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The small world inside large metabolic networks
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The metabolic network of the catabolic, energy and biosynthetic metabolism of Escherichia coli is a para-
digmatic case for the large genetic and metabolic networks that functional genomics efforts are beginning
to elucidate. To analyse the structure of previously unknown networks involving hundreds or thousands of
components by simple visual inspection is impossible, and quantitative approaches are needed to analyse
them. We have undertaken a graph theoretical analysis of the E. coli metabolic network and find that this
network is a small-world graph, a type of graph distinct from both regular and random networks and
observed in a variety of seemingly unrelated areas, such as friendship networks in sociology, the structure
of electrical power grids, and the nervous system of Caenorhabditis elegans. Moreover, the connectivity of
the metabolites follows a power law, another unusual but by no means rare statistical distribution. This
provides an objective criterion for the centrality of the tricarboxylic acid cycle to metabolism. The small-
world architecture may serve to minimize transition times between metabolic states, and contains

evidence about the evolutionary history of metabolism.
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1. INTRODUCTION

The information necessary to characterize the genetic
and metabolic networks driving all functions of a living
cell 1s being put within our reach by various genome
projects. With the availability of this information,
however, a problem will arise which has, as yet, been
little explored by molecular biologists: how to adequately
represent and analyse the structure of such large
networks. While it is trivial to understand the structure of
1solated metabolic pathways, transcriptional cascades, or
signalling pathways constructed from a small number of
gene products, networks consisting of anywhere from
hundreds to tens of thousands of components are less
easily described. Theory suitable for analysing large
networks exists only for perfectly ordered or certain
completely random networks. Similarly, theoretical
exploration of network properties (Kauffman 1967; Glass
& Hill 1988; Chiva & Tarroux 1995; Wagner 1996) also
depends on the creation of model networks that are truly
qualitatively and quantitatively representative of the
biological ones.

Here, we analyse the structure of a large metabolic
network, that of Escherichia coli intermediary metabolism
for energy generation and small building block synthesis.
One type of question to ask for a given metabolic network
concerns the availability and vyield of transformation
routes from nutrients to end-products. This is tradition-
ally answered by consideration of the presence or absence
of all the necessary steps of the classical biochemical
pathways, but it can be argued that interpretation of
metabolic networks in terms of these classical pathways
fails to reveal the full potential of the network (Fell &
Small 1986; Schuster et al. 1999, 2000; Edwards & Palsson
2000). Hence methods have been developed to enumerate
the full repertoire of potential pathways, such as elemen-
tary modes analysis (Schuster e al. 1999, 2000). Another
type of question that can be asked concerns the identity of
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the key intermediary metabolites that must be generated
by catabolism for use in anabolism, and that therefore
define the centre of metabolism dividing catabolism from
anabolism. There is only partial agreement over the iden-
tity of these metabolites (e.g. Ingraham et al. 1983;
Holmes 1986) and no objective criteria for their choice.

Thus the aim of this study was to characterize the
structure of this particular metabolic network, to deter-
mine whether it can be objectively said to have a centre,
and if so, to determine the identity of the central metabo-
lites.

2. THEORY AND METHODS

Mathematically, the behaviour of a metabolic network
can be captured as a system of ordinary differential equa-
tions in the metabolite concentrations. A compact expres-
sion of this equation system is obtained by use of the
stoichiometry matrix, N, whose elements n;; represent the
number of molecules of metabolite : formed (or, if nega-
tive, consumed) in a reaction step j. Given a vector of
metabolite concentrations S and a vector of reaction rates

v, the equation is (e.g. Heinrich & Schuster 1996)

ds

T N-v. (2.1)
Even numerical solutions of this equation are impractical
for whole metabolic networks because the reaction rates
are complicated (and often unknown) functions of the
metabolite concentrations. For metabolic steady states,
however (where dS/d¢ = 0), the stoichiometric matrix N
imposes a set of linear constraints on feasible solutions.
Because the stoichiometric matrix contains the full infor-
mation about the structure of the network, these have
been termed structural constraints (Reder 1988) in the
field of metabolic control analysis. Linear programming,
null space analysis, convex analysis and elementary
modes analysis (Heinrich & Schuster 1996; Schilling e? al.
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1999) have all been applied to metabolism and are essen-
tially different explorations of the structural constraints.

Here, we choose a different graph theoretic representa-
tion derived from the stoichiometric equations. Because
most of the reactions of metabolism are multi-molecular,
some form of hypergraph (Graham et al. 1995) would be
needed to retain the full information content of the stoi-
chiometry matrix. We instead decided to use a simple
graph representation of metabolism, because hypergraphs
are much less intuitive constructs than graphs and the
tools our analysis needs have not yet been developed for
them. One might argue that a directed graph (Graham et
al. 1995) is a better choice, i.e. a graph where each edge
has a direction, because of the existence of irreversible
reactions. Again, we deliberately avoided directed graphs
because perturbations can travel backwards through an
enzyme-catalysed irreversible step, even in the absence of
reverse net flow of matter. For example, in control
analysis, it is the flux and concentration control coeffi-
cients of an enzyme (Fell 1997) and not the reversibility of
the reaction that show whether it is possible for a change
in activity of an enzyme to propagate effects into the part
of the network ‘upstream’ of the reaction (Hofmeyr 1989;
Sen 1991). A directed substrate graph would not capture
this behaviour.

Based on publicly available information (Neidhardt
1996; Selkov et al. 1996; Pramanik & Keasling 1997;
Bairoch 1999; Karp et al. 1999) we assembled a list of 317
stoichiometric equations involving 287 substrates that
represent the central routes of energy metabolism and
small-molecule building block synthesis in E. coli. Because
there is considerable variation in the metabolic reactions
realized under different environmental conditions, we
attempted to include only those that would occur under
one particular condition: aerobic growth on minimal
medium with glucose as sole carbon source and O, as elec-
tron acceptor. We deliberately omitted (1) reactions whose
occurrence 1is reportedly strain-dependent (Neidhardt
1996), (i1) biosyntheses of complex cofactors (e.g.
adenosyl-cobalamine) which are not fully understood,
and (ii1) syntheses of most polymers (RNA, DNA,
protein) because of their complex stoichiometry. Our
metabolic map comprises the following pathways: glyco-
lysis (12 reactions), pentose phosphate and Entner—
Doudoroff pathways (10), glycogen metabolism (5),
acetate production (2), glyoxalate and anaplerotic reac-
tions (3), tricarboxylic acid cycle (10), oxidative phosphor-
ylation (6), amino acid and polyamine biosynthesis (95),
nucleotide and nucleoside biosynthesis (72), folate synth-
esis and l-carbon metabolism (16), glycerol 3-phosphate
and membrane lipids (17), riboflavin (9), coenzyme A (11),
NAD(P) (7), porphyrins, haem and sirohaem (14), lipo-
polysaccharides and murein (14), pyrophosphate metabo-
lism (1), transport reactions (2), glycerol 3-phosphate
production (2), isoprenoid biosynthesis and quinone
biosynthesis (13). The reaction list is available from the
author for correspondence upon request. From these reac-
tion equations, the stoichiometry matrix was automati-
cally generated from the reaction list using the software
package INDIGO (Fell & Sauro 1990). From this matrix,
the substrate and reaction graph were derived omitting
the metabolites CO,, NHj; SO,, thioredoxin, organic
phosphate and pyrophosphate. Upon removal of one or
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more metabolites, other wvertices in the graph may
become isolated; any such vertices were removed before
analysis.

We considered two complementary representations of a
metabolic network. The first of these is the substrate
graph, Gg = (Vs, Eg). Its vertex set Vg consists of all
chemical compounds (substrates) that occur in the
network. Two substrates S, S, are joined by an edge
e = (8], Sy) € Eg, the edge set of this graph, when they
occur (either as substrates or products) in the same
chemical reaction (figure 14). The reaction graph,
Gr = (Vx, ER), has a vertex set Vy consisting of all
chemical reactions in the network. Two reactions are
joined by an edge, i.e. (R, Ry) € Ey, the edge set of the
reaction graph, if they share at least one chemical
compound, either as substrate or as product (see figure
Le).

For both graphs (Graham et al. 1995), the degree £ of
a vertex is the number of other vertices to which it is
adjacent. Two vertices vy, v; are connected if there exists a
path, i.e. a sequence of adjacent vertices vy, vy, . . . 0;_1, U;
from v, to v;. We will be concerned only with connected
graphs, 1.e. graphs where all vertex pairs are connected,
since the law of mass conservation and the fact that the
carbon of all biomass is ultimately derived from CO,
imply that metabolic networks must be connected. The
path length [ is defined as the number of edges in the
shortest path between v, and v;. The characteristic path
length L of a graph is the path length between two
vertices, averaged over all pairs of vertices. Another
important quantity (Watts & Strogatz 1998) is the clus-
tering coeflicient C(v) of a vertex v. Consider all £,
vertices adjacent to a vertex v, and count the number m
of edges that among these £, (not
including edges connecting them to »). The maximum
possible m is [k,(k, —1)]/2, in which case all the
vertices are connected to each other, and we define
C(v) :== 2m/[k,(k, — 1)]. C(v) measures the ‘cliquishness’
of the neighborhood of v, i.e. what fraction of the vertices
adjacent to v are also adjacent to each other. By extension,
the clustering coefficient € of the graph is defined as the
average of ((v) over all v.

The properties of the metabolic graph can be
compared to the benchmark case of a random graph with
the same number of vertices n and mean degree £ by
exploiting the available statistical theory of random
graphs (Bollobas 1985). Importantly, random connectivity
and a close variant £-regular random connectivity
(Graham et al. 1995), have frequently been the assump-
tions of choice during more than three decades of model-
ling genetic networks (Kauffman 1967; Glass & Hill 1988;
Chiva & Tarroux 1995; Wagner 1996). It is thus useful to
see how the actual structure of a cell network (albeit not
a regulatory one) relates to one key assumption made in
this tradition. In connected sparse random graphs with »
nodes and average degree £, (k < n), the probability p of
two vertices being connected is given by p=#k/(n—1).
Such graphs show (i) a binomial distribution of
vertex degree k, (ii) a very small clustering coefficient
C=(k—1)/n, close to the theoretically attainable
minimum of zero for large n, and (iil) a characteristic
path length that is also close to the theoretically attain-
able minimum (Watts 1997). Thus, among all connected
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Figure 1. Graphical representation of metabolic networks. (a) Four stoichiometric equations taken from the pentose-phosphate
pathway of E. coli. Names in parentheses are acronyms for compounds used in (5). Acronyms above arrows are the identifiers for
the genes encoding the respective reactions (enzymes) (zwf, glucose-6-phosphate dehydrogenase [EC 1.1.1.49]; pgl, 6-phospho-
gluconolactonase [EC 3.1.1.31]; gnd, 6-phosphogluconate dehydrogenase [EC 1.1.1.43]; rpe, ribulose-phosphate 3-epimerase
[EC 5.1.3.1]). (b) Substrate graph derived from stoichiometric equations. (¢) Reaction graph derived from stoichiometric

equations.

graphs with the same number of vertices and edges,

random graphs are among the most rapidly traversed.
Graph analysis software was written in C++ using the

LEDA library of data types (Mehlhorn & Naeher 1999).

3. RESULTS

Because of the ubiquity of the metabolites adenosine
triphosphate (ATP), adenosine diphosphate (ADP) and
nicotinamide adenine dinucleotide (NAD), as well as its
phosphorylated and reduced forms (Stryer 1995), we
explored two situations: one in which these metabolites
are included, and another one in which they are omitted.
Table 1 shows basic connectivity statistics for reaction and
substrate graphs representing the central energy and
biosynthetic metabolism of FE.coli. The variation in
connectivity of both types of graph greatly exceeds that of
random graphs. Like networks found in neurobiology and
ecology (Cohen & Briand 1984; Murre & Sturdy 1995),
metabolic graphs are sparse, i.e. the average degree (k) of
cach vertex (metabolite or reaction) is small, of order
logn. In a random graph with n nodes and probability
p of two nodes being connected the degree of each
vertex follows a binomial distribution with variance
(n—1)p(1 — p). The variance in the degree of the meta-
bolic graphs, however, is up to 20-fold greater than that
of the corresponding random graph with p =k/(n— 1),
implying that some vertices in metabolic graphs have
many more, and others many fewer, neighbours than
vertices for a random graph. Given this enormous disper-
sion, k-regular random graphs would be particularly poor
statistical models of metabolic networks. Comparison to
random graphs also allows a statistical definition of
‘key metabolites’ or ‘key reactions’, particularly highly
connected vertices in metabolite graphs. For example,
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Table 1. Elementary statistics of the substrate and
reaction graphs.

(Shown are: the number of nodes, #n; the mean degree, £, and
the standard deviation in degree, o;. For reference, standard
deviation in degree is also shown for 100 numerically
generated random graphs with the same n and £ as those of
the metabolic graphs. Two versions of each metabolic graph
were analysed, one in which the metabolites ATP, ADP,
NAD, NADP, NADH and NADPH were eliminated, and
another one in which ATP etc. were included.)

graph n k 0 o (random graph)
substrate graph 275 4.76 4.79 2.12+£0.08
w/o ATP, ADP,

NAD(P)(H)

substrate graph 282 7.35 10.5 2.67+0.11
reaction graph 311 9.27 9.59 3.01+0.12
w/o ATP, ADP,

NAD(P)(H)

reaction graph 315 28.3 29.1 5.04£0.21

for the substrate graph, one might define a key metabolite
as one whose vertex degree £, exceeds the average £ by
three standard deviations:

kn—1—k)

n—1 '

k,>k+30=k+3 (3.1)

Applying this to the substrate graph with £ = 4.76 (table
1) identifies 13 key metabolites with £,, > 11.25, of which
the five most highly connected are glutamate, coenzyme
A, 2-oxoglutarate, pyruvate and glutamine (table 2; left
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Table 2. Thirteen key metabolites of E. coli metabolism.

(These are defined as metabolites whose degree in the substrate graph lies at least three standard deviations beyond the mean
metabolite degree. Also shown for comparison are the 13 metabolites with the shortest mean path length (also known as the
‘importance number’). These two indicators of a metabolite’s centrality are correlated but not identical. Values in parentheses
are metabolite degree (left column) and mean path length (right column). NAD, ATP and their derivatives would be the most

highly connected metabolites, but are not shown in the table.)

rank by degree connectivity rank by mean path length importance number
glutamate 51 glutamate 2.46
pyruvate 29 pyruvate 2.59
CoA 29 CoA 2.69
2-oxoglutarate 27 glutamine 2.77
glutamine 22 acetyl CoA 2.86
aspartate 20 oxoisovalerate 2.88
acetyl CoA 17 aspartate 2.91
phosphoribosyl PP 16 2-oxoglutarate 2.99
tetrahydrofolate 15 phosphoribosyl PP 3.10
succinate 14 anthranilate 3.10
3-phosphoglycerate 13 chorismate 3.13
serine 13 valine 3.14
oxoisovalerate 12 3-phosphoglycerate 3.15

column). This list overlaps with sets of key metabolic
intermediates of E. coli used by other authors in metabolite
balancing studies, where they represent the common
biosynthetic source of all cell materials. For instance,
Varma & Palsson (1993) followed Ingraham et al. (1983)
in using a set of 12 biosynthetic precursors produced by
the catabolism of all carbon sources: glucose 6-phosphate,
fructose 6-phosphate, ribose 5-phosphate, erythrose 4-
phosphate, a triose phosphate, 3-phosphoglycerate, phos-
phoenolpyruvate, pyruvate, oxaloacetate, 2-oxoglutarate,
acetyl CoA and succinyl CoA. Holmes (1986) chose a
smaller subset of eight key precursors from which all cell
biomass could be produced: glucose 6-phosphate, a triose
phosphate, 3-phosphoglycerate, phosphoenolpyruvate,
pyruvate, oxaloacetate, 2-oxoglutarate, and acetyl CoA.
The most highly represented pathway in table 2 is the
tricarboxylic acid cycle, especially if the amino acids
derived directly from it by transamination are counted.
The high variance in connectivity warrants a closer
look at the distribution of metabolite degrees for substrate
graphs (figure 2) and reaction graphs (figure 3). Each
figure shows a histogram of degree versus frequency,
together with a rank distribution of vertices (metabolites
or reactions), where the vertex with the highest degree
was assigned rank unity. Figure 2 reveals that the degree
distribution of a substrate graph is consistent with a
power law, i.e. the probability P(k) of finding a vertex
with degree £ is proportional to £7F. Although displaying
frequency data as a log—log binned histogram (figure 2a)
is the most common way of visualizing a power law, much
statistical information is lost by binning. However, the
rank distribution, which does not discard information and
1s essentially an estimate of the cumulative probability
distribution of £, is also in good agreement with a power
law (figure 2b), although less confidence can be placed in
its estimated value of the exponent T because of the small
network size. Power laws are ‘fat-tailed’ probability distri-
butions that have been detected in a variety of seemingly
unrelated processes in nature and society, such as popula-
tion size fluctuations in birds, price fluctuations in the
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stock market, the topography of the World Wide Web, or
the magnitude of extinction events in the fossil record
(Gopikrishnan et al. 1998; Keitt & Stanley 1998; Albert et
al. 1999; Newman & Eble 1999). Their broad tail reflects
a relative overabundance of the rare large events, objects,
or highly connected metabolites. Although it is held by
some that power laws reflect deep commonalities among
many processes in nature (Bak 1990), power laws might
result from pooling log—normal distributions, which are
commonly found in nature (B.-L. Li, personal commu-
nication). The distribution of vertex degrees in the
reaction graph does not follow a simple power law
(figure 3). The rank versus degree plot (figure 3b)
shows that it defies a straightforward classification, and
appears to be governed by at least two qualitatively
different regimes.

Metabolic graphs are, in fact, small-world graphs, like
the architecture of the Caenorhabditis elegans nervous
system, the power grid of the western United States, the
structure of some sociological networks (Watts & Strogatz
1998), and the World Wide Web (Albert et al. 1999). The
small-world graph was formally characterized by Watts
(Watts 1997; Watts & Strogatz 1998) and is best illustrated
by friendship networks in sociology, where small-worldness
is known as ‘six degrees of separation’. This followed
original empirical work in sociology (Milgram 1967) that
has since been confirmed for some completely mapped
sociological networks (Watts & Strogatz 1998). The
formal definition of a small-world graph is that it is
sparse but much more highly clustered than an equally
sparse random graph (€ > C,,,4om ), and its characteristic
path length L is close to the theoretical minimum shown
by a random graph (L &~ L, 4om)- The reason a graph can
have small L despite being highly clustered is that a few
nodes connecting distant clusters are sufficient to lower L
(Watts & Strogatz 1998). It follows that ‘small-worldness’
1s a global graph property that cannot be found by
studying local graph properties.

Figure 4a demonstrates that the £ coli metabolic
network is indeed more highly clustered (17 times more)
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Figure 2. The power law distribution of metabolite connec-
tivity in the substrate graph. () Log-log histogram of the
relative frequency of metabolites with a given degree £.
Vertices were binned into five intervals according to degree
(1 <k<8,...64 <k < 128) where values on the abscissa
indicate the upper boundaries. Coeflicient of determination
2 0.93, 1 = —1.59 £ 0.21. (b) Metabolites were ranked
according to the number of connections (degree) they have in
the substrate graph. Shown is metabolite rank versus degree
on a log-log scale, T = —1.3 £ 0.02. Assuming that the degree
of a metabolite can be described by a random variable D,
plotting data as in (a) estimates the probability function
P(log D = k), whereas (b) estimates the counter-cumulative
probability function P(log D > k). Both (a) and (4) are
consistent with a power law distribution of D, i.e.

P(log D > k) o e™ and thus P(D > k) o k7"

than random graphs. However, its characteristic path
length (within 5% or less than 0.1 steps, of that of an
equally sparse random graph) is very small (figure 4b).
The high clustering coeflicient of the substrate graph can
be shown to be the result of local interactions within
metabolic pathways, the ‘cliques’ in this network. o
illustrate this, we analysed separately the substrate
graphs of 10 of the longest individual pathways in our
metabolic network. The analysed pathways comprise
203 substrates and include glycolysis, the tricarboxylic
acid cycle, biosyntheses of riboflavin, folate, histidine,
branched-chain amino acids, aromatic amino acids,
threonine and lysine, arginine, putrescine and spermi-
dine, porphyrin and haem, and coenzyme A. Their
mean clustering coeflicient is € =0.44 (0=0.14,
n=10), not significantly different from that of
¢ =0.48 measured for the whole network. When
considered as separate pathways, the coefficient of
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reaction degree

Figure 3. Degree distribution in the reaction graph. Plotted
are the degree of nodes in the reaction graph versus binned
frequency in (@) and rank in (4), as in figure 2: (@) already
indicates that the degree distribution does not follow a power
law T = —0.13 £ 0.16, and (4) shows further that no simple
cumulative probability function would appropriately approxi-
mate the rank distribution shown.

variation s in vertex degree (mean vertex degree aver-
aged over 10 pathways, £=3.2) is found to be
s = 0.52, which is much lower than that observed for
the complete network (s = 1.01; table 1), and closer to
that expected for a random graph with the same
number of vertices (n = 203) and average degree, for
which s = 0.39. This suggests that the highly connected
metabolites linking the individual pathways into a
connected network are responsible for the great
variance in degree. Their high connectivity provides
the ‘glue’ of the network and is also responsible for the
short pathlength. This is suggested by the mean char-
acteristic path among each of the 10 separate path-
ways, which is L =3.08 (s =0.62), and thus not much
smaller than the L = 3.88 observed for the whole
network.

4. DISCUSSION

Like most graph theoretical models, our model of
metabolic networks omits most quantitative information,
and 1s suited only to analyse network topography. Jeong et
al. (2000) have simultaneously developed a graph analysis
of metabolism with a more complicated graph that
includes enzymes and enzyme-—substrate complexes as
intermediates along with the substrates. Furthermore,
they represented reversible reactions twice, once for each
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Figure 4. Metabolic network graphs are small-world graphs.
(a) Clustering coeflicients €' and (b) characteristic path length
L for the reaction graphs, substrate graphs (both shaded),
and random graphs (empty bars). In (), the similarity is

put in context by the maximal L for the same connectivity
(Limax = n/2(k+ 1); Watts 1997). Using table 1, L.y is 15.14,
5.38, 24.2 and 16.9 from left to right for the metabolic graphs
shown. Values shown for random graphs are mean and stan-
dard deviations (error bars) over 100 numerically generated
connected random graphs with the same probability of
connection between vertices.

direction. Whilst this preserves more information, it also
inflates the size of the graph. They too observed power-
law scaling in the connectivity, but were more concerned
about robustness of the network properties to deletion of
nodes, which they claimed was equivalent to mutation. In
fact, in their representation, a deleterious mutation in an
enzyme would correspond to the removal of a set of
edges, or all nodes corresponding to substrate complexes
of that enzyme, not a substrate node as they investigated.
What might be the functional or phylogenetic signifi-
cance of our observed pattern of a power law distribution
of connectivity, and the small-world nature of the
metabolic graph? It is of course possible that there is no
such significance, because the laws of chemistry might
constrain network structure so severely that the observed
structure is determined by chemical constraints alone. We
cannot strictly exclude this possibility, but some evidence
suggests this could not be the only constraint. First, the
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biosyntheses of various compounds, such as lysine and
isopentenyl diphosphate, occur by different routes in
different organisms (Rohmer et al. 1993). Recent analysis
of the tricarboxylic acid cycle from the viewpoint of
chemical design showed that there are several chemically
possible solutions to the tasks it performs, of which the
solution realized in cells is the one that involves the fewest
chemical transformations (Meléndez-Hevia et al. 1996).
Moreover, considerable variation exists in the presence or
absence of particular reactions in the tricarboxylic acid
cycle in 19 prokaryotes with completely sequenced
genomes (Huynen et al. 1999). Strikingly, in a majority of
these species, the tricarboxylic acid cycle appears incom-
plete or absent. If even key components of metabolism
can show such variation, how much more variation must
there be in more peripheral parts of a metabolic
network? At the very least, these studies suggest that
chemistry does allow flexibility in the design of a meta-
bolic net. If this is the case, then the observed architec-
ture may be a relic of evolutionary history, a product of
evolutionary optimization, or a mixture of both.

Could the observed network structure be an indicator
of the evolutionary history of metabolism? Barabasi &
Albert (1999) have recently proposed a mathematical
model that generates large graphs from small graphs by
adding nodes and edges. If links to new nodes are made
preferentially from nodes that already have many links,
then the resulting graphs are small-world graphs with
power-law degree distributions. A key prediction is that
vertices with many connections are ones that have been
added early in the history of the graph. Cast in terms of
metabolism, if early in the evolution of life metabolic
networks have increased in size by adding new metabo-
lites, then the most highly connected metabolites should
also be the phylogenetically oldest. Indeed, many of the
most highly connected metabolites in table 2 have a
proposed early evolutionary origin. Ribonucleotide cofac-
tors such as coenzyme A, NAD or GTP are among the
most highly connected metabolites, and are thought to be
among the remnants of an RNA world (Benner et al.
1989). Glycolysis and the tricarboxylic acid cycle are
perhaps the most ancient metabolic pathways, and
various of their intermediates (2-oxoglutarate, succinate,
pyruvate, 3-phosphoglycerate) occur in table 2. Early
proteins are thought to have used many fewer amino
acids than extant proteins, and the highly connected
amino acids glutamine, glutamate, aspartate and serine
are thought to be among those first used (Benner et al.
1989; Taylor & Coates 1989; Morowitz 1992; Kuhn &
Waser 1994; Waddell & Bruce 1995; Lahav 1999). The
potential relation between evolutionary history and
connectivity of metabolites corroborates a postulate put
forward by Morowitz (1992), namely that intermediary
metabolism recapitulates the evolution of biochemistry. Our
highly connected metabolites pyruvate, 2-oxoglutarate,
acetyl CoA and oxaloacetate are identified by Morowitz
(1999) as belonging to the original core metabolism, and
glutamate, glutamine and aspartate are the links from
this core into the next earliest subset of compounds, the
first amino acids.

What aspect of metabolic function might a small-
world network optimize? Metabolic networks need to
react to perturbations, either perturbations in enzyme
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concentrations, or changes in metabolite concentrations.
Because metabolic networks are connected, each compo-
nent in the network may be affected by such perturba-
tions, and thus the network as a whole must adapt to the
changed conditions by assuming a different metabolic
state. The importance of minimizing the transition time
between metabolic states has been recognized and
discussed by other authors (Easterby 1986; Schuster &
Heinrich 1987; Cascante et al. 1995). Any response to a
perturbation and transition to a new metabolic state
requires that information about the perturbation has
spread within the network. Watts & Strogatz (1998)
studied how fast perturbations spread through small-
world networks. Significantly, they found that the time
required for spreading of a perturbation in a small-world
network is close to the theoretically possible minimum for
any graph with the same number of nodes and vertices.
Thus small-worldness may allow a metabolism to react
rapidly to perturbations.

These hypotheses might not be tested easily. However,
they serve to illustrate that a suitable mathematical
framework can allow us to perceive global patterns of
biological organization, patterns that are not visible on a
local level, patterns that allow us to build qualitatively
new kinds of hypotheses. Detecting order in the torrent of
genomic data descending upon the life science community
will certainly require such hypotheses.
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