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This is an electronic appendix to the paper by Thomas et al. 2001 (Molecular motors: 
thermodynamics and the random walk). Proc R. Soc. Lond. B 268, 2113-2122. 
 
Electronic appendices are refereed with the text. However, no attempt has been made to impose a 
uniform editorial style on the electronic appendices. 

 

APPENDIX A: THE ORIGIN OF Deff AND ττττ FOR A TWO-STATE MOTOR 

To see more physically how the reduction of the diffusion coefficient in (7.38) arises, consider 

the time derivative of the diffusion equation (7.28) 

∂2p/∂t2 = D∂2/∂x2(∂p/∂t) -v∂/∂x(∂p/∂t) - τ∂3p/∂t3.      (A1) 

When the probability density p is slowly varying, the third derivatives on the RHS may be 

neglected, in which case, using the diffusion equation (7.28), we find that 

∂2p/∂t2 ≈ v2∂2p/∂x2.         (A2) 

The same result applies to the diffusion equation (6.17) for the biased random walk. It reflects the 

wave-like propagation of the probability-density peak at the average stepping velocity v along the 

motor's track, as illustrated in figure 4a. From (A2), one can see that the τ∂2p/∂t2 term in (7.28) 

therefore partially cancels the D∂2p/∂x2 term, effectively reducing the diffusion coefficient Deff in 

(7.38) from D to D - v2τ. 

To understand the physical meaning of τ, consider an ensemble of two-state motors, each 

subjected to the same load f. The motors are either in state 1 or state 2, and, summing over all 

attachment sites n in (7.24) and (7.25), we may denote the probabilities for being in the two states 

as P1 and P2. It follows from (7.24) that the rate equation for P1 is 

dP1/dt = k2P2 - k-2P1 + k-1P2 - k1P1 = -P1/τ + (k2 + k-1),     (A3) 
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where we have used (7.29) together with the normalization condition P1+P2 = 1. Hence, the 

ensemble probabilities P1 and P2 approach their steady-state values with the time constant τ. At 

steady state, dP1/dt = dP2/dt = 0, and the average hydrolysis rate R is 

R = k1P1 - k-1P2 = k2P2 - k-2P1,        (A4) 

which together with (2.2) produces an average steady-state stepping velocity v in agreement with 

(7.30). Furthermore, the time derivative of (A3) yields 

dP1/dt + τd2P1/dt2 = 0,         (A5) 

which is what we would obtain by integrating the diffusion equation (7.28) for the probability 

density over all space (assuming that p and ∂p/∂x vanish asymptotically). Hence the important 

τ∂2p/∂t2 term in (7.28) arises from the motor's approach to steady-state stepping with the time 

constant τ. The one-state motor in (6.17) effectively has τ = 0 and always maintains steady-state 

stepping, whilst the two-state motor has an internal  time constant τ that introduces a time lag into 

the response of ∂p/∂t in (7.28). The τ∂2p/∂t2 term opposes the change in the probability density p 

due to the diffusion term D∂2p/∂x2, and (A2) shows that at steady state it effectively reduces the 

diffusion coefficient in (7.38). Note that the time constant τ also gives rise mathematically to the 

second branch of the dispersion relation in (7.37), representing an exponential decay with a time 

constant that is very short compared to the time scale on which we observe diffusion (as in figure 

4a). 

 

APPENDIX B: THE KINETICS OF ALTERNATING HEADS 

The stepping of a processive motor such as kinesin or myosin V in figure 1 requires that the two 

heads A and B operate alternately. The complete cycle therefore consists of two steps, first for 

head A and then for head B. This is particularly important if the heads are not equivalent, as 
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occurs for some members of the kinesin superfamily (Hirokawa 1998). Hence the proper 

thermodynamic relation in place of (4.9) for a one-state motor with two alternating heads is 

kA+kB+/kB-kA- = exp[-2(∆G + u0f)/kT],       (B1) 

where kA+ and kA- are the forward and backward rate constants for head A, whilst kB+ and kB- are 

the corresponding rate constants for head B. The rate equations are 

dpA,n/dt = kB+pB,n-1 - kA-pA,n + kB-pB,n+1 - kA+pA,n,      (B2a) 

dpB,n/dt = kA-pA,n+1 - kB+pB,n + kA+pA,n-1 - kB-pB,n.      (B2b) 

In the continuum approximation, these equations become 

∂pA/∂t = ½u0
2(kB+ + kB-)∂2pB/∂x2 - u0(kB+ - kB-)∂pB/∂x + (kB+ + kB-)pB - (kA+ + kA-)pA,  (B3a) 

∂pB/∂t = ½u0
2(kA+ + kA-)∂2pA/∂x2 - u0(kA+ - kA-)∂pA/∂x + (kA+ + kA-)pA - (kB+ + kB-)pB.  (B3b) 

Neglecting terms in ∂3p/∂x3 and ∂4p/∂x4, we find that the probability densities obey the diffusion 

equation (7.28), where 

v = 2u0(kA+kB+ - kA-kB-)/(kA++kA-+kB++kB-),      (B4a) 

D = 2u0
2(kA+kB+ + kA-kB-) /(kA++kA-+kB++kB-),      (B4b) 

τ = 1/(kA++kA-+kB++kB-).         (B4c) 

The expressions for v, D and τ are just what we would expect from the two-state model (7.29), 

(7.30) and (7.31) with step size 2u0, together with k1 = kA+, k2 = kB+, k-1 = kA- and k-2 = kB-. When 

the two heads are identical, kA+ = kB+ = k+ and kA- = kB- = k-, and we find that 

Deff = D - v2τ = ½u0
2(k+ + k-),        (B5) 

which is the same result as (6.18) for the simple one-state model, where alternation of the two 

heads was ignored. Hence, when the two heads are identical, we may regard the motor's cycle as 

consisting of a single step for one head. 
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APPENDIX C: CALCULATION OF Deff FOR A THREE-STATE MOTOR 

If we look for solutions to (8.44) - (8.46) of the form p1 ~ exp[i(kx - ωt)], etc., then it follows that 

[iω - (k1 + k-3)][iω - (k-1 + k2)][iω - (k-2 + k3)] - k2k-2[iω - (k1 + k-3)]  

 - k1k-1[iω - (k-2 + k3)] + k-3k-2k-1(1 + u0ik - ½u0
2k2) + k1k2k3(1 - u0ik - ½u0

2k2)  

 - k3k-3[iω - (k-1 + k2)](1 - u0ik - ½u0
2k2)(1 + u0ik - ½u0

2k2) = 0.   (C1) 

Neglecting terms in ω3 and k4, we find that 

ω2(k1+k-1+k2+k-2+k3+k-3) + iω[k1(k2+k-2+k3) + k-3(k-1+k2+k-2) + k-1(k-2+k3) + k2k3]  

 - u0ik(k1k2k3-k-3k-2k-1) - ½u0
2k2(k1k2k3+k-3k-2k-1) = 0.    (C2) 

To determine the effective diffusion coefficient Deff, we look for solutions that satisfy the 

dispersion relation (7.36) in the limit of small ω and k. Substituting kv - iDeffk2 for ω in (C2) and 

keeping terms of O(k2), we find 

k2v2(k1+k-1+k2+k-2+k3+k-3) + i(kv - iDeffk2)[k1(k2+k-2+k3) + k-3(k-1+k2+k-2) + k-1(k-2+k3) + k2k3]  

 - u0ik(k1k2k3-k-3k-2k-1) - ½u0
2k2(k1k2k3+k-3k-2k-1) = 0.    (C3) 

This equation must be true for all k (in the limit where k → 0). Hence, setting the coefficients of k 

and k2 equal to zero, we find that the average stepping velocity is 

v = u0(k1k2k3-k-3k-2k-1)/[k1(k2+k-2+k3)+k-3(k-1+k2+k-2)+k-1(k-2+k3)+k2k3],   (C4) 

whilst the diffusion coefficient Deff for the three-state model is given by 

Deff = [½u0
2(k1k2k3+k-3k-2k-1)-v2(k1+k-1+k2+k-2+k3+k-3)]/[k1(k2+k-2+k3) 

       +k-3(k-1+k2+k-2)+k-1(k-2+k3)+k2k3]. 

           (C5) 
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Note that the randomness for the three-state model from (7.39), (C4) and (C5) may be written as 

r = [u0
2(k1k2k3+k-3k-2k-1)-2v2(k1+k-1+k2+k-2+k3+k-3)]/u0

2(k1k2k3-k-3k-2k-1).   (C6) 

When backward transitions are neglected, k-1 = k-2 = k-3 = 0, and we find that 

r = [k1
2k2

2 + k1
2k3

2 + k2
2k3

2]/[k1k2+ k1k3+k2k3]2,      (C7) 

in agreement with the theory of Svoboda et al. (1994). 

 


