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APPENDIX A: THE ORIGIN OF D.+ AND T FOR A TWO-STATE MOTOR

To see more physically how the reduction of the diffusion coefficient in (7.38) arises, consider

the time derivative of the diffusion equation (7.28)
*pldr* = D*/0x(0p/0r) -v0/dx(dp/0F) - 10°p/or . (A1)

When the probability density p is slowly varying, the third derivatives on the RHS may be

neglected, in which case, using the diffusion equation (7.28), we find that
*plor =0 plox’. (A2)

The same result applies to the diffusion equation (6.17) for the biased random walk. It reflects the
wave-like propagation of the probability-density peak at the average stepping velocity v along the
motor's track, as illustrated in figure 4a. From (A2), one can see that the 10°p/d¢" term in (7.28)
therefore partially cancels the D9°p/dx” term, effectively reducing the diffusion coefficient Deyin

(7.38) from D to D - V1.

To understand the physical meaning of T, consider an ensemble of two-state motors, each
subjected to the same load /. The motors are either in state 1 or state 2, and, summing over all
attachment sites » in (7.24) and (7.25), we may denote the probabilities for being in the two states

as P; and P,. It follows from (7.24) that the rate equation for P; is

dP]/dt = k2P2 - k.zP] + k.]PQ - k]P] = -P|/T + (kz + k.]), (A3)
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where we have used (7.29) together with the normalization condition P,+P, = 1. Hence, the
ensemble probabilities P; and P, approach their steady-state values with the time constant T. At

steady state, dP\/dt = dP,/dt = 0, and the average hydrolysis rate R is
R=ki\Py - kP, = kaP; - kyP, (A4)

which together with (2.2) produces an average steady-state stepping velocity v in agreement with

(7.30). Furthermore, the time derivative of (A3) yields
dP,/dt + 1d°P,/df* = 0, (A5)

which is what we would obtain by integrating the diffusion equation (7.28) for the probability
density over all space (assuming that p and dp/dx vanish asymptotically). Hence the important
10°p/0¢" term in (7.28) arises from the motor's approach to steady-state stepping with the time
constant T. The one-state motor in (6.17) effectively has T = 0 and always maintains steady-state
stepping, whilst the two-state motor has an internal time constant T that introduces a time lag into
the response of dp/dt in (7.28). The 10°p/0¢ term opposes the change in the probability density p
due to the diffusion term Dd’p/dx”, and (A2) shows that at steady state it effectively reduces the
diffusion coefficient in (7.38). Note that the time constant T also gives rise mathematically to the
second branch of the dispersion relation in (7.37), representing an exponential decay with a time

constant that is very short compared to the time scale on which we observe diffusion (as in figure

4a).

APPENDIX B: THE KINETICS OF ALTERNATING HEADS

The stepping of a processive motor such as kinesin or myosin V in figure 1 requires that the two
heads 4 and B operate alternately. The complete cycle therefore consists of two steps, first for

head A4 and then for head B. This is particularly important if the heads are not equivalent, as
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occurs for some members of the kinesin superfamily (Hirokawa 1998). Hence the proper

thermodynamic relation in place of (4.9) for a one-state motor with two alternating heads is
kA+kB+/kB_kA_ = eXp[—Z(AG + qu)/kT], (Bl)

where k4 and k,. are the forward and backward rate constants for head 4, whilst kz:. and kz. are

the corresponding rate constants for head B. The rate equations are
dpA,n/dt = kB+pB,n—l = kA—pA,n + kB—pB,nH = kA+pA,m (Bza)
Appn/dt = kapan+1 - kpppn + kapan1 - kpppy (B2b)

In the continuum approximation, these equations become
Op/0t = Yauy (ks + k)0 pp/ox” - uo(kgs - kp.)Ops/Ox + (kg + kg )ps - (ke + ki )pas (B3a)
O/t = Vauy (kge + ky )0 palOx” - uo(kss - ks )OpalOx + (ks + kudpa - (kss + ks )ps. (B3b)

Neglecting terms in 8°p/0x” and 0°p/dx”, we find that the probability densities obey the diffusion

equation (7.28), where

V= 2u0(kA+kB+ - kA_kB_)/(kA++kA_+kB++kB_), (B4a)
D = 2u’(kasks + ki) H(knsthoatketks), (B4b)
= 1/(k,4++k,4_+k3++k3_). (B4C)

The expressions for v, D and T are just what we would expect from the two-state model (7.29),
(7.30) and (7.31) with step size 2uo, together with k; = ky+, ky = kp+, k. = k4. and k, = kz.. When

the two heads are identical, k4 = kg = k. and k. = k. = k., and we find that
Doy=D -V'T = Yaug' (k. + k), (B5)

which is the same result as (6.18) for the simple one-state model, where alternation of the two
heads was ignored. Hence, when the two heads are identical, we may regard the motor's cycle as

consisting of a single step for one head.
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APPENDIX C: CALCULATION OF D+ FOR A THREE-STATE MOTOR
If we look for solutions to (8.44) - (8.46) of the form p; ~ exp[i(kx - w¥)], etc., then it follows that
[iw- (ki + k3)][iw - (k. + k)][iw - (ko + k3)] - kokoo[iw - (ky + k)]

- kik[i0 - (ka + k)] + kskokoy(1 + woik - Vauo k) + kikoks(1 - woik - Vouo™k?)

- ksks[io - (kg + ko) ](1 - woik - Yauo k)1 + ugik - Vaug'k™) = 0. (C1)
Neglecting terms in &’ and &*, we find that
W (ke otk ths) + 0k (kytkoths) + k(o Hoths) + ka(kotks) + koks]

- upik(kikokes-ksk ok ) - Vouo K (kikoks+k sk ok.p) = 0. (C2)

To determine the effective diffusion coefficient D,; we look for solutions that satisfy the
dispersion relation (7.36) in the limit of small w and £. Substituting kv - iDefsz for win (C2) and

keeping terms of O(k%), we find
IV (Rt et tsts) + i(ky - iDegh®) [k (athats) + ksl k) + e (kaths) + koks]
- woik(kykoks-k sk ok.y) - Vauo k> (kykoksth skok.) = 0. (C3)

This equation must be true for all £ (in the limit where £ — 0). Hence, setting the coefficients of k

and & equal to zero, we find that the average stepping velocity is
v = ug(kikoks-kskok. )/ [k (ko kot k(b otk i (katks ) Hioks], (C4)
whilst the diffusion coefficient D, for the three-state model is given by
Doy = [Vauo (kikoks e sk ok )-v (v etk ot s) | ey (ko o)
+hs(kathko ko) Tk (kaoths)thoks].

(C5)
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Note that the randomness for the three-state model from (7.39), (C4) and (C5) may be written as
r = [uo (evkaksth sk ok ) -2 (hey ey e e e ug e koks-k skok. ). (C6)
When backward transitions are neglected, k., = k, = k3 =0, and we find that

r=[k’k’ + k'l + 'k kot kikstioks], (C7)

in agreement with the theory of Svoboda et al. (1994).



