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Evolution of reduced dispersal mortality
and ‘fat-tailed’ dispersal kernels in autocorrelated

landscapes
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Models describing the evolution of dispersal strategies have mostly focused on the evolution of dispersal
rates. Taking trees as a model for organisms with undirected, passive dispersal, we have developed an
individual-based, spatially explicit simulation tool to investigate the evolution of the dispersal kernel, P(r),
and its resulting cumulative seed-density distribution, D(r). Simulations were run on a variety of fractal
landscapes differing in the fraction of suitable habitat and the spatial autocorrelation. Starting from a
uniform D(r), evolution led to an increase in the fraction of seeds staying in the home cell, a reduction of
the dispersal mortality (arrival in unsuitable habitat), and the evolution of ‘fat-tailed’ D(r) in auto-
correlated landscapes and approximately uniform D(r) in random landscapes. The evolutionary process
was characterized by long periods of stasis with a few bouts of rapid change in the dispersal rate.
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1. INTRODUCTION

The explicit consideration of the spatial distribution of
habitats and organisms in landscapes has substantially
shifted our view of the principal mechanisms responsible
for the coexistence of species, the maintenance of
diversity and species distribution, and the dynamics of
(meta)populations in fragmented landscapes (see Kareiva
1990; Hassell et al. 1991; Tilman & Wedin 1991; Durrett &
Levin 1994; Hastings & Harrison 1994; Holmes et al.
1994; Bascompte & Solé 1995; De Roos & Sabelis 1995).
In all of these approaches, dispersal is the principal
‘transmitter’ of interactions in space. Consequently,
increasing attention has been directed towards the
analysis of the evolution of dispersal strategies as well as
their ecological consequences (Dieckmann et al. 1999).

The probability that a single dispersing organism will
travel a certain distance before it settles is described by a
probability density function P(r), the dispersal kernel. As
any dispersing organism has to arrive somewhere, the
dispersal kernel must integrate to 1 across the range of
possible dispersal distances. The resulting cumulative
distribution of all individuals dispersed from the same
starting point, for example the seeds dispersed by a single
tree, 1s the distance density distribution. As we will take
dispersal of seeds as an example, we will call this function
the seed density distribution, D(r), throughout the paper.
In the case of radially symmetrical undirected dispersal,
i.e. dispersing organisms select directions at random and
do not respond to habitat quality when settling, D(r) can
be calculated from P(r) as D(r) =P(r)/27r.

By considering specific movement patterns of
dispersing organisms (e.g. simple diffusion, correlated
random walk) and their resulting dispersal kernels, it
has become evident that the details of the kernel and the
landscape structure will have important consequences for
various ecological processes. In particular, whether the
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kernel is ‘thin tailed’ or ‘fat tailed’ will strongly affect the
spread of the invading species (e.g. Van den Bosch et al.
1992; Kot et al. 1996; Lewis 1997; Cain et al. 1998; Clark
1998; Clark et al. 1998), the metapopulation dynamics
(With & King 1999), the colonization of new sites
(Portnoy & Willson 1993), and the formation of spatial
patterns in the distribution of species (Holmes et al.
1994). Certainly, the details of the dispersal kernel
should affect individual fitness and, consequently, be
shaped by natural selection. Unfortunately, empirical
data on long-distance dispersal are still hard to find (see
Portnoy & Willson 1993).

The lack of empirical data is paralleled by a similar
scarcity of models investigating the factors controlling
the evolution of the dispersal kernel and the resulting
D(r), especially in spatially realistic, autocorrelated land-
scapes. Most models describing the evolution of dispersal
strategies have focused on the evolution of optimal
dispersal rates (e.g. Levins 1970; Hamilton & May 1977;
Hastings 1983; Levin e/ al. 1984; Johnson & Gaines 1990;
Gandon & Michalakis 1999; Parvinen 1999). As those
organisms dispersing at all are usually added to a general
pool of dispersers, which is uniformly distributed over
the landscape, these models are spatially implicit. Only
recently first steps have been taken towards a spatially
explicit simulation of the evolution of the dispersal
process itself (Leimar & Norberg 1997; Travis & Dytham
1998, 1999; With & King 1999). These grid- or patch-
orientated simulations are spatially explicit inasmuch as
dispersal is only allowed into neighbouring cells or
patches, but they do not consider the evolution of the
dispersal kernel. Ezoe (1998) investigated the trade-off
between mean dispersal distance and seed size, assuming
that large seeds are more competitive but disperse over
shorter distances. Savill & Hogeweg (1998) modelled the
evolution of maximum dispersal distance in a predator—
prey system with uniform dispersal. However, none of
these models has looked at the evolution of a complex
dispersal kernel in various landscapes.
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Figure 1. A series of three purely random landscapes in the
left-hand column and a set of six artificial landscapes gener-
ated by Keitt’s (2000) algorithm (two columns on the right).
Autocorrelation increases from left to right with no
autocorrelation in the left-hand column, low autocorrelation
in the middle column (Hurst exponent 4 =0.0) and high
autocorrelation in the right-hand column (H=0.8). The
fraction of suitable habitat, p,, increases from bottom (0.1) to
top (0.5). To demonstrate the ‘matching edges’ in the periodic
fractal landscapes, all six fractal landscapes presented here
have been generated using the same random seed. It can be
seen that habitat patches ‘continue’ across panels. In the
simulations, different random seeds were used each time to
create different landscapes.

To take first steps towards the investigation of this
neglected problem, we used a spatially explicit
simulation approach to investigate selection on P(r), and
thus D(r), in landscapes with varying degrees of suitable
habitat and spatial autocorrelation. Specifically, we
simulated the dispersal of seeds and their subsequent
establishment. The results of our simulations are thus
most applicable to organisms with passive and
undirected dispersal and where the dispersal of
offspring is under the control of the parent. The
principal goal of our approach was to estimate the
effect of landscape structure on the evolution of adapted
dispersal strategies. As we wanted to focus on the evolu-
tion of the optimal dispersal strategies per se, we did not
consider most of the biologically reasonable costs and
trade-offs (e.g. costs of production, constraints on
dispersal function, trade-offs between competition and
dispersal) that are likely to be associated with different
dispersal strategies. We also did not include the conse-
quences of habitat disturbance, which should have a
strong effect on the readiness to disperse (see Venable &
Brown 1993; Ronce & Olivieri 1997; Ronce et al. 2000;
Hovestadt et al. 2000).

2. MODEL

To simulate the evolution of seed dispersal strategies,
we used an event-driven (Grams 1992), individual-based
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model, with space modelled as a regular two-dimensional
grid. If of suitable habitat, an individual cell is sufficient
for the maintenance of a single adult tree only. In addi-
tion to its position, an individual is characterized by the
time-step of its death and its individual dispersal kernel.
Apart from these traits, all trees are considered to be
similar. In our model, inheritance is strictly phenotypic
and clonal. The simulation program consists of two
modules, which are described in detail below: one for the
generation of landscapes (§2(a)), and the other for the
initialization and consecutive execution and actualization

of the event list (§2(b)).

(a) Generation of landscapes

Before a simulation is started, an artificial landscape 1s
generated with the pre-set parameters taken from the
parameter database. For autocorrelated landscapes, para-
meters describe the fraction of cells to be assigned as
suitable habitat (p,) and the Hurst exponent (i) as a
measure of habitat fractality. Several algorithms can be
used to generate these types of landscapes (Mandelbrot
1982; Peitgen & Saupe 1988). We have chosen the one
described by Keitt (2000), which allows the generation of
periodic landscapes. This effect can be seen in figure 1
when looking across edges of panels with autocorrelated
landscapes. We could thus close the simulation grid to a
torus to avoid edge effects. Random landscapes are gener-
ated by randomly assigning habitat suitability to indivi-
dual cells with a probability corresponding to the overall
fraction, py, of suitable habitat. All simulations presented
here were run on grids of 128 cells x 128 cells.

(b) Event list

After the landscape has been generated, trees are
distributed into the suitable habitat cells. For the initiali-
zation of the event list, a survival time drawn from a
uniform probability distribution ranging from 1 to 125
time-steps (years) is assigned to each tree. The initial
event list 13 then prepared as a list of trees (cells) sorted
according to their pre-assigned time of death. From then
on the simulation procedure works through this sorted list
always executing the next event in the list.

The death of a tree triggers four processes, which
finally result in its replacement by a new tree and a new
entry in the event list. These processes are first, collection
of seeds from the surrounding trees according to their
individual D(r) (see §2(c)); second, the establishment of a
new tree; third, the assignment of the new tree’s survival
time and thus the moment when the cell will become
open for colonization again; and eventually, fourth, the
mutation of the new tree’s dispersal kernel. From the
seeds arriving in an empty cell, one seed is selected at
random to become the new adult tree in this cell (‘lottery
model’). This procedure implies competitive similarity
between all trees and all dispersal types. Replacement of
established trees by arriving seeds is not possible, i.e.
competition 1is completely asymmetrical across age
classes. The individual survival time (i.e. lifetime) of the
newly located tree is taken randomly from a normal prob-
ability function with a mean value of 100+£5 (s.d.); thus,
mortality is age dependent. The simulation ends when the
time of the next event in the event list exceeds the pre-set
simulation time.
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(c) Implementation of seed dispersal

Throughout all simulations presented here, each adult
tree produced Sp:224 (ca. 16.7 x10°%) seeds at each time-
step. Trees start to reproduce in the time-step following
their recruitment. We assume that a dispersing seed cannot
respond to its surroundings by actively searching for, or
directing its movement towards, suitable habitat, i.e. seed
dispersal is a purely statistical process. We also assume that
habitat heterogeneity does not alter the statistical proper-
ties of the dispersal process, which may be the case in
natural dispersal systems (e.g. movement patterns of seed-
dispersing animals may depend on the type of habitat).
Given that established trees cannot be replaced by arriving
seeds, it is necessary to model the dispersal process only
when a tree dies and its home cell becomes free for replace-
ment (‘target cell’). Thus, we implicitly account for the
mortality of seeds due to arrival (including seeds staying in
the natal cell) in suitable but occupied habitat. A target
cell collects seeds from the neighbouring trees. The
predicted number of seeds arriving in a target cell from a
specific ‘donor tree’, i.e. D(r) X .S,, depends on the distance,
7, between cell midpoints, the donor tree’s P(r) (see §2(d))
and the number of cells at distance » from the donor cell
(simply dividing P(r) by 277 will result in minor inaccura-
cies in a grid-based simulation). The Euclidean distance
between trees (cells) is not constrained to natural numbers
and can fall between two distance classes. In this case, the
expected number of arriving seeds is interpolated as the
weighted average of seeds coming from the two neigh-
bouring distance classes. The number of seeds arriving and
the identity of the mother tree are stored until the seed-
gathering process has been repeated for all trees lying
within a pre-set maximum dispersal distance. The dying
tree can disperse seeds prior to its death, thus generating
the opportunity for its replacement by its own progeny.
However, we did not allow for the accumulation of a seed
bank.

When the seed-gathering routine is finished, a single
seed from the accumulated pool is randomly selected to
become the replacement tree. In theory, an empty cell
could remain empty for several time-steps, but given the
enormous seed production, the fraction of unoccupied
habitat remained extremely small (< 1%) at all times in
all simulations.

To allow for maximum flexibility of the evolutionary
process, we decided not to use a specific mathematical
model for the dispersal kernel, P(r) (e.g. negative expo-
nential). This would automatically put constraints on the
evolution of its specific form. Instead, we code P(r) as a
‘distance—probability histogram’ with 30 distance classes
ranging from 0 to 29. Due to limited computational
power, we had to restrict the maximum dispersal distance
to 29 (measured in cell widths). The ‘0 class’, P(0), repre-
sents the fraction of seeds remaining in their home cell
and thus having the opportunity to replace their mother
tree. No specific costs or trade-offs were associated with a
specific dispersal strategy beyond the mortality inflicted
on seeds due to dispersal into unsuitable or occupied
habitat.

(d) Mutation of P(r)
The simulations all start with a monomorphic popula-

tion of trees. At initialization, all trees distribute their
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seeds uniformly across area (up to the maximum
dispersal distance), i.e. D(r) is constant. This implies a
linearly increasing P(r), which may be quite difficult to
achieve with real seed-dispersal mechanisms. However,
this is in agreement with spatially implicit models
assuming uniform distribution of dispersing organisms in
space (e.g. Levins 1970). A newly selected tree inherits the
dispersal function from its mother tree. 1o allow for the
creation of new dispersal strategies, this inherited func-
tion will eventually mutate with a probability of 0.01 to a
new dispersal function.

The mutation procedure involves four steps. First, two
distance classes of the probability histogram are selected
at random; second, the seeds allocated to the two classes
are pooled into a single seed reservoir; fourth, this single
reservoir is then randomly split (uniform probability
distribution) into two reservoirs; and fourth, the two
newly created reservoirs are assigned at random to the
two distance classes. Mutations can thus shift seeds from
one distance class to another but the overall number of
seeds distributed remains constant. We selected this muta-
tion procedure for its flexibility and easy implementation.
Without selection, the mutation procedure should shift
P(r) towards a random distribution at the individual level
and a uniform P(r) at the population level.

(e) Data analysis

Every 1000 time-steps, we recorded the mean fraction
of seeds remaining in the home cell (distance class 0) for
each simulation. At the same time, we also recorded the
mean probability of arrival in unsuitable habitat
(‘dispersal mortality’, my) as a specific risk for seeds
leaving their natal cell (distance class > 0). At the end of
ecach simulation, we estimated the evolved standardized
mean D(r), calculated from the P(r) by averaging the
fraction of seeds allocated to each distance class greater
than 0 across all individuals divided by the number of
cells falling into this distance class (a. 277). For data
presentation and analyses, we averaged these results
across the ten simulations for each parameter combina-
tion. To characterize the landscapes themselves, we calcu-
lated the mean probability, pg(r), of reaching suitable
habitat starting from suitable habitat as a function of
dispersal distance. We used Statistica 5.1 (StatSoft, Inc.
1999) to fit nonlinear functions to both the habitat distri-
bution and the evolved D (r).

3. RESULTS

In the simulations presented here, the fraction of
suitable habitat, p,, was fixed at three different levels (0.1,
0.3 and 0.5) and autocorrelation, H, was set to either
random, H=0.0 (low autocorrelation) or H=0.8 (high
autocorrelation). This gives a total of nine landscape-
parameter combinations (figure 1). For each parameter
combination, ten simulations were run on independently
generated landscapes.

(a) Seeds staying at home

Compared to the initial conditions of a uniform D(r),
we observed a substantial increase in the proportion of
seeds remaining in the natal cell in all simulations. In
fact, this fraction increased from ca. 0.0004 to 0.08-0.22
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Figure 2. Evolution of the fraction of seeds staying in the
home cell, P(0), over the course of the simulations. On each
graph, an individual line is given for each of the ten replicate
simulations. Landscape parameters and panel arrangement as
in figure 1.

depending on the simulation parameters (figure 2). The
increase was lower in highly autocorrelated landscapes
but little affected by the global fraction of suitable
habitat. As can be seen in figure 2, a remarkable feature
of most simulations is the occurrence of prolonged
periods of evolutionary stasis with a few bouts of rapid
change in the fraction of seeds allocated to the home cell.
Especially for the random landscapes, the curves suggest
that even after 100 000 time-steps evolution may not have
reached a stable equilibrium in all simulations.

(b) Mortality of dispersed seeds

At the beginning of the simulations, dispersal
mortality, my, was always related to the global fraction of
unsuitable habitat as my=1—p,. However, for auto-
correlated landscapes, we observed a gradual decline in
mq over the course of the simulations, while it remained
constant in random landscapes (figure 3). The reduction
in my was especially obvious in highly autocorrelated
landscapes with a low g, (from 0.90 to 0.51).

(c) Habitat distribution and evolution of D(r)

In autocorrelated landscapes, we observed a strong
deviation from the uniform D (r), with a shift of dispersed
seeds into the near-distance classes (figure 4, middle and
right columns). This shift in seed dispersal is qualitatively
matched by the distance-dependent probability pe(r) of
finding suitable habitat starting from a randomly selected
cell of suitable habitat itself. In fact, this probability
follows very tightly (> > 0.98 for all six landscapes with
spatial autocorrelation) a negative-exponential distribu-
tion, pe(r) =py + by Xexp(—r/hy), asymptotically approach-
ing the global habitat fraction p, with £, and 4, as fitted
constants. Regardless of overall habitat fraction, £, is
ca. 3.2 in landscapes with low spatial autocorrelation and
ca. 6.2 in landscapes with high spatial autocorrelation,
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Figure 3. Evolution of mean dispersal mortality, my, over the
course of the simulations. On each graph, an individual line is
given for each of the ten replicate simulations. Only mortality
due to arrival in an unsuitable habitat is considered, not the
failure to establish in suitable habitat. Landscape parameters
and panel arrangement as in figure 1.

indicating a prolonged reach of correlated habitat suit-
ability in highly autocorrelated landscapes. In contrast, &
depends on both autocorrelation (positively) and the
overall fraction of suitable habitat (negatively). The
discrepancy between global habitat fraction and the
‘local’ probability of finding suitable habitat is thus stron-
gest in landscapes with a low g, and a high degree of
autocorrelation. In landscapes with p, =0.1, the likeli-
hood of finding suitable habitat in the near vicinity of a
suitable-habitat cell is well above 0.5 in highly autocorre-
lated landscapes (0.86 in the first distance class, 0.77 in
the second and 0.69 in the third). It is the adaptation of
D(r) to this predictable pattern of habitat distribution that
is responsible for the reduced dispersal mortality in
spatially autocorrelated landscapes.

However, the evolved D(r) do not follow a negative-
exponential distribution. Io demonstrate this, we fitted
negative-exponential and inverse-power functions to the
evolved D(r). As P(r) has to integrate to 1 over the range
of possible dispersal distances, we fitted the following two
functions to the population mean D (r) for each parameter
setting, with the normalized negative exponential
(equation (1)) and the normalized power function

(equation (2)):

d*re”

D(r) = 2rm(e2 x (29d — 1) —e? x (d — 1))’

(1)

(w+1) xr®
(290t — 1) x 27’

D(r) = (2)

where d and w are fitted constants. As can be seen in
figure 5, the power function always shows a better fit to the
evolved seed density distributions. In particular, this holds
for long dispersal distances. D(r) is even more fat tailed
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Table 1. Parameters (& s.e.m.) and variance estimates (r?) of nonlinear-regression models fitted to evolved mean D (r)

(Equation (1) (negative exponential) and equation (2) (power function) have been used for the two models, respectively. Data
have not been transformed prior to fitting. Even though r’-values are lower for the power model than for the negative-

exponential model in some cases, figure 5 clearly shows that the negative-exponential model is principally flawed.)

random landscape H=0.0 H=0.8
habitat fraction parameter a parameter 72 parameter 72 model
p=0.5 —0.05£0.008 0.47 —0.15£0.013  0.60 —0.35£0.015 0.87 d(negative exponential)
+0.59£0.051  0.55 +0.03£0.031  0.47 —0.444+0.036  0.85  w (power function)
p»=0.3 —0.05+0.006 0.59 —0.294+£0.019 0.73 —0.38£0.012 0.92 d(negative exponential)
+0.59£0.029  0.79 —0.37+£0.015 0.97 —0.50 £0.038  0.84  w (power function)
p=0.1 —0.04 £0.006 0.50 —0.33+£0.021 0.75 —0.41£0.013 0.92 4 (negative exponential)
+0.60 £0.038  0.75 —0.46+0.011 0.98 —0.59+£0.014 0.98 w (power function)
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Figure 4. Evolved mean seed density distribution, D(r),
across distance classes 1-29 (bars) at the end of the ten
independent simulations for the nine landscape-parameter
combinations given in figure 1 (same arrangement of panels).
All simulations started from a uniform D(r). The lines
represent the distance-dependent mean probability of
reaching suitable habitat, p¢(r), starting from a randomly
selected cell of suitable habitat.

than the simple inverse power function, as the exponent
w is larger than —1 in all cases and larger than 0 in one
case (table 1). In fact, even the power model principally
fails for some parameter combinations (H=0.0 and
pn=0.3 or 0.5) as the evolved mean P(r) rapidly decline
in the first few distance classes but increase again with
increasing distance. A power function cannot adequately
describe such a relationship as it must always either
increase or decrease monotonically.

In contrast to autocorrelated landscapes, we did not
observe much change in dispersal mortality or D(r) in
random landscapes apart from a shift of seeds into the
distance class P(0) (figure 4, left column). As random
landscapes are the spatially explicit analogue to spatially
implicit landscapes with a fixed py, this should not be
interpreted as a consequence of a lack of selection. It is
due to the fact that, for those seeds dispersed at all, a
uniform D(r) is the optimal dispersal strategy (cf.
Hamilton & May 1977). Thus, selection should result in a
power model with the exponent w=1. However, the
exponent is 0.6 and, thus, below the expected value. The
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Figure 5. Evolved mean D(r) (dots) and functions fitted to
the data according to equations (1) and (2) (see §3(c)). D(r)
has been transformed to a logarithmic scale to illustrate more
clearly the differences between fitted negative-exponential
(continuous line) and power functions (hatched line). As
curves have been fitted to untransformed data, deviations
from the fitted curves are not to scale. In the lower left graph,
we have also plotted the D(7) resulting from a uniform P(r)
(long-hatched line). This would be the resulting D(r) due to
the mutation algorithm with no selection. Parameter
combinations and arrangement of panels as in figure 1.

slight shift is likely due to the mutation algorithm, which
should result, on average, in a uniform P(r), i.e. a power
function with w =0.

4. DISCUSSION

In this paper we have presented, for the first time to
our knowledge, Monte Carlo simulations of the evolution
of dispersal distances for organisms with passive dispersal
in spatially realistic landscapes. They clearly demonstrate
the important effect of landscape characteristics on the
evolution of dispersal strategies. To keep our model
simple, we ignored many of the biologically reasonable
constraints and trade-offs that are necessarily part of a
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complete evolutionary scenario. In spite of this simplicity,
our simulations produced plausible and consistent results
over a broad range of different landscape scenarios.
Under all simulated conditions, fat-tailed dispersal func-
tions evolved. Spatially autocorrelated landscapes allow
for the evolution of adapted dispersal strategies with
lower dispersal mortalities than predicted by spatially
implicit models or for random landscapes. In this respect,
our results match the observation that dispersal into
neighbouring cells reduces dispersal mortality compared
to random dispersal in autocorrelated landscapes (With
& King 1999). However, seeds dispersed beyond the
correlation distance of habitat suitability should be
dispersed uniformly over the landscape. Thus, the
frequently used negative-exponential distribution poorly
matched the two parts of the evolved dispersal kernel. In
random landscapes, dispersal mortality is completely
insensitive to the selected dispersal kernel and thus will
not affect selection of the dispersal kernel apart from
selection on P(0). Consequently, reduced dispersal rate,
but uniform dispersal for the seeds dispersed, is expected.
Due to limited computational resources, we could not
model dispersal over truly long distances. However, as the
increased likelithood of finding suitable habitat levelled off
before the maximum dispersal distance was reached, this
should not be a major concern. It is unlikely that our prin-
cipal results would have been different if we had allowed
seed dispersal over much larger distances. We also did not
investigate the consequences for simulation outcome of
altered initial settings, e.g. all trees with seeds allocated to
P(0) or assuming much lower seed production. At the
moment, we would expect only quantitatively different
results in these cases. However, we cannot rule out the
possibility of an adaptive landscape with several optima.
Of more fundamental concern may be the mutation
algorithm we have used. While its principal advantage
lies in its flexibility and the avoidance of predefined types
of dispersal function, it has some disadvantages. In the
absence of selection, the mutation algorithm would result
in a uniform P(r) at the population level, i.e. a power
function with an exponent equal to 0. When fitted to a
power function, the exponent, w, of D(r) evolved towards
values from —0.6 to + 0.6, indicating the effect of selec-
tion and the flexibility of the mutation algorithm. More
importantly, the evolved D(r) did not fit the power model
well under some conditions (see below). Thus, like any
mutation algorithm, the one we used will produce certain
biases but does not seem to principally constrain the
evolution of D(r) to a power model. Without selection, our
mutation algorithm would allocate on average only 1/30
of the seeds to the natal cell, i.e. it would result in a
dispersal rate of 0.97. We assume that this is one of the
reasons for the evolution of dispersal rates (ca. 0.78-0.83)
higher than predicted (0.53-0.67) by the Hamilton—May
model (1977) for random landscapes. Another reason for
this discrepancy may be that, starting from a dispersal
rate above 0.99, the evolutionary change in dispersal rate
had not reached a stationary state in the course of 10°
simulation steps (cf. figure 2). This proposition is in
agreement with the observed ‘punctuated equilibrium’,
which indicates the extremely low likelihood of the
successful establishment of a mutant with a higher P(0).
The predictions of the Hamilton—May model cannot be
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applied directly to autocorrelated landscapes as the costs
of dispersal are lower than assumed by the model as long
as the seeds are dispersed locally.

In some autocorrelated landscapes, the P(r) increased
with distance after a sharp decline across the near-
distance classes. The evolved dispersal kernel thus
appeared to be even more ‘fat tailed’ than the power func-
tions we fitted to the data. Principally, neither a power
nor a linear function can adequately describe P(r) if we
allow unlimited dispersal distance: the integrals over
both functions are not bound to 1 for unlimited dispersal
distances. In practice, we may solve this problem either
by assuming a certain maximum dispersal distance (as
we did in our simulations), or by using dispersal kernels
made up of two (or more) different functions, e.g. several
exponential functions with different parameters (see
Higgins & Richardson 1999; Bullock & Clarke 2000).
The evolution of such mixed dispersal kernels may come
about by the action of different dispersal vectors (e.g. seed
shadow created by different frugivorous animals) or by
the creation of seeds with different dispersal morphologies
(e.g. seeds with different wing loads in wind-dispersed
species). Certainly, our simulations suggest that the
dispersal kernels used in models should be selected for
biological reasons and not just for mathematical conveni-
ence. Even though we do not know to what degree the
evolution of fat-tailed dispersal kernels can be achieved,
our conclusions are in agreement with evidence that the
range expansion of plant species was too fast to be
explained by dispersal kernels that are not fat tailed. (Kot
et al. 1996; Cain et al. 1998; Clark 1998; Clark et al. 1998).

We wish to draw attention to the fact that the recogni-
tion of discrete patches in the landscape would not alter
any of our conclusions. As long as we do not assume an
effect of habitat heterogeneity on the dispersal process per
se, it does not matter to an organism with passive
dispersal whether it has to cross patch borders during
dispersal or not. At least for organisms with passive
dispersal, the distance-dependent probability of reaching
suitable habitat may thus be an adequate description of
landscape properties. It is a simple and more appropriate
measure of the relevant habitat characteristics affecting
the evolution of the dispersal kernel than those used in
the typical patch-matrix (Hanski 1997) or mosaic-landscape
models (Wiens 1995).

In the way we have built up our simulation, the evolu-
tionary process can be considered to be a process of
learning by evolutionary experience. Individuals using
more ‘sensitive’ strategies, i.e. strategies that take into
account the predictable distribution of habitat in spatially
autocorrelated landscapes, are able to reduce the
dispersal mortality of their offspring, thus transforming
the cost-to-benefit ratio of dispersal compared to strate-
gies with uniform dispersal. However, our simulations are
only a first step towards a fuller understanding of the
many ecological factors eventually affecting the evolution
of optimal dispersal distances. For example, additional
simulations are required to evaluate the role of variations
in seed production and initial conditions, of the combined
evolution of several traits, e.g. seed production and
dispersal kernel, of habitat disturbance, and of various
biological trade-offs and constraints. Of special interest
may be the evaluation of emerging spatial patterns and



Evolution of dispersal distance 'T. Hovestadt and others 391

their consequences for the coexistence of distinct dispersal
strategies.
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