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Figure S1. Flowchart depicting several common data tasks. This flowchart is subjective and not exhaustive.  
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Figure S2. Flowcharts depicting samples sizes before and after filter and ICD-to-phecode mapping in AOU (panel A), MGI 
(panel B), and UKB (panel C). 
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Table S1. Phenotypes defined in paper and their qualifying phecode definitions 
Variable Phecode Description 
Anxiety MB_288 Anxiety and anxiety disorders 
Cancer CA_100 Malignant neoplasm of the head and neck 

CA_100.1 Malignant neoplasm of the oral cavity 
CA_100.12 Malignant neoplasm of the tongue 
CA_100.13 Malignant neoplasm of the gums 
CA_100.14 Malignant neoplasm of the floor of mouth 
CA_100.15 Malignant neoplasm of the palate 
CA_100.2 Malignant neoplasm of the oropharynx 
CA_100.3 Malignant neoplasm of the nasopharynx 
CA_100.4 Malignant neoplasm of the hypopharynx 
CA_100.5 Malignant neoplasm of nasal cavities, middle ear, and accessory 

sinuses 
CA_100.6 Malignant neoplasm of the larynx 
CA_100.7 Malignant neoplasm of the pharynx 
CA_100.8 Malignant neoplasm of the lip 
CA_100.9 Malignant neoplasm of the salivary glands 
CA_101 Malignant neoplasm of the digestive organs 
CA_101.1 Malignant neoplasm of the esophagus 
CA_101.2 Malignant neoplasm of stomach 
CA_101.21 Malignant neoplasm of cardia 
CA_101.3 Malignant neoplasm of the small intestine 
CA_101.4 Malignant neoplasm of the lower GI tract 
CA_101.41 Colorectal cancer 
CA_101.411 Malignant neoplasm of colon 
CA_101.412 Malignant neoplasm of appendix 
CA_101.42 Malignant neoplasm of anus 
CA_101.6 Malignant neoplasm of the liver and intrahepatic bile ducts 
CA_101.61 Malignant neoplasm of the liver 
CA_101.62 Malignant neoplasm of the intrahepatic bile ducts 
CA_101.7 Malignant neoplasm of the gallbladder and extrahepatic bile ducts 
CA_101.71 Malignant neoplasm of the gallbladder 
CA_101.8 Malignant neoplasm of the pancreas 
CA_102 Malignant neoplasm of the thoracic and respiratory organs 
CA_102.1 Malignant neoplasm of the of bronchus and lung 
CA_102.3 Malignant neoplasm of the trachea 
CA_102.5 Malignant neoplasm of the heart, mediastinum, thymus, and pleura 
CA_102.51 Malignant neoplasm of the heart 
CA_102.52 Malignant neoplasm of the mediastinum 
CA_102.53 Malignant neoplasm of the of pleura 
CA_102.54 Malignant neoplasm of the thymus 
CA_103 Malignant neoplasm of the skin 
CA_103.1 Melanomas of skin 
CA_103.2 Keratinocyte carcinoma 
CA_103.21 Basal cell carcinoma 
CA_103.22 Squamous cell carcinoma of the skin 
CA_103.3 Carcinoma in situ of skin 
CA_104 Malignant sarcoma-related cancers 
CA_104.1 Malignant neoplam of the bone and/or cartilage 
CA_104.2 Malignant neoplasm of retroperitoneum and peritoneum 
CA_104.3 Malignant neoplasm of connective and soft tissue 
CA_104.4 Malignant neoplasm of peripheral nerves* 
CA_104.5 Gastrointestinal stromal tumor* 
CA_104.6 Kaposi's sarcoma 
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Table S1. Phenotypes defined in paper and their qualifying phecode definitions 
Variable Phecode Description 

CA_105 Malignant neoplasm of the breast 
CA_105.1 Malignant neoplasm of the breast, female 
CA_105.2 Malignant neoplasm of the breast, male 
CA_106 Gynecological malignant neoplasms 
CA_106.1 Malignant neoplasm of external female genital organs and cervix 
CA_106.11 Malignant neoplasm of the vulva 
CA_106.12 Malignant neoplasm of the vagina 
CA_106.13 Malignant neoplasm of the cervix 
CA_106.2 Malignant neoplasm of the uterus 
CA_106.21 Malignant neoplasm of endometrium 
CA_106.3 Malignant neoplasm of the ovary 
CA_106.4 Malignant neoplasm of the fallopian tube and uterine adnexa 
CA_106.6 Malignant neoplasm of the placenta 
CA_107 Malignant neoplasm of male genitalia 
CA_107.1 Malignant neoplasm of the penis 
CA_107.2 Malignant neoplasm of the prostate 
CA_107.3 Malignant neoplasm of the testis 
CA_107.4 Malignant neoplasm of epididymis 
CA_107.5 Malignant neoplasm of spermatic cord 
CA_107.6 Malignant neoplasm of the scrotum 
CA_108 Malignant neoplasm of the urinary tract 
CA_108.4 Malignant neoplasm of the kidney 
CA_108.41 Malignant neoplasm of kidney, except pelvis 
CA_108.42 Malignant neoplasm of renal pelvis 
CA_108.5 Malignant neoplasm of the bladder 
CA_108.6 Malignant neoplasm of urethra 
CA_108.7 Malignant neoplasm of ureter 
CA_109 Malignant neoplasm of the eye, brain and other parts of central 

nervous system 
CA_109.1 Malignant neoplasm of eye 
CA_109.11 Malignant neoplasm of orbit 
CA_109.12 Malignant neoplasm of lacrimal gland and duct 
CA_109.13 Malignant neoplasm of conjunctiva 
CA_109.14 Malignant neoplasm of cornea 
CA_109.15 Malignant neoplasm of retina 
CA_109.16 Malignant neoplasm of choroid 
CA_109.2 Malignant neoplasm of meninges 
CA_109.3 Malignant neoplasm of brain 
CA_109.4 Malignant neoplasm of spinal cord 
CA_109.5 Malignant neoplasm of cranial nerve 
CA_110 Malignant neoplasm of the endocrine glands 
CA_110.1 Malignant neoplasm of the thyroid 
CA_110.3 Malignant neoplasm of the parathyroid gland 
CA_110.4 Malignant neoplasm of the pituitary gland and craniopharyngeal duct 
CA_110.5 Malignant neoplasm of the pineal gland 
CA_112 Malignant neoplasm of other and ill-defined sites 
CA_112.1 Mesothelioma* 
CA_114 Neuroendocrine tumors 
CA_114.1 Malignant neuroendocrine tumors 
CA_114.11 Exocrine pancreatic cancer 
CA_114.12 Merkel cell carcinoma 
CA_114.2 Benign neuroendocrine tumors 
CA_114.4 Carcinoid tumors 
CA_114.41 Intestinal carcinoid 
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Table S1. Phenotypes defined in paper and their qualifying phecode definitions 
Variable Phecode Description 

CA_114.42 Carcinoid tumor of the bronchus and lung 
CA_114.43 Carcinoid tumor of the thymus 
CA_114.44 Carcinoid tumor of the stomach 
CA_114.45 Carcinoid tumor of the kidney 
CA_114.5 Paraganglioma 
CA_114.6 Pheochromocytoma 
CA_116 Secondary malignant neoplasm 
CA_120 Hemo onc - by cell of origin 
CA_120.1 Myeloid 
CA_120.11 Plasma cell 
CA_120.12 Monocyte 
CA_120.13 Erythroid 
CA_120.14 Megakaryoblast 
CA_120.15 Mast cell 
CA_120.2 Lymphoid 
CA_120.21 Mature B-cell 
CA_120.22 Mature T-Cell 
CA_120.3 Histocytoces 
CA_121 Leukemia 
CA_121.1 Acute leukemia 
CA_121.11 Acute lymphoid leukemia 
CA_121.12 Acute myeloid leukemia 
CA_121.2 Chronic leukemia 
CA_121.21 Chronic lymphoid leukemia 
CA_121.22 Chronic myloid leukemia 
CA_121.23 Chronic myelomonocytic (monocytic) leukemia 
CA_122 Lymphoma 
CA_122.1 Hodgkin lymphoma 
CA_122.11 Nodular sclerosis Hodgkin lymphoma 
CA_122.2 Non-Hodgkin lymphoma 
CA_122.21 Follicular lymphoma 
CA_122.22 Diffuse large B-cell lymphoma* 
CA_122.23 Burkitt lymphoma 
CA_122.24 T-cell lymphoma 
CA_122.25 Anaplastic large cell lymphoma 
CA_122.26 Extranodal NK/T-cell lymphoma, nasal type* 
CA_123 Multiple myeloma and malignant plasma cell neoplasms 
CA_123.1 Multiple myeloma 
CA_124 Myeloproliferative disorder 
CA_124.3 Polycythemia vera 
CA_124.5 Essential thrombocythemia 
CA_124.6 Myelodysplastic syndrome 
CA_124.7 Chronic myeloproliferative disease* 
CA_124.8 Myelofibrosis 
CA_125 Other malignant neoplasms of lymphoid, hematopoietic and related 

tissue 
CA_128 Estrogen receptor status 
CA_128.1 Estrogen receptor postitive status [ER+] 
CA_128.2 Estrogen receptor negative status [ER-] 
CA_130 Cancer (solid tumor, excluding BCC) 
CA_132 Sequelae of cancer 

Coronary artery 
disease 

CV_404.2 Coronary atherosclerosis [Atherosclerotic heart disease] 

Depression MB_286.2 Major depressive disorder 
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Table S1. Phenotypes defined in paper and their qualifying phecode definitions 
Variable Phecode Description 
Diabetes EM_202 Diabetes mellitus 
Visit https://phewascatalog.org (phecodeX) and https://github.com/PheWAS/PhecodeX 
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Table S2. Definition of variables by cohort used throughout paper 
  AOU MGI UKB NHIS (2019)* 
Age Age at last diagnosis Age at last 

diagnosis 
Age at consent: date of 

consent (field ID 200) minus 
date of birth (field IDs 34, 52) 

Age at screening 
(AGEP_A) 

Sex Self-reported sex at birth (field 
name: sex_at_birth_concept_id) 

Self-report 
EHR 

Acquired by central registry at 
recruitment, may be updated 

by individual (field ID 31) 

SEX_A 

Race/ethnicity Self-reported race ethnicity (field 
names: 

race_source_concept_id, 
ethnicity_source_concept_id) 

Self-report 
EHR 

Self-report survey (field ID 
21000) 

HISPALLP_A 

BMI Median of EHR values Median of 
EHR values 

Median of assessed values 
(field ID 21001) 

BMICAT_A  
(HEIGHTTC_A, 

WEIGHTLBTC_A) 
Smoking status Self-report (concept IDs: 

1585857, 1585860) 
Self-report 

EHR 
Survey (field ID 20116) SMKCIGST_A 

Anxiety Phecode MB_288: Anxiety and anxiety disorders GADCAT_A 
Cancer See Table S1 CANEV_A 
Coronary artery 
disease 

Phecode CV_404.2: Coronary atherosclerosis [Atherosclerotic heart disease] CHDEV_A 

Depression Phecode MB_286.2: Major depressive disorder PHQCAT_A 
Diabetes Phecode EM_202: Diabetes mellitus DIBEV_A 

* visit https://www.cdc.gov/nchs/nhis/2019nhis.htm for more information 

 

https://www.cdc.gov/nchs/nhis/2019nhis.htm
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Supplementary Methods 
 
Inverse probability weighting 

In MGI, we estimated the first term, 𝑃(𝑆!"#!$%&' = 1|𝑿), by fitting a simplex 
regression model for the known design probabilities using NHIS data. We estimated the 
numerator of the second term, 𝑃(𝑆 = 1|𝑿, 𝑆&'' = 1), using a logistic regression model. 
We considered the set of selection factors, 𝑿: age (≥ 50 indicator), female sex, BMI 
(categorical), non-Hispanic White race/ethnicity, and EHR-derived binary indicators for 
anxiety, depression, diabetes, cancer, and hypertension (variable definitions in Table 
S2). Cancer was not included directly in the estimation procedure above because the 
small prevalence of cancer in NHIS led to unstable model fitting.1 Instead, a cancer 
factor, 𝛾(&%(!$, defined as )(+,-./0|𝑿,456)

)(+,-./0|𝑿)	
, was estimated by fitting logistic regression 

models with the same 𝑿. The probabilities, 𝜓, were multiplied by this factor (i.e., 
𝜓𝛾(&%(!$). 

In AOU, we flexibly selected 𝑿 by splitting the data in half and fitting a lasso-
penalized logistic regression model on 𝑿 and all possible pairwise interactions using the 
glmnet R package (version 4.1-8). We considered a set of selection factors, 𝑿: age ((≥ 
50 indicator), female sex, non-Hispanic White race/ethnicity, non-heterosexual 
orientation (yes/no), health insurance coverage status (yes/no), annual 
household/family income (≥ $75,000), educational attainment (at least high school 
graduate or equivalent), and region of residence (indicators for West, South, and 
Northeast) (variable definitions in Table S2). Using 10-fold cross-validation, we selected 
the largest 𝜆 such that the error is within 1 standard error of the minimum to result in a 
parsimonious model. Of the 55 possible main effect and interaction terms, 39 were 
selected by this model (Table S3) and (along with the main effect for West region) were 
then used as the final set of 𝑿 to estimate IP weights in the other half of the data as 
described for MGI above. The indicator variables for income, health insurance status, 
and non-Hispanic White race/ethnicity were the three most important variables (Figure 
S2). In both cohorts, the resulting probabilities were winsorized at the 2.5th and 97.5th 
percentiles. 

We note that augmented inverse probability weighting (AIPW) is a doubly robust 
weighting method that may be of interest to the reader; see 2–4. 
 
Poststratification weighting 

In AOU, we considered the set of 𝑿: age (≥ 50 indicator), female sex, non-
Hispanic White race/ethnicity, sexual orientation (non-heterosexual indicator), health 
insurance coverage status (yes/no), annual household/family income (≥ $75,000 
indicator), and region of residence (categorical). In MGI we considered the set of 
selection factors, 𝑿: age (≥ 50 indicator), female sex, non-Hispanic White race/ethnicity, 
BMI (categorical), smoking status (ever/never), and EHR-derived history of anxiety, 
cancer, depression, diabetes, and hypertension.  

We note that other there are other weighting methods relying only on summary 
statistics like calibration, raking, and pseudo likelihood that may be of interest to the 
reader; see 5–7. 
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Correlations 
We also explored the correlation structure of unweighted and weighted phenomes 
through partial correlations. Unweighted partial correlations were calculated between 
pairs of traits, 𝑋 and 𝑌, adjusted for age and sex, using the ppcor R package (version 
1.1). 8 Weighted partial correlations were approximated as the coefficient 𝛽9 from the 
weighted multiple linear regression model 𝑌 = 𝛽: + 𝛽9𝑋 + 𝜷𝒁𝒁, where 𝑋, 𝑌, and 𝒁 were 
mean standardized and 𝒁 were age and female sex. For 𝑋, 𝑌 pairs where one trait was 
sex-specific, the other trait was limited to individuals of that sex, and sex was not 
included as a covariate. Network graphs of correlations with absolute values greater 
than 0.3 were constructed to visually inspect the structure. All traits were treated as 
binary based on the presence of a single phecode in the EHR. (See Section S1 for 
results). 
 
PheWAS 
The data were prepared as described in Salvatore and colleagues 9 at the one-year 
prior to colorectal cancer diagnosis threshold. For sex-specific phecodes, those with 
discordant sex were treated as missing. (Of note, some ICD codes do not map to 
phecodes). Logistic regression models were fit as follows: 
 
𝑙𝑜𝑔𝑖𝑡9𝑃(CA6:6.=6 = 1|𝑘, 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆𝒔)F = 𝛽: + 𝛽>𝑘 + 𝜷𝐜𝐨𝐯𝐚𝐫𝐢𝐚𝐭𝐞𝐬𝐜𝐨𝐯𝐚𝐫𝐢𝐚𝐭𝐞𝐬 Eq. (S1) 

where CA_101.41 (the phecode for colorectal cancer) is an indicator for the outcome, 𝑘 
represents the exposure phecode 𝑘 (indicator), and covariates are age at one-year prior 
to colorectal cancer diagnosis (continuous), female sex (indicator), and length of EHR 
follow-up (continuous). 
 
Phenomewide significant hits were identified using a conservative multiple testing 
corrected threshold of 0.05 divided by the number of total tests. Weighted logistic 
regression models were fit using svyglm from the survey R package.10 In cases where a 
given exposure phecode did not have both (1) at least 20 occurrences and (2) at least 
10 individuals with the exposure and colorectal cancer, weighted Firth bias-corrected 
logistic regression (logistf R package version 1.26.0) was used to address concerns 
about separation. 
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Figure S3. A schematic representation of the targeted and untargeted association 
analyses pipelines carried out in the manuscript. 
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Figure S4. Principal components (PC) analysis in All of Us (AOU), the Michigan 
Genomics Initiative (MGI), and the UK Biobank (UKB). Panel A shows all principal 
components explain at least 1% of variation. Panel B shows the cumulative proportion 
of variance explained (VE) and reports variance explanation thresholds. The vertical 
dashed lines represent the number of PCs that explain at least 95% of total variance. 
The vertical dotted lines represent the number of PCs that explain at least 99% of the 
total variance. 
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Section S1. Unweighted and weighted partial correlations 
 
 Network diagrams depicting unweighted and weighted partial correlation 
coefficients with absolute values greater than 0.3 (an arbitrary threshold) in AOU is 
shown in Figure S5 (MGI and UKB shown in Figures S6 and S7). We can see clusters 
of correlated traits within endocrine/metabolic and musculoskeletal categories, as well 
as a cluster including both digestive and neurological traits. A small reduction in 
correlations with absolute values greater than 0.3 were observed after weighting (2,533 
vs. 2,474). Interestingly, we see strong correlations with neoplasm traits in MGI (Figure 
S6), which largely disappear after weighting. There are distinct clusters within 
musculoskeletal traits and across circulatory system and endocrine/metabolic traits in 
UKB, which remain after weighting. The number of strong (absolute value > 0.3) 
correlations in UKB slightly increases after weighting (1,674 vs 1,757). Figures S8 and 
S9 depict the distribution of the unweighted and weighted partial correlation coefficients 
in each cohort, respectively. Generally, correlations tend to be highest in MGI followed 
by AOU and then UKB. Comparing the two US-based cohorts, AOU (Figure S5) and 
MGI (Figure S6), we see that, while the prevalences of traits involved in these networks 
are comparable, the network in MGI is denser compared to AOU.  
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Figure S5. Unweighted (panel A) and inverse probability-weighted (panel B) network 
plots of the partial correlation structure of medical phenomes in All of Us. Correlation 
coefficients are adjusted for age and sex. Only correlations with an absolute value 
greater than or equal to 0.3 are shown. The size of the nodes corresponds to the 
prevalence of the trait in its cohort and the color corresponds to the phecode category. 
Corresponding figures for MGI and UKB are in Figures S6 and S7, respectively. 
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Figure S6. Unweighted (panel A) and inverse probability-weighted (panel B) network 
plots of the partial correlation structure of medical phenomes in MGI. Correlation 
coefficients are adjusted for age and sex. Only correlations with an absolute value 
greater than or equal to 0.3 are shown. The size of the nodes corresponds to the 
prevalence of the trait in its cohort and the color corresponds to the phecode category. 
Corresponding figures for AOU and UKB are in Figures S5 and S7, respectively. 
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Figure S7. Unweighted (panel A) and inverse probability-weighted (panel B) network 
plots of the partial correlation structure of medical phenomes in UKB. Correlation 
coefficients are adjusted for age and sex. Only correlations with an absolute value 
greater than or equal to 0.3 are shown. The size of the nodes corresponds to the 
prevalence of the trait in its cohort and the color corresponds to the phecode category. 
Corresponding figures for AOU and MGI are in Figures S5 and S6, respectively. 
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Figure S8. Distribution of unweighted partial correlations across medical phenomes. 
Partial correlations were adjusted for age and, if both codes in the pair applied to both 
sexes, sex. 
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Figure S9. Distribution of weighted partial correlations across medical phenomes. 
Partial correlations were adjusted for age and, if both codes in the pair applied to both 
sexes, sex. IP-based weights were used for AOU and MGI and IP-based weighted 
developed by van Alten and colleagues11 were used for UKB. 
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Figure S10. Venn diagrams comparing the overlap in phenome-wide significant hits 
from unweighted and weighted colorectal cancer PheWAS in AOU, MGI, and UKB. 
  

Unweighted

IP-weighted

PS-weighted

15
(56%)

0
(0%)

2
(7%)

0
(0%)

5
(19%)

0
(0%)5

(19%)

A. AOU

AOU

MGI

UKB

14
(19%)

1
(1%)

48
(64%)

0
(0%)

4
(5%)

1
(1%)7

(9%)

D. Unweighted

Unweighted

IP-weighted

PS-weighted

6
(13%)

10
(22%)

14
(30%)

0
(0%)

0
(0%)

13
(28%)3

(7%)

B. MGI

AOU

MGI

UKB

0
(0%)

23
(40%)

29
(50%)

1
(2%)

3
(5%)

1
(2%)1

(2%)

E. IP-weighted

Unweighted IP-weighted

30
(47%)

4
(6%)

30
(47%)

C. UKB

AOU

MGI

UKB

3
(5%)

25
(38%)

29
(44%)

4
(6%)

4
(6%)

0
(0%)1

(2%)

F. Poststratification-weighted

Overlap of significant hits from colorectal cancer PheWAS at t = 1



 20 

 
Figure S11. Venn diagrams comparing the overlap in phenome-wide significant hits 
from meta-analysis PheWAS. 
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Figure S12. Manhattan plots summarizing poststratification-weight (panels A-D) phenomewide 
association studies for colorectal cancer in All of Us and the Michigan Genomics Initiative and the inverse 
probability weighted UK Biobank using 1:2 case:non-case matched data restricted to one year prior to 
initial diagnosis along with the corresponding meta-analsysis. The dashed red line represents the 
Bonferroni-corrected p-value threshold (-log10(0.05/number of traits)). The five traits with the smallest p-
values are labeled. The upward (downward) orientation of the triangle indicates a positive (negative) 
association. Plots corresponding to unweighted and IP-weighted PheWAS are presented in Figure 4. 
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Table S3. Female log odds ratio estimate (95% confidence interval) for colorectal cancer (phecode 
CA_101.41). 
Weighting Covariates AOU MGI UKB META 

Unweighted 
None -0.287 

(-0.354, -0.220) 
-0.303 

(-0.387, -0.219) 
-0.450 

(-0.492, -0.409) 
-0.390 

(-0.423, -0.358) 

Age -0.098 
(-0.164, -0.033) 

-0.164 
(-0.247, -0.082) 

-0.389 
(-0.431, -0.348) 

-0.284 
(-0.316, -0.252) 

IP-weighted 
None -0.037 

(-0.188,  0.113) 
-0.266 

(-0.467, -0.065) 
-0.443 

(-0.506, -0.380) 
-0.373 

(-0.429, -0.317) 

Age -0.047 
(-0.198,  0.104) 

-0.217 
(-0.419, -0.014) 

-0.398 
(-0.461, -0.334) 

-0.335 
(-0.392, -0.279) 

PS-weighted 
None -0.135 

(-0.321,  0.052) 
-0.329 

(-0.615, -0.044) 
-0.443 

(-0.506, -0.380) 
-0.408 

(-0.466, -0.349) 

Age -0.123 
(-0.311,  0.064) 

-0.342 
(-0.629, -0.056) 

-0.398 
(-0.461, -0.334) 

-0.368 
(-0.427, -0.310) 

* Meta-analysis results include IP-weighted estimate from UKB 
Abbrevs: AOU, All of Us; IP, inverse probability; META, meta-analysis; MGI, Michigan Genomics 
Initiative; PS, poststratification; UKB, UK Biobank 
Bolded point estimates are statistically significant at the 95% confidence level  
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Figure S13. Unadjusted and age-adjusted female log-odds ratio estimate (95% confidence interval) for 
colorectal cancer (phecode CA_101.41) by race/ethnicity and cohort. Point estimate shapes correspond 
to the weighting method (circle, unweighted; square, IP-weighted; triangle, PS-weighted). Line colors 
correspond to the cohort (orange, AOU; blue, MGI; green, UKB). Shaded region represents range of age-
adjusted log(incidence rate ratio [IRR]) estimates from 2018-2020 US SEER data and an age-
standardized log(IRR) estimate from White et al. 2018 from the UK.12 
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Section S2. Comments on methodological considerations in EHR-based data 
analysis  
 

Weighting-based analytic approaches present a relatively simple way for 
researchers to improve the generalizability of their results and help reduce (not remove) 
selection bias. IP weights are preferred to PS weights though they rely on the 
assumption that the weighting model is correctly specified. Regression-based weights 
can be made more flexible through the use of indicator variables (as in our AOU IP-
weights and in van Alten and colleagues13), though non-parametric methods like 
random forest can be used. When individual-level data from the target population is not 
available, PS weights can be estimated using summary-level strata probabilities 
(provided these probabilities are conditionally independent). When selection weights are 
unavailable, methods like covariate or propensity score adjustment, which are simple to 
implement, can be considered to address in some situations where selection bias is a 
concern. 
 

Beyond introductory papers,14–19 substantial work has focused specifically on 
traditional methodological concerns including confounding,20,21 misclassification,7,22,23 
missing data,24–30 and selection bias and cohort representativeness1,6,7,31–34 related to 
EHR-based cohorts. For example, traits defined using the phecode framework have 
demonstrated reduced misclassification compared to ICD codes.35 One method to 
further reduce the impact of misclassification, described by Hubbard and colleagues, 
relies on EHR-derived probabilistic phenotyping.22 Others have described methods 
using manual chart review on a subset of data to improve EHR-derived 
phenotypes.23,36,37 Beesley and Mukherjee developed three novel likelihood-based bias 
correction strategies to address outcome misclassification of EHR-derived disease 
status.7 Teixeira and colleagues explored incorporation of unstructured data like doctors 
notes, which improved the identification of hypertensive individuals compared to using 
ICD codes and blood pressure reading cutoffs alone.38 Missing data is another issue 
that has received attention to avoid loss of power and inducing selection bias (via 
complete case analyses) and aid in meeting assumptions necessary for multiple 
imputation.25 One avenue is using non-missing genotype data available in EHR-linked 
biobanks to inform imputation, which demonstrated improvements in imputation of 
cardiovascular related measurements.39 This idea could be extended using exposure 
polygenic risk scores40 to inform imputation of missing exposure data.  

 
One consideration broadly applicable in health research but is particularly acute 

in EHR-based analyses is target validity. Westreich and colleagues have defined this as 
a joint measure of internal and external validity of an effect estimate with respect to a 
specific target population.41 Historically, internal validity, the notion that an estimate 
reflects the true underlying parameter in the study population, has taken precedence 
over external validity, that the parameter in the study population is representative of the 
true parameter in the target population. However, because of observation mechanisms 
and recruitment strategies into EHR-linked biobanks, the target population is almost 
certainly never (1) exactly the study sample or (2) the population of which the study 
sample is a simple random sample.41 EHR researchers should think critically regarding 
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who the results are intended for or representative of before beginning an analysis and 
make their target populations explicit in their work. We believe it is critical for 
researchers to consider weighted approaches that account for both the observation and 
recruitment mechanisms in each cohort (including potential subcohorts) and differences 
in the distribution of key characteristics between the analytic cohort and the target 
population. 
 

We want to highlight some considerations that are hallmarks of EHR analysis. 
One such consideration is informed presence, defined by Goldstein and colleagues as 
“the notion that inclusion in an EHR is not random but rather indicates that the subject is 
ill, making people in EHRs systematically different from those not in EHRs.”42 This 
resulting discrepancy harms generalizability to general populations who tend to be 
healthier than those in the EHR data sample and results in bias. This concept extends 
to individuals within the EHR – those that are sicker tend to have more encounters and 
records than those who are healthier – and, in some cases, to records in the EHR (e.g., 
lab results). This phenomenon is illustrated by Agniel and colleagues, which shows that 
the presence and timing of laboratory results was more informative than the value of the 
laboratory results themselves. 43 Interested readers can learn more about informed 
presence elsewhere. 14,42,44–46 Including EHR metadata, like length of follow-up, number 
of encounters, density of laboratory measurements, and visit type (e.g., outpatient vs 
inpatient vs emergency), and careful selection or matching of controls in analyses are 
recommended to improve exchangeability and attempt to make EHR observation 
mechanisms comparable. 
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Section S3. Investigation into infectious diseases peak in AOU PheWAS using 
phecode 1.2 mapping tables  
 
An earlier version of the manuscript was performed using the phecode 1.2 mapping 
tables instead of phecode X. The Manhattan plot representing the colorectal cancer 
PheWAS in AOU in Figure S14A shosw a peak in the infectious disease category. The 
top hit is Human immunodeficiency virus [HIV] disease, or phecode 071 in the phecode 
1.2 mapping tables. It is well established that there is no association between HIV 
status and colorectal cancer.47,48 We investigated the underlying ICD codes that are 
qualify as a colorectal cancer case. Our analyses in the manuscript use the phecode 
mapping table present in the PheWAS R package (version 1.2).49,50 We also show 
qualifying ICD codes for a different phecode mapping table (version X),51,52 which 
defines over 3,600 traits. The results of the differences in qualifying ICD codes, number 
of individuals with the ICD code, and the number (and percent) overlap with individuals 
who have HIV according to their version 1.2 defined phecode are summarized in Table 
S5. We see that there is significant overlap between individuals with ICD codes for anal 
Pap smears, inconclusive results and carcinoma in situ and HIV status. These codes 
are present in the version 1.2 mapping table, but not in the version X mapping table. 
Codes present in the version 1.2 definition also include malignant neoplasms of the 
anus, but not in the version X definition. And there is evidence that people living with 
HIV experience higher incidence of anal cancer.53 Because version X has more traits, 
there is greater separation between colorectal cancer and anal cancer. 
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Figure S14. Manhattan plots summarizing unweighted (panels A-C) phenomewide 
association studies for colorectal cancer in All of Us, the Michigan Genomics Initiative, 
and UK Biobank using 1:2 case:non-case matched data restricted to one year prior to 
initial diagnosis. Panel D shows the unweighted meta-analysis PheWAS, respectively. 
The dashed red line represents the Bonferroni-corrected p-value threshold (-
log10(0.05/number of traits)). The five traits with the smallest p-values are labeled. The 
upward (downward) orientation of the triangle indicates a positive (negative) 
association. 
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Table S5. Comparison between ICD codes by colorectal cancer phecode mapping table, count with ICD code, and overlap with individuals who have HIV phecode (sorted by proportion of overlap). 

   

Qualifying ICD codes for 
colorectal cancer phecode by 

mapping table version 
Number with 

qualifying ICD 
code 

Number with 
ICD codes and 
HIV phecode 

 
ICD Code ICD Version ICD Code Description Version 1.2 Version X Percent 

796.71 ICD9CM Papanicolaou smear of anus with atypical squamous cells of undetermined significance (ASC-US) 1 0 87 74 85.1 
796.74 ICD9CM Papanicolaou smear of anus with high grade squamous intraepithelial lesion (HGSIL) 1 0 29 23 79.3 
796.73 ICD9CM Papanicolaou smear of anus with low grade squamous intraepithelial lesion (LGSIL) 1 0 100 79 79 
230.6 ICD9CM Carcinoma in situ of anus, unspecified 1 0 70 53 75.7 

R85.613 ICD10CM High grade squamous intraepithelial lesion on cytologic smear of anus (HGSIL) 1 0 61 45 73.8 
R85.612 ICD10CM Low grade squamous intraepithelial lesion on cytologic smear of anus (LGSIL) 1 0 166 118 71.1 

796.7 ICD9CM Abnormal glandular Papanicolaou smear of anus 1 0 124 86 69.4 
R85.610 ICD10CM Atypical squamous cells of undetermined significance on cytologic smear of anus (ASC-US) 1 0 155 105 67.7 

230.5 ICD9CM Carcinoma in situ of anal canal 1 0 74 50 67.6 
R85.619 ICD10CM Unspecified abnormal cytological findings in specimens from anus 1 0 103 61 59.2 

D01.3 ICD10CM Carcinoma in situ of anus and anal canal 1 0 219 129 58.9 
796.72 ICD9CM Papanicolaou smear of anus with atypical squamous cells cannot exclude high grade squamous intraepithelial lesion (ASC-H) 1 0 15 8 53.3 

C7A.024 ICD10CM Malignant carcinoid tumor of the descending colon 1 0 2 1 50 
R85.611 ICD10CM Atypical squamous cells cannot exclude high grade squamous intraepithelial lesion on cytologic smear of anus (ASC-H) 1 0 29 14 48.3 

796.76 ICD9CM Papanicolaou smear of anus with cytologic evidence of malignancy 1 0 3 1 33.3 
154.3 ICD9CM Malignant neoplasm of anus, unspecified site 1 0 107 20 18.7 
C21.0 ICD10CM Malignant neoplasm of anus, unspecified 1 0 163 28 17.2 
209.1 ICD9CM Malignant carcinoid tumor of the large intestine, unspecified portion 1 0 7 1 14.3 
C21.1 ICD10CM Malignant neoplasm of anal canal 1 0 96 13 13.5 
D37.5 ICD10CM Neoplasm of uncertain behavior of rectum 0 1 16 2 12.5 
154.2 ICD9CM Malignant neoplasm of anal canal 1 0 56 6 10.7 
154.8 ICD9CM Malignant neoplasm of other sites of rectum, rectosigmoid junction, and anus 1 0 30 2 6.7 
C21.8 ICD10CM Malignant neoplasm of overlapping sites of rectum, anus and anal canal 1 0 45 3 6.7 
153.4 ICD9CM Malignant neoplasm of cecum 1 1 71 4 5.6 
154.1 ICD9CM Malignant neoplasm of rectum 1 1 204 11 5.4 
C18.8 ICD10CM Malignant neoplasm of overlapping sites of colon 1 1 45 2 4.4 
C18.4 ICD10CM Malignant neoplasm of transverse colon 1 1 69 3 4.3 

C20 ICD10CM Malignant neoplasm of rectum 1 1 362 15 4.1 
C18.5 ICD10CM Malignant neoplasm of splenic flexure 1 1 30 1 3.3 
153.6 ICD9CM Malignant neoplasm of ascending colon 1 1 125 4 3.2 
153.1 ICD9CM Malignant neoplasm of transverse colon 1 1 35 1 2.9 
D37.3 ICD10CM Neoplasm of uncertain behavior of appendix 0 1 37 1 2.7 
153.5 ICD9CM Malignant neoplasm of appendix vermiformis 1 1 42 1 2.4 

C19 ICD10CM Malignant neoplasm of rectosigmoid junction 1 1 302 7 2.3 
C18.3 ICD10CM Malignant neoplasm of hepatic flexure 1 1 47 1 2.1 
D37.4 ICD10CM Neoplasm of uncertain behavior of colon 0 1 48 1 2.1 
C18.9 ICD10CM Malignant neoplasm of colon, unspecified 1 1 979 18 1.8 
C18.2 ICD10CM Malignant neoplasm of ascending colon 1 1 238 4 1.7 
153.3 ICD9CM Malignant neoplasm of sigmoid colon 1 1 125 2 1.6 
153.9 ICD9CM Malignant neoplasm of colon, unspecified site 1 1 632 10 1.6 
153.8 ICD9CM Malignant neoplasm of other specified sites of large intestine 1 1 69 1 1.4 

154 ICD9CM Malignant neoplasm of rectosigmoid junction 1 1 167 2 1.2 
C18 ICD10CM Malignant neoplasm of colon 1 1 484 6 1.2 

C18.1 ICD10CM Malignant neoplasm of appendix 1 1 89 1 1.1 
C18.7 ICD10CM Malignant neoplasm of sigmoid colon 1 1 231 1 0.4 

153 ICD9CM Malignant neoplasm of hepatic flexure 1 1 40 0 0 
153.2 ICD9CM Malignant neoplasm of descending colon 1 1 37 0 0 
153.7 ICD9CM Malignant neoplasm of splenic flexure 1 1 13 0 0 

154 ICD9CM Malignant neoplasm of rectum rectosigmoid junction and anus 1 0 6 0 0 
159 ICD9CM Malignant neoplasm of intestinal tract, part unspecified 1 0 38 0 0 

209.1 ICD9CM Malignant carcinoid tumors of the appendix, large intestine, and rectum 1 0 0 0 0 
209.11 ICD9CM Malignant carcinoid tumor of the appendix 1 0 8 0 0 
209.12 ICD9CM Malignant carcinoid tumor of the cecum 1 0 5 0 0 
209.13 ICD9CM Malignant carcinoid tumor of the ascending colon 1 0 0 0 0 
209.14 ICD9CM Malignant carcinoid tumor of the transverse colon 1 0 0 0 0 
209.15 ICD9CM Malignant carcinoid tumor of the descending colon 1 0 1 0 0 
209.16 ICD9CM Malignant carcinoid tumor of the sigmoid colon 1 0 1 0 0 
209.17 ICD9CM Malignant carcinoid tumor of the rectum 1 0 5 0 0 
230.3 ICD9CM Carcinoma in situ of colon 1 1 71 0 0 
230.4 ICD9CM Carcinoma in situ of rectum 1 1 6 0 0 
796.7 ICD9CM Abnormal cytologic smear of anus and anal HPV 1 0 1 0 0 
C18.0 ICD10CM Malignant neoplasm of cecum 1 1 115 0 0 
C18.6 ICD10CM Malignant neoplasm of descending colon 1 1 79 0 0 

C21 ICD10CM Malignant neoplasm of anus and anal canal 1 0 0 0 0 
C21.2 ICD10CM Malignant neoplasm of cloacogenic zone 1 0 2 0 0 
C26.0 ICD10CM Malignant neoplasm of intestinal tract, part unspecified 1 0 16 0 0 

C7A.020 ICD10CM Malignant carcinoid tumor of the appendix 1 0 21 0 0 
C7A.021 ICD10CM Malignant carcinoid tumor of the cecum 1 0 6 0 0 
C7A.022 ICD10CM Malignant carcinoid tumor of the ascending colon 1 0 1 0 0 
C7A.023 ICD10CM Malignant carcinoid tumor of the transverse colon 1 0 1 0 0 
C7A.025 ICD10CM Malignant carcinoid tumor of the sigmoid colon 1 0 2 0 0 
C7A.026 ICD10CM Malignant carcinoid tumor of the rectum 1 0 16 0 0 
C7A.029 ICD10CM Malignant carcinoid tumor of the large intestine, unspecified portion 1 0 8 0 0 

D01.0 ICD10CM Carcinoma in situ of colon 1 1 38 0 0 
D01.1 ICD10CM Carcinoma in situ of rectosigmoid junction 1 1 0 0 0 
D01.2 ICD10CM Carcinoma in situ of rectum 1 1 6 0 0 

R85.614 ICD10CM Cytologic evidence of malignancy on smear of anus 1 0 0 0 0 
V10.05 ICD9CM Personal history of malignant neoplasm of large intestine 1 1 0 0 0 
V10.06 ICD9CM Personal history of malignant neoplasm of rectum, rectosigmoid junction, and anus 1 0 0 0 0 
Z85.02 ICD10CM Personal history of malignant neoplasm of stomach 1 0 0 0 0 
Z85.03 ICD10CM Personal history of malignant neoplasm of large intestine 1 1 0 0 0 

Z85.038 ICD10CM Personal history of other malignant neoplasm of large intestine 1 1 0 0 0 
Z85.048 ICD10CM Personal history of other malignant neoplasm of rectum, rectosigmoid junction, and anus 1 0 0 0 0 
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We also present the 2x2 tables and crude odds ratios between these two different 
definitions of colorectal cancer and HIV status in Table S6. The crude odds ratio in the 
time-restricted phenome (t = 1) is 10.29 using version 1.2 colorectal cancer mapping 
and 0.32 using version X mapping. 
 

Table S6. Colorectal cancer and HIV contingency 
table by phecode mapping version and crude odds 
ratio 
 Colorectal cancer 

 Version 1.2   Version X 
HIV 1 0   1 0 

1 478 108   60 526 
0 2611 6069   2305 6375 

      
Crude odds ratio 10.29   0.32 

 
 
Other hits in the infectious disease category like HIV infection, symptomatic (phecode 
071.1) and viral warts & HPV (phecode 078) share many of the same underlying ICD 
codes as with phecode 071, which implies similar overlap with colorectal cancer as 
defined by phecode mapping table version 1.2. 
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