co

12

0 q̃co
22

)
=

1
1− y

(
1− y 0
−y 1

)(
qco
11 qco

12

0 qco
22

)
.

To preserve the 0 element we must have y = 0 (or qco
11

which is measure zero and nonergodic). Thus, we find
that

Scc = I (48)

Similar arguments lead to Soo and Scc being permuta-
tions. Thus, the topology 6d is identifiable, as asserted
in the body.

1.8.2 Equivalence

Here we have to prove that topology 6d is equivalent to
topology 6a. Clearly every topology of the form 6d can
be diagonalized (except for a set of measure zero. Thus
we need only show that every topology of the form 6a
can be put into the form 6d. So we need to show the
existence of a similarity transformation that does that.
We let Q̃ be the generator for topology 6d and Q be the
generator for the topology 6a.

Q̃oo =
(
q̃oo
11 0
0 q̃oo

22

)

Q̃oc =
(
q̃oc
11 0
q̃oc
21 q̃oc

22

)

Q̃co =
(
q̃co
11 q̃co

12

0 q̃co
22

)

Q̃cc =
(
q̃cc
11 q̃cc

12

q̃cc
21 q̃cc

22

)

(49)



Qoo =
(
qoo
11 0
0 qoo

22

)

Qoc =
(
qoc
11 qoc

12

qoc
21 qoc

22

)

Qco =
(
qco
11 qco

12

qco
21 qco

22

)

Qcc =
(
qcc
11 0
0 qcc

22

)

(50)

Since Q̃oo and Qoo are both diagonal Soo is either the
identity or a permutation. We treat the identity case
here. The permutation case is similar. Since Scc takes
the diagonal Qcc into the full Q̃cc that transformation
does not constrain Scc so that we again write:

Scc =
(
x 1− x
y 1− y

)
. (51)

We now look at the transformation between Q̃oc =
QocScc. We have then that:

(
q̃oc
11 0
q̃oc
21 q̃oc

22

)
=

(
qoc
11 qoc

12

qoc
21 qoc

22

) (
x 1− x
y 1− y

)
.

To obtain the zero in Q̃oc we must have:

qoc
11(1− x) + qoc

12(1− y) = 0 (52)

so that
x = 1 +

qoc
12

qoc
11

(1− y) = a− by (53)

Now we have that S−1
cc is given by:

S−1
cc =

1
x− y

(
(1− y) −(1− x)
−y x

)
. (54)

We now look at the transformation between Q̃co =
S−1

cc Qco. We have then that:
(
q̃co
11 q̃co

21

0 q̃co
22

)
=

1
x− y

(
(1− y) −(1− x)
−y x

)(
qco
11 qco

12

qco
21 qco

22

)
.

To obtain the zero in Q̃CO we must have:

qco
21x− qco

11y = 0 (55)

so that
x =

qco
11

qco
21

y = cy (56)

so that
y =

a

b+ c
(57)

where

a = 1 +
qoc
12

qOC
11

(58)

b =
qoc
12

qoc
11

(59)

c =
qco
11

qco
21

. (60)

Thus, the transformation is well defined provided c 6= 1.
Thus, we have shown that every BKU model in topology
6a can be transformed into a model with topology 6d.
Thus, the two topologies are equivalent.
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