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A new approach to analysing texture-defined motion
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It has been widely accepted that standard low-level computational approaches to motion processing
cannot extract texture-defined motion without applying some pre-processing nonlinearity. This has
motivated accounts of motion perception in which luminance- and texture-defined motion are processed
by separate mechanisms. Here, we introduce a novel method of image description where motion
sequences may be described in terms of their local spatial and temporal gradients. This allows us to assess
the local velocity information available to standard low-level motion mechanisms. Our analysis of several
texture—motion stimuli shows that the information indicating correct texture—motion velocity and/or
direction is present in the raw luminance measures. This raises the possibility that luminance—motion
and texture—motion may be processed by the same cortical mechanisms. Our analysis offers a way of
looking at texture—motion processing that is, to our knowledge, new and original.
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1. INTRODUCTION

The images falling across our retinas are spatio-temporally
structured. In order to extract information from this
shifting optic array our visual system must be sensitive
not only to spatial patterns, but also to temporal change.
It has long been established that simple and complex cells
in the primary visual cortex of the cat and monkey
exhibit directional selectivity (Hubel & Wiesel 1962,
1968).
human motion perception. Computational models of
motion processing attempt to both describe the algo-
rithms through which motion may be computed in bio-
logical systems and account for the motion-selective
responses of cortical neurons.

Computational models of low-level motion processing
are based on the notion that simple neural processes
respond directly to changes in local image luminance.
Image motion is extracted through a nonlinear combina-
tion of the outputs of linear filters (Adelson & Bergen
1985; Van Santen & Sperling 1985; Watson & Ahumada
1985; Johnston ef al. 1992). Such models drive a great deal
of neurophysiological and psychophysical research. These
models are designed to operate on stimuli in which
motion is defined by translations of luminance. For the
present purposes we therefore define such models as being
‘luminance based’. Stimulus motion in texture-defined
motion stimuli is defined not by translations of luminance
but by translations of some other texture property such as
contrast or spatial frequency. Some examples of texture-
defined motion may be readily perceived by human
observers, yet, it is widely believed, cannot readily be
analysed by luminance-based motion models (Chubb &
Sperling 1988; Cavanagh & Mather 1989; Benton & John-
ston 1997).

In order to account for the perception of texture-
defined motion it has been proposed that some process
(or processes) other than standard low-level motion
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analysis must operate (Chubb & Sperling 1989). The
mechanisms proposed fall into two groups. In the first,
the input image is subject to some gross nonlinearity
prior to standard motion analysis. The effect of this
nonlinear pre-processing is effectively to translate texture
motion into luminance motion so that it becomes access-
ible to standard motion analysis (Chubb & Sperling
1988). In the second, some high-level feature tracking
mechanism is applied to the stimulus (Cavanagh 1992).
Whilst the latter has a long history within the field of
motion perception, there is no general agreement as to
what specifies a feature, what mechanism may be applied
to tracking the motion of those features or how object
speed 1s determined. At its simplest level, feature tracking
may simply represent awareness of a positional change in
attentional focus.

The central motivation for the proposal that some
process other than standard low-level motion analysis
must operate is the belief that mechanisms of this type
cannot analyse texture-defined motion. Here, we present
what 1s, to our knowledge, a novel analysis of some
texture-defined motion stimuli. We demonstrate that the
information for the direction and speed of motion in a
number of texture—motion stimuli is directly available to
standard low-level motion analysis. We challenge the
widely held belief that texture-defined motion cannot be
detected by luminance-based motion mechanisms. Our
analysis offers a new perspective on the manner in which
texture—motion may be processed.

2. METHODS

The local velocity in an image can be calculated by taking
the ratio of the local temporal gradient to the local spatial
gradient (Fennema & Thompson 1979; Horn & Schunck 1981,
Sobey & Srinivasan 1991; Johnston et al. 1992; Verri et al. 1992).
These measures may be presented in the form of a gradient plot
in which we show the distribution of points that have a
particular spatial and temporal gradient. This novel method of
image analysis allows us to investigate the distribution of local

© 2001 The Royal Society



\ 4

2436 C. P. Benton and A. Johnston Texture—motion analysis
(a) (b) (©

g 10,
5 094 'Y
g 081

8 o6l .

5% 05 temporal

° 5 02] =N
& 0.1y \6
2 0
=
&

¢)

150 / 150 /

210\ o /330 210\

300 240"

240

270 270

spatial gradient

7300

Figure 1. (a) Space-time plot of the beat pattern. (4) Gradient plot of the beat pattern. (¢) Relationship between spatial and
temporal gradients expressed as an angle. (d) Number of occurrences of each angle for the beat stimulus. The maximum value is
normalized to unity. (¢) Residual ‘velocity’ plot (more accurately a plot of residual velocities expressed as angles) of the beat

stimulus.

image velocities occurring within an image. Lines through the
origin of a gradient plot are lines of iso-velocity where velocity
is given by the tangent of the angle between the line and the
spatial gradient axis. The distance of a point from the origin
reflects the magnitude of the spatio-temporal gradient.

All space—time input images measured 256 pixelsx 256
pixels, with space represented horizontally and time represented
vertically. For ease of description, we arbitrarily assign 256
pixels across to a width of 1° and 256 pixels down to a temporal
extent of 1s. Two of the stimuli that we examine, beats and
contrast-modulated sine waves, are described by continuous
functions that can be readily differentiated at any point in the
image. For these, we randomly sample the function defining the
stimulus at 10 million points and extract the temporal and
spatial gradients by calculating the partial derivatives at each of
these points. From each point that we sample, we obtain a
temporal gradient and a spatial gradient. The full range of
spatial and temporal gradients obtained is divided into 100
bins x 100 bins, with each bin signifying a small range of spatio-
temporal gradients. Each spatial gradient/temporal gradient
pair is then assigned to its relevant bin in order to obtain a plot
of the number of occurrences per bin. Note that these have been
normalized to a maximum of unity.

A less formal description runs as follows. Temporal gradient/
spatial gradient pairs can be plotted on a graph with the spatial
gradient on the horizontal axis and the temporal gradient on
the vertical axis. However, the scatter plot resulting from
plotting all of the gradient pair samples from an image would
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be unclear because of the large number of samples that we use.
In some areas, points would overlap or lie on top of one another
such that the scatter plot would not give a valid representation
of the frequency of occurrence of certain gradient pairs. In
order to create our gradient plot we divide the scatter plot into a
grid and count the number of gradient pairs falling into each
rectangle of the grid. We then plot this as a histogram so that
the height of each bar represents the number of instances of
gradient pairs falling into each of the rectangles into which the
scatter plot is divided.

The other stimuli examined in this paper involve manipu-
lations of binary noise. With these, we cannot differentiate the
function analytically. In order to extract the gradient present in
the image we use the observation that filtering a differentiated
image with a filter kernel is equivalent to filtering the undiffer-
entiated image with the differentiated filter kernel (Bracewell
1965). This observation forms the basis of models that seek to
measure the local image velocity using gradient techniques. In
order to measure spatial gradients we apply a filter that is
Gaussian temporally and the first derivative of a Gaussian
spatially, whereas for extracting temporal gradients our filter is
a Gaussian spatially and the first-order derivative of a Gaussian
temporally. The standard deviation along both dimensions is 2
pixels (0.47 arcmin and 7.8 ms) in each filter function. Because
these images use a random carrier, we gather results over 200
images, which thereby gives us a total of over 10 million
measures of spatial and temporal gradients. We then apply the
same analysis as that applied to the beat pattern.
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3. RESULTS

(a) Translating beat pattern

A static high-frequency sine wave (the carrier) is multi-
plied by a translating lower-frequency sinusoid. An
example is shown in figure la. The envelope spatial
frequency for this and all other stimuli was 1 cycle deg™!
and the carrier spatial frequency was 8 cycles deg~!. The
envelope temporal frequency was 1Hz in the example
shown in figure 1. The stimulus is characterized by its
translating grey regions (moving from left to right in the
example shown) and by the contrast reversal in the
underlying static carrier. Figure 15 shows this image
expressed in terms of a gradient plot. One can readily see
that there are four peaks in gradient space, a pattern we
have found to be characteristic of beat patterns. Note the
difference in scale between the axes showing the spatial
and temporal gradients. This makes it difficult to obtain a
true idea of the velocity as indicated by the orientation of
the peaks in relation to the origin.

We are faced with the issue of how to extract the velo-
cities signalled by the dominant features in our gradient
plots. The simplest analysis that we could apply to our
gradient data from the beat pattern would be to identify
the positions of the peaks. Unfortunately this procedure
cannot be applied to all of the gradient plots that we
examine in this study. This is because the dominant
features within the gradient plots are not necessarily well-
defined peaks lying at some distance from the origin of
the gradient plot. In order to extract the velocity we use
a procedure in which we create a residual velocity plot
from the velocity information in the gradient data and
then identify peaks in the residual velocity plot. This
gives us a simple computational procedure with which to
extract velocity information from our plots. It should be
emphasized that we are not proposing that this procedure
be implemented biologically. It is simply a method of
analysis that appears to pick out the velocities signalled
by the dominant features in the velocity plots that we
have examined.

Since velocity is the ratio of the temporal gradient to
the spatial gradient, points indicating a particular velo-
city will fall on a line through the origin at some angle ¢
to the spatial gradient axis. We express each local combi-
nation of spatial and temporal gradients as an angle, as
shown in figure l¢. These samples are gathered into bins
of 0.25°. The resultant data are plotted in polar form in
figure 1d. Plotting the data in this form gives us another
way of visualizing the local velocities present in the image
(as velocity 1s given by the tangent of the angle). The
distance from the centre indicates the number of occur-
rences per bin. It can be readily seen from figure 14 that
this plot is dominated by the static information in the
image, which is signified by angles of 0 and 180°. This is
due to the influence of the static carrier with the image.

However, we are most interested in any residual veloci-
ties present in the image. In order to calculate these we
take the difference between the numbers of points signal-
ling the same speed, but in opposite directions. In the
velocity plot, angles of 6§ and 6+ 7 correspond to the
same velocity (), whilst angles of —6 and —6 4 7 corre-
spond to a velocity of —v (since a reversal in direction is
accompanied by a change in the sign of either the
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Figure 2. Velocities from peaks identified in residual velocity
plots for three stimuli as a function of the envelope velocity.
Circles show the results for the beat pattern (figure la),
crosses show the results for a contrast-modulated sine wave
(figure 3a) and inverted triangles show the results for a
contrast-modulated noise stimulus (figure 4a). Note that, in
many cases, the close overlap between the stimuli makes
identification difficult. The horizontal dotted line shows the
carrier velocity and the dashed diagonal line shows the
envelope velocity.

temporal or the spatial gradient). If N, is the number of
instances of gradient combinations falling into a bin
centred around 6 in the velocity plot then the residual
velocity at angle 6 can be calculated as

Ry=Ry 7= (Ng+Noyr) = (Nog+Ngin) (3.1)

We plot only positive values of R, for our residual velocity
plot because

Ry=R g r=—Ry= Ry, (3.2)
In other words, setting negative values to zero results in
no loss of information. The only two places where this
procedure of letting opposite velocities cancel one another
out is invalid are where velocity is zero (§=0 and 0 =)
and where velocity is infinite (§=m/2 and 0=37/2). At
these points we calculate the following:

Ry =R, =|Ny — Nl (3.3)
and
Rw/z = sz/Q = |Nn/2 - Nzﬂ/2|- (3.4)

In practice, this allows instances of zero and infinite velo-
cities in the velocity plot to cancel one another out in the
residual velocity plot.

The results from these calculations are shown in figure
le. The residual velocity plot is a measure of what is left
when opposite velocities have been subtracted from one
another. Note that, as a result of our procedure, the data
are symmetrical, such that the number of occurrences at
any angle 6 is identical to the number of occurrences at
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6+180°. From figure le, we obtain peaks in this distribu-
tion at 45° and at a value of just greater than 0°. We iden-
tify these two peaks in the data and express them as a
velocity. These measures are plotted as a function of the
envelope velocity in figure 2. The diagonal line indicates
the veridical envelope velocity and the horizontal line
indicates a speed of zero. As one can see from the plot,
the peaks in our velocity data reliably indicate the velo-
city of the envelope motion and a velocity of close to zero,
corresponding to the static carrier.

With the beat pattern, this method of analysis essen-
tially picks out the peaks shown in the gradient plot in
figure 1b. These peaks can be divided into pairs where one
peak indicates the velocity of the envelope and the other
peak indicates the velocity of the carrier. A simple peak-
finding algorithm applied to the data in figure 16 confirms
the findings shown in figure 2. The data show that infor-
mation about the envelope velocity is present in this local
analysis of the space—time image. From the gradient plot
in figure 15 it 1s clear that the peaks indicating envelope
and carrier motion dominate the plot.

Note that the velocity close to zero that we identify as
corresponding to the carrier velocity actually indicates
forward motion. However, a peak-finding algorithm
applied to the gradient plot finds this velocity to be zero.
The reason for the discrepancy is that our procedure for
creating residual velocity plots allows velocities of zero to
cancel one another. Note also that any actual model will
use filtering operations that will, in all likelihood, change
the balance of components within the stimuli. A beat
stimulus 1s constructed by adding two sine waves of equal
amplitude. When passed through some filter (such as a
Gaussian in space and time), it is likely that one sine wave
will be attenuated relative to another. This will clearly
change the characteristics of the stimulus and can poten-
tially introduce luminance-defined motion with a direc-
tion opposite to that of the texture-defined motion. Our
analysis shows the information that i1s available in the
ideal case from a simple gradient-based analysis.

(b) Contrast-modulated sine wave

In this stimulus a static sinusoidal carrier is multiplied
by a raised sine wave (see figure 34). The method of
analysis for the contrast-modulated sine wave is identical
to that for the beat pattern. However, in this case we
obtain a quite different pattern in the gradient plot,
finding a large orientated central peak (see figure 3b).
When we apply our analysis we arrive at a residual velo-
city plot that is very similar to that found with the beat
pattern (figure 3¢). As one can see from the measured
velocity plotted as a function of the envelope velocity
shown in figure 2, our analysis again picks out the
envelope velocity and a velocity close to zero. With this
particular stimulus, our analysis serves to pick out the
orientation of the central spiked feature that dominates
the gradient plot. The orientation of this feature gives the
correct envelope velocity.

(c) Contrast-modulated static noise

This stimulus is similar to the contrast-modulated sine
wave except that we use a static binary noise carrier. The
noise has a width of 4 pixels. There is no spatial modula-
tion within noise elements. A space—time plot of the
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Figure 3. (a) Space-time plot of a contrast-modulated sine
wave. (b) Gradient plot of a contrast-modulated sine wave.
(¢) Residual velocity plot (expressed in angular form) of a
contrast-modulated sine wave.

stimulus is shown in figure 44. Stimuli of this type (which
are referred to as micro-balanced) have been shown to be
particularly  problematic for directionally selective
luminance-based motion models (Chubb & Sperling
1988; Benton & Johnston 1997).

Figure 456 shows a gradient plot of the stimulus. The
three peaks shown in the plot form part of an orientated
feature that lies on the line through gradient space
describing the velocity of the envelope (as confirmed by a
peak-finding algorithm). Our residual velocity plot, which
is shown in figure 4¢, clearly picks out the orientation of
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Figure 4. (a) Space-time plot of a contrast-modulated static Figure 5. (a) Space-time plot of a contrast-modulated
noise pattern. (b) Gradient plot of a contrast-modulated static dynamic noise pattern. (b) Gradient plot of a contrast-
noise. (¢) Residual velocity plot of a contrast-modulated static modulated dynamic noise. (¢) Residual velocity plot of a
noise stimulus. contrast-modulated dynamic noise stimulus.
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Table 1. Percentages of local velocity measures falling between specified limits for beats and various contrast

modulations.

(The envelope velocity was 1°s~!. The carrier characteristics are as specified in § 3.)

contrast-modulated

contrast-modulated contrast-modulated

beat sine wave static noise dynamic noise
09<v<1.1 2.7 12.7 6.0
—-0.1<v<0.1 45.6 45.6 48.8 7.3
00<v 57.8 57.8 59.1 53.0

this feature in gradient space and, when we plot the peak
residual velocities in this image (figure 2), we can again
show that the envelope velocity is present in this image.

(d) Contrast-modulated dynamic noise

A sinusoidal envelope modulates the contrast of a
dynamic noise carrier. In the example shown in figure 5
the envelope velocity is 2°s~!. There is no spatial or
temporal modulation within the noise elements, that
measure 4 pixels x 4 pixels. In terms of its gradient, this
stimulus has a central orientated spike (figure 54). The
analysis of residual velocity gives us the correct direction
of motion in this stimulus (figure 5¢). However, the resi-
dual velocity plot is very noisy and the correct envelope
velocity was not readily obtained. It may be that the use
of the first derivatives is insufficient for extracting the
envelope velocity and that additional measures need to be
taken (Johnston e al. 1992, 19994,b; Benton et al. 2000).

We have chosen the method of analysis described
because it picks out what appear to be dominant features
in each of the respective gradient plots. This shows that
the information that can give the velocity and/or direc-
tion of envelope motion to luminance-based mechanisms
is present in the stimuli. It can also be shown that this
approach can recover the direction of motion of the
flicker rate of dynamic noise and the noise check size in
sinusoidal modulations. For example, this can be accom-
plished by applying band pass filters to the space—time
image prior to gradient analysis. In essence this converts
the images into contrast modulations.

4. DISCUSSION

We analysed the local image velocities present in a
number of image sequences in which motion was defined
by the translation of texture contrast. Our results un-
ambiguously demonstrate that, with some texture-defined
motion stimuli, information that allows the velocity of
texture-defined motion to be extracted by a luminance-
based motion mechanism exists within the stimulus. If
this information is used as part of the process of motion
perception, then luminance- and texture-defined motion
could be processed by the same cortical mechanisms.

We can write any contrast modulation stimulus f{x,¢) as
the product of two functions, namely an envelope g(v,¢)
and a carrier A(x,t). The velocity v is given by the ratio of
the temporal derivative to the spatial derivative, i.e.
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where a subscript ¢ indicates temporal differentiation and
a subscript x indicates spatial differentiation. When g(v,?)
1s close to zero and/or both #,(x,f) and £,(x,{) are close to
zero then

(4.2)

In other words, when the contrast is close to zero or when
both the temporal and spatial derivatives of the carrier
are close to zero then the calculated velocity will be close
to that of the envelope. We should therefore fully expect
that local velocities close to the speed of the envelope
should be present in our gradient-based image analyses.

The belief that texture-defined motion cannot be
recovered without recourse to some nonlinearity prior to
motion processing is deeply embedded within the liter-
ature. Our analysis shows that the information for the
direction of motion and/or the velocity of texture-defined
motion may be accessed by luminance-based mechanisms
without recourse to pre-processing nonlinearities. In the
stimuli that we describe, gradient combinations signalling
luminance—motion form a substantial proportion of the
total number of residual velocity measures. We have
shown that gradient-based computational models of
biological motion processing can successfully recover
texture-defined motion in a number of studies (Johnston
et al. 1992, 1999¢; Johnston & Clifford 1995a; Benton et al.
2000, 2001). Our analysis here shows that there is
information present in
sequences that is directly accessible to a generic gradient-
based approach.

The gradient combinations signalling the envelope
velocity in the beat and contrast-modulated sine wave
stimuli form only a small proportion of the total number
of measures (see table 1). A large proportion of the
measures signal velocities that lie close to zero. Our
analysis does show that gradient combinations giving
velocities close to that of the envelope do predominate in
the residual velocity plot (particularly if velocities close to
zero are ignored). In order to account for the perception
of envelope motion based upon these measures one would
have to propose the existence of mechanisms capable of
analysing and organizing local velocity measures.
However, it may well be the case that an approach in
which multiple gradient measures are combined can
detect the envelope velocity in stimuli of this type
correctly. Johnston & Clifford (19954) investigated
contrast-modulated sine waves using a computational
model in which multiple gradient measures are combined
in order to arrive at local velocity estimates. They found a

some second-order motion
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close match between psychophysical measures of envelope
velocity and the velocity derived from the model output.
Interestingly, the model correctly predicted the non-
veridical velocity perceived when subjects viewed a trans-
lating contrast modulation of a translating sinusoidal
carrier.

In the gradient approach upon which our analysis is
based, velocity is extracted by taking the ratio of the
temporal and spatial derivatives. This is, of course, a
nonlinear operation. Nonlinear operations are employed
in all major approaches to low-level motion perception
(Reichardt 1961; Van Santen & Sperling 1984, 1985;
Adelson & Bergen 1985, 1986; Johnston et al. 19924). These
nonlinearities form an integral part of the various motion
extraction algorithms. The crucial point here, at least in
terms of gradient-based approaches, is that those nonlinea-
rities that are an intrinsic part of the motion algorithm
may be sufficient for extracting texture-defined motion.

The analysis that we have described should not be
taken as a biological model of motion processing. We
simply identify the information that is available from
first-order image derivatives. Computational approaches
that use this information may potentially recover the
direction of motion or velocity from some texture—motion
stimuli. It is likely that any model that realistically
attempts to account for the biological computation of
motion would include additional measures or calculations
to those described here (Adelson & Bergen 1986; Johnston
el al. 1992, 1999b; Johnston & Clifford 1995b; Benton et
al. 2000). It is not necessarily the case that any model
that uses these measures will return a veridical envelope
velocity (Johnston & Clifford 1995a). Whilst our analysis
of local first-order gradients does show that velocity can
be recovered in some texture—motion stimuli, we only
find the correct direction but not the correct speed with
contrast modulations of dynamic noise. It may well be
the case that we have simply not identified the correct
measures needed for extracting velocity in stimuli of this
type. In addition, it is possible that some portion of the
perception of texture-defined motion is accounted for by
a high-level feature tracking mechanism (Seiffert &
Cavanagh 1998, 1999; Derrington & Ukkonen 1999;
Ukkonen & Derrington 2000).

When all Fourier components of a pattern travel at the
same velocity, all spatial gradient/temporal gradient
combinations must fall on a single line through the origin
of the gradient plot. In this case, the correct extraction of
stimulus direction and/or motion can potentially result
from a measure taken from any spatio-temporal location
within the image. In the case of our texture-defined
motion sequences, it is clear that there is a large range of
gradient-based velocities present in the image and that
these may signal motion of various speeds and in opposing
directions. If the perception of texture-defined motion is
based upon these local luminance measures then mechan-
isms capable of resolving complex motion fields may well
play a part in the detection of texture—motion.

Plant & Nakayama (1993) and Plant et al. (1993)
described results across three patients with unilateral
lesions of the extrastriate cortex. Their subjects showed a
deficit for detection of the direction of motion with
texture—motion stimuli. Damage to extrastriate area M'T
is believed to cause impaired performance on luminance—
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motion stimuli with noisy velocity fields (Baker et al.
1991). As we have shown, in our gradient-based analysis
the local velocities describing texture—motion are accom-
panied by many other local velocities. The problem of
extracting the dominant texture—motion is akin to that of
extracting the dominant luminance—motion from a noisy
velocity field. One might therefore expect that damage to
arca MT resulting in performance deficits for noisy
luminance-defined motion should also produce deficits in
direction discrimination for texture-defined motion.

The three patients with extrastriate damage described
by Plant & Nakayama (1993) and Plant ef al. (1993) also
showed deficits in velocity discrimination with luminance-
defined motion stimuli. It has been proposed that extra-
striate area MT plays a part in velocity coding (Heeger
et al. 1996; Simoncelli & Heeger 1998). Given that Plant
& Nakayama (1993) and Plant et al. (1993) proposed that
the lesions of their subjects may include human MT, a
deficit in velocity discrimination might well be expected.
We cannot yet tell whether damage to the same
mechanism is responsible for both the direction discrim-
ination deficit with texture—motion and the velocity dis-
crimination deficit with luminance—motion. It i1s possible
that the resolution of complex velocity fields and the
extraction of stimulus velocity both require similar
integrative processes.

The notion that both luminance- and texture-defined
motion are both processed by the same mechanisms
clearly sits well with those studies that have obtained no
strong evidence for a difference in the locality of cortical
processing between the two types of stimulus (Victor &
Conte 1992; Patzwahl et al. 1994; Greenlee & Smith 1997,
Braun et al. 1998; Smith et al. 1998; Somers et al. 1998,
1999). The pattern of results seen in two patients studied
by Vaina & Cowey (1996) and Vaina et al. (1998, 1999) is
however somewhat problematic for our analysis. Patient
F. D. showed a deficit in texture—direction discrimination
whilst showing no luminance—motion deficits. Patient
R. A. showed a deficit with luminance-defined motion
but not with texture-defined motion. These findings have
been taken as evidence for a double dissociation between
luminance—motion and texture—motion processing. The
fact that a large number of other studies using a variety of
techniques have failed to locate different processing
regions for luminance- and texture-defined motion
should be some cause for concern. There is a clear differ-
ence in the types of stimuli employed by Vaina & Cowey
(1996) and Vaina et al. (1998, 1999) and those employed
by other researchers. The vast majority of studies have
used simple texture—motion sequences, such as beat
patterns and sinusoidal contrast modulations. Vaina &
Cowey (1996) and Vaina et al. (1998, 1999) employed a
rather complex set of luminance—motion and texture—
motion sequences, many of which either contained a
considerable dynamic noise content or required some
integrative process after low-level motion extraction (i.e.
they are global motion stimuli). A better test would be to
use simple stimuli where there can be less chance of inter-
action between complex stimulus attributes and the type
of motion stimulus. This might allow us to resolve the
discrepancies that exist between the data from Vaina &
Cowey (1996) and Vaina et al. (1998, 1999) and other
researchers in the field.
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Our approach offers a theoretical alternative to the
standard computational approach to the detection of
luminance-defined motion in which the signal is subject
to some nonlinearity prior to motion analysis. It offers an
account in which the detection of luminance-defined
motion can occur simply as a by-product of the normal
process of motion analysis. Our suggestion that some
texture-defined motion can be detected through the
operation of luminance-based mechanisms should not be
taken to mean that no additional motion processes
operate. There is good evidence for high-level feature
tracking in human motion perception (Cavanagh 1992;
Lu & Sperling 1995), and such a process could potentially
play a part in the perception of texture-defined motion.
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