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Wide-field Intensity Fluctuation
Imaging: supplemental document

This supplemental document details the theory of within-exposure modulation and particularly,
the interpretation of 2-pulse modulation from the statistics perspective of view. It also provides
supporting material on the impact of non-zero residual illumination between the 2 pulses and
that of pulse duration on the accuracy of estimating the relative and absolute values of g2(τ),
respectively, with the 2-pulse modulation method.

1. RELATING K2(T) AND g2(τ) IN ARBITRARY MODULATION

Define the AOM modulation function as m(t), the intact speckle signal as I(t), and the modulated
speckle signal as Im(t) such that

Im(t) = I(t)m(t) (S1)

Then the intensity of pixel i on the camera sensor within intensity-modulated exposure time T
would be

Si,T =
∫ T

0
Ii(t′)m(t′)dt′ (S2)

where Ii(t) is the intact speckle signal of pixel i and m(t) is the modulation function on the
illumination intensity.The second moment of modulated pixel intensity would be

⟨S2
T⟩ =

1
N

N

∑
i=1

(Si,T)
2 (S3)

where ⟨ ⟩ denotes averaging and N is the number of averaged pixels. The definition of intensity
autocorrelation function g2(τ) is given by

g2(t′ − t′′) =
⟨Ii(t′)Ii(t′′)⟩

⟨I⟩2 (S4)

where ⟨I⟩ is the average intensity of the intact speckle signal. Note that the autocorrelation
function is an even function.

Based on Eq. S1 to S4, we can derive the expression of the second moment of modulated pixel
intensity with respect to the intensity modulation function m(t) and the intensity autocorrelation
function g2(τ) of the intact signal as follows:

⟨S2
T⟩ = ⟨(Si,T)

2⟩
⟨ ⟩ denotes averaging over independent instances

= ⟨(
∫ T

0
Ii(t′)m(t′)dt′)2⟩

= ⟨(
∫ T

0
Ii(t′)m(t′)dt′)(

∫ T

0
Ii(t′′)m(t′′)dt′′)⟩

= ⟨
∫ T

0

∫ T

0
Ii(t′)Ii(t′′)m(t′)m(t′′)dt′dt′′⟩

Since m(t) is independent of i, we can write

=
∫ T

0

∫ T

0
⟨Ii(t′)Ii(t′′)⟩m(t′)m(t′′)dt′dt′′

Considering Eq. S4, we have

= ⟨I⟩2
∫ T

0

∫ T

0
g2(t′ − t′′)m(t′)m(t′′)dt′dt′′

Considering the symmetry of t′ and t′′ and that g2(τ) is an even function, we can write

= 2⟨I⟩2
∫ T

0

∫ t′

0
g2(t′ − t′′)m(t′)m(t′′)dt′′dt′

Let t′ − t′′ = τ, then t′′ = t′ − τ, dt′′ = −dτ



= 2⟨I⟩2
∫ T

0

∫ t′

0
g2(τ)m(t′)m(t′ − τ)dτdt′

By changing the order of the integral, we have

= 2⟨I⟩2
∫ T

0

∫ T

τ
g2(τ)m(t′)m(t′ − τ)dt′dτ

= 2⟨I⟩2
∫ T

0
g2(τ)(

∫ T

τ
m(t′)m(t′ − τ)dt′)dτ

Let t = t′ − τ, then t′ = t + τ, dt′ = dt

= 2⟨I⟩2
∫ T

0
g2(τ)(

∫ T−τ

0
m(t)m(t + τ)dt)dτ

Define

M(τ) =
∫ T−τ

0
m(t)m(t + τ)dτ (S5)

then

⟨S2
T⟩ = 2⟨I⟩2

∫ T

0
g2(τ)M(τ)dτ (S6)

Since

K2(T) =
Var (ST)

⟨ST⟩2 =
⟨S2

T⟩ − ⟨ST⟩2

⟨ST⟩2 (S7)

where ⟨ST⟩ is the mean pixel intensity of modulated speckle signal within exposure time T and
⟨ST⟩ = T⟨Im⟩ where ⟨Im⟩ is the mean intensity of the modulated speckle signal, we arrive at the
expression of speckle contrast of the within-exposure modulated speckle signal (Eq. S8).

K2 =
2⟨I⟩2

T2⟨Im⟩2

∫ T

0
g2(τ)M(τ)dτ − 1 (S8)

Notice that when the modulation function m(t) is a constant 1, we have M = T − τ and Eq. S8
reduces to the classic expression of speckle contrast that is commonly seen. In other words, the
classic expression of speckle contrast we use is a particular case of Eq. S8 when the illumination
intensity is held constant. Finally, we would like to introduce one important observation about
M(τ) (Lemma 1.1).

Lemma 1.1 (Integral property of M(τ)). : In case of a continuous-time signal I(t) which fluctuates
around the expectation value over time, i.e. ∀t > 0, E [I(t)] = ⟨I⟩, (in other words, if I(t) = ⟨I⟩+ δI(t)
where δI(t) is the fluctuation part, then E [δI(t)] = 0), and that ⟨Im⟩ is the expectation of the average
modulated signal Im(t) over the modulation period T, i.e. ⟨Im⟩ = E [ 1

T
∫ T

0 Im(t)dt], then the integral of

M(τ) satisfies
∫ T

0 M(τ)dτ = T2⟨Im⟩2

2⟨I⟩2 .

Proof. Because Im(t) = I(t)m(t) and I(t) = ⟨I⟩+ δI(t), we have

⟨Im⟩ = E [
1
T

∫ T

0
Im(t)dt]

= E [
1
T

∫ T

0
I(t)m(t)dt]

= E [
1
T

∫ T

0
(⟨I⟩+ δI(t))m(t)dt]

=
⟨I⟩
T

∫ T

0
m(t)dt + E [

1
T

∫ T

0
δI(t)m(t)dt]

(S9)

Consider one example of δI(t), i.e. δω I(t), ω ∈ Ω. If we define the probability density of δω I(t),
ω ∈ Ω as p(ω), then

E [
1
T

∫ T

0
δI(t)m(t)dt] =

∫
Ω

1
T

∫ T

0
δω I(t)m(t)p(ω)dtdω

=
1
T

∫ T

0
m(t)

∫
Ω

δω I(t)p(ω)dωdt

=
1
T

∫ T

0
m(t)E [δI(t)]dt

(S10)
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Since E [δI(t)] = 0, we have E [ 1
T
∫ T

0 δI(t)m(t)dt] = 0. Therefore, ⟨Im⟩ = ⟨I⟩
T

∫ T
0 m(t)dt, namely,∫ T

0 m(t)dt = T⟨Im⟩
⟨I⟩ . Hence,∫ T

0
M(τ)dτ =

∫ T

0

∫ T−τ

0
m(t)m(t + τ)dτdt

=
∫ T

0
m(t)

∫ T−t

0
m(t + τ)dτdt

Let t′ = t + τ, then dt′ = dτ

=
∫ T

0
m(t)

∫ T

t
m(t′)dt′dt

=
∫ T

0

∫ T

t
m(t)m(t′)dt′dt

Considering the symmetry of m(t) and m(t′), we have

=
1
2

∫ T

0

∫ T

0
m(t)m(t′′)dt′dt

=
1
2
(
∫ T

0
m(t))2

Since
∫ T

0
m(t)dt =

T⟨Im⟩
⟨I⟩ , we have

=
T2⟨Im⟩2

2⟨I⟩2

(S11)

The proof is over.

Interpretation of Lemma 1.1: The integral of M(τ) is only dependent on m(t). However,

the integral of M(τ) can become equal to T2⟨Im⟩2

2⟨I⟩2 in cases of certain intensity signal where the
continuous-time signal I(t) fluctuates around the expectation value over time, i.e. ∀t > 0,
E [I(t)] = ⟨I⟩.

Fig. S1. Comparison of the performance of weighted fitting vs. unweighted fitting. The
weighted fitting by 1/τ improves the fitting performance in the head of g2(τ) curve compared
with unweighted fitting.

2. STATISTICAL INTERPRETATION OF 2-PULSE MODULATION: K2
2P(T) =

1
2 g2(0) +

1
2 g2(T)− 1 IF m(t) = δ(0) + δ(T)

Proof. Denote I(t) as I and I(t + τ) as Iτ , then according to g2(τ) =
⟨I(t)I(t+τ)⟩

⟨I⟩2 we have

g2(0) =
⟨I2⟩
⟨I⟩2 (S12)
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and

g2(τ) =
⟨I · Iτ⟩
⟨I⟩2 (S13)

Since Var (I) = ⟨I2⟩ − ⟨I⟩2 and Cov (I, Iτ) = ⟨I · Iτ⟩ − ⟨I⟩2 where Var (X) and Cov (X, Y) denote
the variance of X, and the covariance between X and Y, we have

1
2

g2(0) +
1
2

g2(τ)− 1 =
1
2
(
⟨I2⟩
⟨I⟩2 − 1) +

1
2
(
⟨I · Iτ⟩
⟨I⟩2 − 1)

=
Var (I) + Cov (I, Iτ)

2⟨I⟩2

(S14)

If m(t) = δ(0) + δ(τ), the pixel intensity S would be S = I + Iτ and K2
2P(τ) would be

K2
2P(τ) =

Var (I + Iτ)

⟨I + Iτ⟩
=

Var (I + Iτ)

4⟨I⟩2 (S15)

Therefore, to prove that K2
2P(τ) = 1

2 g2(0) + 1
2 g2(τ) − 1, based on Eq. S14 and S15, one only

needs to prove that Var (I + Iτ) = 2 Var (I) + 2 Cov (I, Iτ), which is true since Var (I + Iτ) =
Var (I) + Var (Iτ) + 2 Cov (I, Iτ) and Var (I) = Var (Iτ). The proof is over.

3. THE IMPACT OF NON-ZERO RESIDUAL ILLUMINATION

We can model the non-zero residual illumination in 2-pulse modulation as

m′(t) = (1 − r)m(t) + r (S16)

where r is the relative amplitude of residual illumination during the off state and ranges from 0 to
1. m(t) here is the ideal 2-pulse modulation with zero residual illumination, and ranges between
0 and 1. Then the modulation autocorrelation function would be

M′(τ) =
∫ T−τ

0
m′(t)m′(t + τ)dt

≈ (1 − r)2 M(τ) + (T − τ)[2r(1 − r)d + r2]

(S17)

where M(τ) =
∫ T−τ

0 m(t)m(t + τ)dt and d is the duty cycle of m(t) or the pseudo duty cycle
of m′(t). Fig. S2 shows an example of how M(τ) would be skewed in presence of a non-zero
residual illumination (r=0.1). The square of speckle contrast corresponding to m′(t) would then
become

K̃2(T) =
2⟨I⟩2

T2⟨Im′ ⟩2

∫ T

0
g2(τ)M′(τ)dτ − 1

=
2

T2[d + (1 − d)r]2

∫ T

0
g2(τ)M′(τ)dτ − 1

=
2

T2[d + (1 − d)r]2

∫ T

0
g2(τ)[(1 − r)2 M(τ) + (T − τ)(2r(1 − r)d + r2)]dτ − 1

(S18)

Simplify Eq. S18, we get

K̃2(T) = p K2
m + (1 − p)K2

0 (S19)

where K2
m = 2⟨I⟩2

T2⟨Im⟩2

∫ T
0 g2(τ)M(τ)dτ − 1, K2

0 = 2
T2

∫ T
0 (T − τ)g2(τ)dτ − 1, and p = d2(1−r)2

[r+d(1−r)]2 .

Therefore, the square of speckle contrast, K2 in presence of a non-zero residual illumination in
2-pulse modulation would be the weighted sum of that of an ideal 2-pulse modulation plus that
of no modulation on intensity. p indicates the proportion of the contribution by the ideal 2-pulse
modulation. It is noticed that when r increases, p drops and that when d increases, p rises. Fig.
S3b and 5b shows examples of how an AOM with limited OD when gating the light would affect
the tail of K2

2P(T) curves when T is large. One important observation is that when T changes, the
parameter p changes as the duty cycle of each modulation waveform changes, which induces the
downtick of K2

2P(T) curves in the tail. By equalizing the camera exposure time across exposures,
the duty cycle is kept the same and therefore, p remains invariant and (1 − p)K2

0 becomes a
constant across exposures, which flattens the tail.
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Fig. S2. The impact of non-zero residual illumination between two illumination pulses on
K2

2P(T). a How the modulation autocorrelation function M(τ) would be skewed by a non-zero
residual illumination (r=0.1). b The comparison of K2

2P(T) curves with and without residual
illumination. An AOM with an OD of 4 when gating the light is simulated for the former case.

Fig. S3. The optimal n given by the fitting algorithm in various flow rates. Dashed line: APD.
Asteroids: 2PM-MESI. For each flow rate, the experiment is repeated for five times. Three of
the five repeats are shown here and grouped together by the same color in the plot. Different
colors represent different flow rates. When the flow rate is zero, the optimal n is 1, which is
true for both APD and 2PM-MESI fitting results. When the flow rate is not zero, the optimal
n is 2 according to APD fitting results. 2PM-MESI identifies the same optimal n for small flow
rates (≤ 60 µL/min). But for higher flow rates, instability in estimating the optimal n is ob-
served, which could be due to the downticking tail of the K2

2P curve induced by the non-zero
residual illumination between illumination pulses.
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Fig. S4. Comparison of ICT values extracted from g2(τ) and K2
2P(T) curves in vivo with un-

fixed n. 28 points from 4 mice.

4. THE IMPACT OF PULSE DURATION ON THE ACCURACY OF MEASURING ABSO-
LUTE AND RELATIVE VALUES OF g2(τ)

In this section, we would like to answer the question of how to choose the pulse duration when
doing 2-pulse modulated multiple exposure imaging. We demonstrated the validity of a 10 µs
pulse duration in extracting correlation times as short as 30 µs (Fig. 3f). But it does not have to
be always the case. The pulse duration can be longer when measuring g2(τ) of slowly varying
signals. We examined the optimal pulse duration selection through numerical simulation. For
a given pulse duration Tm, we evaluated the discrepancy between g2(τ) and its estimation by
K2

2P(T) at various correlation times (Fig. S5). For a given pulse duration, the maximum percent
discrepancy between 2[K2

2P(τ)− C] and the absolute value of g2(τ) decreases as τc increases (Fig.
S5a). When τc becomes larger than 10 times Tm, the percentage discrepancy drops below 0.2%. In
other words, to recover the absolute value of g2(τ) of the signal of interest within a maximum
of 0.2% discrepancy threshold, the pulse duration Tm should be made shorter than 10% of the
correlation time τc of the signal. On the other hand, if the correlation time is the only interest
about g2(τ), i.e., the relative value of g2(τ) or g̃2(τ) is of interest, then the pulse duration can
be longer than 10% of τc (Fig. S5b). But considering that 2-pulse modulated multiple exposure
imaging can only capture g2(τ)’s shape in the range of τ ≥ Tm, it is recommended that Tm not be
longer than τc to ensure sufficient sampling of the exponential-decay region of g2(τ) curve.
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Fig. S5. The accuracy of estimating g2(τ) and g̃2(τ) based on K2
2P(T) for signals of dif-

ferent correlation times. a The maximum percentage discrepancy between absolute

g2(τ) and that estimated by K2
2P(T). The y-axis is max

τ∈[Tm ,0.1 s]

2[K2
2P(τ)−C]−g2(τ)

g2(τ)
/%. b The

maximum percentage discrepancy between normalized g2(τ) and K2
2P(τ). The y-axis is

max
τ∈[Tm ,0.1 s]

[K̃2
2P(τ)+1]−[g̃2(τ)+1]

g̃2(τ)+1 /%.
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