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Fig. 12. Targeted learning with a continuous outcome. This method is analogous to the
method for a binary outcome presented in Figure 11. We include the continuous version here for
comparison with double machine learning (Appendix Figure 13).
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Fig. 13. Double machine learning. This figure presents double machine learning (Cher-
nozhukov et al., 2018) using the notation of targeted learning (Van der Laan and Rose, 2018) in
order to emphasize the parallels between the two methods. For targeted learning with a continuous
outcome, see Appendix Figure 12. For targeted learning with a binary outcome, see Figure 11.
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