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SUPPLEMENTARY INFORMATION 

 

Total number of items: 12 supplementary figures, 11 supplementary tables 

 

SUPPLEMENTARY MATERIALS & METHODS 

 

RPLS COHORT 

Patient selection 

Patients with histologically proven advanced iCCA treated with first-line chemotherapy were 

retrospectively identified from the Modena Cancer Centre Biliary Tract Cancer Database, after 

review from the appropriate health research authorities (BILONG study protocol 465/18 - 

reviewed by the Area Vasta Emilia Nord Ethics committee). Patients were deemed eligible if 

they presented with de novo advanced unresectable iCCA (i.e. locally advanced or metastatic) 

and tissue from diagnostic liver biopsies were available. Patients with a diagnosis of mixed 

iCCA/HCC were excluded. Neither prior surgery nor liver-directed treatment were allowed. 

Clinical and laboratory data were retrieved retrospectively through electronic medical records 

review. The following baseline variables were collected and analysed before the 

commencement of first-line chemotherapy: age, sex, Eastern Cooperative Oncology Group 

(ECOG) performance status (PS), primary tumour site, disease status, location of metastatic 

sites. Overall survival (OS) was defined as the time from the first dose of first line 

chemotherapy to death. To meet the definition of rapid progressor (RP), patients had to have 

an OS ≤ 6 months which is below half the median survival time reported by the ABC-02 trial 

[1]. Long survivors (LS) were defined those patients who had OS ≥23 months since starting of 

chemotherapy, more than double the median survival time reported by the ABC-02 trial. The 

two patient subgroups were matched for major clinical features. None of these patients had 
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background liver cirrhosis. The study protocol conformed to the ethical guidelines of the 1975 

Declaration of Helsinki.  

 

Human tissues 

All patients underwent ultrasound-guided liver biopsy before the commencement of systemic 

treatment. Formalin Fixed Paraffin Embedded (FFPE) tissue slides were retrieved from liver 

biopsy. One slide was processed for targeted sequencing-based RNA expression analysis via 

TempO-Seq (Bioclavis, Glasgow, UK). One slide was used for macroscopic dissection of specific 

ROIs identified through a pathology review; tissue from each (region-of-interest) ROI was 

then subjected to targeted sequencing-based RNA expression analysis via TempO-Seq 

(Bioclavis, Glasgow, UK). A third consecutive slide was used for Digital Spatial Transcriptomic 

(see below). 

 

Digital pathology 

Hematoxylin-eosin slides were digitized using the APERIO platform (Leica Biosystems) at 20X 

of magnification. Each slide was analysed using the open-source software platform, QuPath 

(version 0.2.3) [2]. A region of interest (ROI) was annotated for each slide and the amount of 

tumoural tissue quantified. First, we characterised the amount of epithelial and stromal tissue 

components in each ROI by generating a random tree forest pixel classifier. Second, following 

cell detection on each ROI, a different random tree forest cell classifier was generated for 

each haematoxylin-eosin slide using cell features to classify cells into tumour, immune and 

stromal cells. To help the algorithm to perform an accurate classification, smoothed features 

at 25 radii were added and multiple rounds of cell classification review were performed.  

 

Whole-transcriptome profiling by Tempo-seq 

Whole transcriptome gene expression analysis was performed using the TempO-Seq Human 

Whole Transcriptome v2.0 panel (BioClavis, Glasgow, UK). Internal quality control was 

performed according to the following criteria: 1) number of mapped reads in positive RNA 

controls > 6 million [our study: 6,703,241]; 2) signal:noise ratio as the ratio between the total 

number of reads in the positive control and the total number of reads in the negative controls 
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>20 [our project 205;1]; 3) the percentage of mapped reads in positive controls > 80% [our 

project 97%]; 4) average reads/probe >250 [our project 471]. Process controls were run in 

replicate on each assay plate of samples to ensure quality metrics pass on a plate-wise level. 

High reproducibility of positive controls, and low signal in the negative control was observed 

in our project.  

Sequencing libraries for targeted panels were generated; briefly in TempO-Seq, each 

Detector Oligo consisted of a sequence complementary to an mRNA target plus a universal 

primer binding site. They annealed in immediate juxtaposition to each other on the targeted 

RNA template such that they can be ligated together. Ligated detector oligos were PCR-

amplified using a primer set (single-plex PCR reaction, with a single primer pair for each 

sample) that introduced both the adaptors required for sequencing and a sample-specific 

barcode. The barcode sequences flanked the target sequence and were inserted 

appropriately into the standard Illumina adaptors to permit standard dual-index sequencing 

of the barcodes and deconvolution of sample-specific reads from the sequencing data using 

the standard Illumina software. All the PCR-amplified and barcoded samples were pooled into 

a single library for sequencing. Sequencing reads were demultiplexed using the standard 

sequencing instrument software for each sample using the barcodes to give a FASTQ file for 

each. 

TempO-Seq sequence files were analysed using the Tempo-SeqR software package. 

Each FASTQ file was aligned using the STAR algorithm to a pseudotranscriptome 

corresponding to the gene panel used in the assay. Data were normalized using DESeq2 [3]. 

Transcriptome data can be made available upon request following IRB approval. 

 

GeoMx digital spatial profiling 

 

NanoString GeoMx digital spatial profiling 

To further characterise variation in transcriptomic expression between tumour-infiltrating 

myeloid cells in LS and RP patients, formalin-fixed paraffin-embedded (FFPE) sections of 12 

cholangiocarcinoma biopsies were selected for analysis on the NanoString GeoMx Digital 

Spatial Profiler (DSP). This platform enables the characterisation of user-selected topographic 

Regions of Interest (ROI) from immunofluorescently (IF) stained FFPE tissue. The GeoMx 

instrument achieves RNA profiling in situ hybridization by employing DNA oligonucleotide 
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probes designed to bind mRNA targets. From 5ʹ to 3ʹ, they comprise a 35- to 50-nucleotide 

target complementary sequence, an ultraviolet (UV) photocleavable linker and a 66-

nucleotide indexing oligonucleotide sequence containing a unique molecular identifier (UMI), 

RNA ID sequence and primer binding sites. Up to 10 RNA detection probes were designed per 

target mRNA. In summary, the instrument employs UV light to cleave the UV-sensitive probes 

leading to release of the hybridized barcodes. 

 

Slide preparation including hybridization of tissue with UV-photocleavable probes 

The DSP procedure has previously been described in detail by Merritt et al [4] with our own 

protocol described in Fisher et al [5]. 5-µm FFPE sections of the 12 cholangiocarcinoma 

biopsies were mounted on positively charged Superfrost glass slides (ThermoFisher Scientific) 

and baked for 1hr at 60°C. The tissue was dewaxed, hydrated and treated with 1 μg/ml 

Proteinase K (ThermoFisher Scientific, AM2546) for 15 minutes before undergoing heat-

induced epitope retrieval (HIER) on a Leica BOND Autostainer (pH 9.0, ER2 at 100°C) for 20 

minutes. The slides were then stored until required in 1X PBS (PBS: Invitrogen, AM9625). 

In-situ hybridization of RNA-directed DNA oligo probes (Immune Pathways Panel 

included 96 genes with the addition of CD58, ELK4, CD80, CD163, FOXO3, NanoString) was 

performed as per manufacturer’s protocol. HybriSlip™ covers were applied prior to overnight 

incubation at 37°C for at least 16 hours (ThermoFisher). The following day, slides were washed 

twice with a 1:1 ratio of 100% deionized formamide (Ambion) and 4X SSC (Sigma Aldrich) at 

37°C for 25 minutes.  

The GeoMx DSP is capable of capturing four channels (FITC/525nm, Cy3/568nm, Texas 

Red/615nm and Cy5/666nm) for the detection of up to four customizable IF morphology 

markers for each tissue [4]. One channel (FITC/525nm) is reserved for the nuclear stain 

(SYTO13). The slides were blocked with Buffer W (Nanostring) for 30 minutes at RT before 

incubation. Immunofluorescence staining was performed using primary conjugated 

antibodies (PanCK (NanoString), CD68 (clone KP1, 1:200, Santa Cruz) and Ki67 (clone D2H10, 

1:100, Cell Signaling Technologies)) and nucleic acid dye (SYTO 13 (NanoString)) as per the 

manufacturer protocol. Slides were then stored at 4°C in SSC before being loaded on the 

GeoMx DSP instrument for region of interest (ROI) selection and collection. 

 

Region selection and collection 
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The whole slides were imaged at 20x magnification using the GeoMx DSP, with the integrated 

software suite used to select ROIs for downstream analysis based on the 4-plex 

immunofluorescence staining of SYTO 13, PanCK, CD68 and Ki67. Polygonal ROIs were 

selected primarily according to the high density of CD68+ cells. 30 ROIs were selected in total 

from across the 12 slides. The CD68 staining was then used to employ segmentation within 

each ROI to create an area of interest (AOI) from which DNA oligo probes would be cleaved 

and cell-type specific transcriptomic profiles obtained. After AOIs were selected, the GeoMx 

DSP employs an automatically controlled UV laser (385nm) to illuminate each AOI in turn, 

specifically cleaving barcodes within the CD68+ immunofluorescent (IF) segments but not in 

surrounding tissue segments (CD68-). A microcapillary collection system collected the 

liberated barcodes from each AOI and plated them into individual wells on a 96-well 

microtiter plate. This process was repeated in turn for each AOI before downstream 

processing using the NanoString MAX/FLEX nCounter system. The oligonucleotides were 

dried overnight and subsequently resuspended using 7 μl of DEPC-treated water. 

 

nCounter hybridization assay for photocleaved oligo counting 

The nCounter readout of GeoMx DSP-collected probes was performed according to 

manufacturer’s protocol (NanoString, MAN-10089-08). In brief, samples were resuspended in 

dH20 prior overnight incubation (16–24 hours) with hybridization codes (Hyb Codes) at 65°C 

and heated lid (70°C). These Hyb Codes include reporter and capture probes to enable 

formation of a tripartite hybridization complex with the DNA oligo probes in the panel. 

Samples were then pooled by column into a 12-well strip tube before processing on 

NanoString’s MAX/FLEX system, using the high sensitivity protocol (NanoString, MAN-10089-

08). 

 

Data processing and analysis 

Data acquisition was performed by using the NanoString’s Digital Analyzer (field of view, 555) 

and Digital Count Conversion (DDC) files were re-uploaded onto the GeoMx DSP for mapping 

of transcriptomic data to the spatial origin, where they underwent quality control, filtering 

normalization and background correction. 

 

Bioinformatic analyses 
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RPLS signature identification 

RPLS signature genes were identified as genes differentially expressed between RP and LS 

patients with ≥ 2-fold expression difference and unadjusted p<0.05 (Wilcoxon rank-sum test). 

As RP-high and LS-high signature genes significantly anti-correlated, a single RPLS score was 

assigned to each tissue sample, defined as: ([log2(ΣRP-high genes)- log2(ΣLS-high genes)]z-score). 

To compare the predictive performance of the RPLS score against systemic features, it was 

included into multivariable Cox proportional hazards models with pre-treatment systemic 

features that differed between patient subgroups (platelets, ALP) or an optimized systemic 

signature (defined by AIC backwards elimination using all haematological and systemic 

features). The final formula derived for this optimized signature was: -211.622 + 41.2*Bili + 

1.208*ALP.  

 

Pathway analysis 

Pathway over-representation analysis of RPLS signature genes was performed using ENRICHR 

against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [6] (including 

censoring of the non-relevant categories, “infectious disease” and “substance dependence”). 

Significantly over-represented pathways (p<0.05) were visualized using CytoScape (v3.9) [7]. 

Specifically, the EnrichmentMap application[8] was used to construct network maps in which 

each node represents a significant pathway and each line denotes shared genes between 

pathways (Jaccard coefficient above 0.375). Inter-related pathways were identified and 

biologically classified by Markov Cluster Algorithm (MCL) using the AutoAnnotate application 

(v1.3.3) [9]. 

Pathway expression analysis was performed using single sample gene set enrichment 

analysis (ssGSEA), as implemented in the ‘GSVA’ R package [10]. Prior to ssGSEA, 

transcriptome data were centered and scaled. KEGG [6] and Hallmarks [11] terms were 

downloaded from Molecular Signatures Database (MSigDB) v7.5.1 [12, 13] and used as input 

gene lists for ssGSEA. Only human- and cancer-relevant gene list categories were considered. 

Transcription factor activities were predicted from transcriptome data using 

DoRothEA [14]. A gene was predicted to be under regulation of a specific transcription factor 

if it is a known transcription factor [14] and if its expression positively correlates with activity 

of the candidate transcription factor regulator. 
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Gemcitabine resistance genes and signatures 

The expression of four genes involved in gemcitabine transport and metabolism that have 

been previously implicated in gemcitabine sensitivity [15, 16, 17] were investigated in our 

study: human equilibrative nucleoside transporter-1 (hENT1, encoded by SLC29A1); 

deoxycytidine kinase (dCK); ribonucleotide reductase catalytic subunit M1 (RRM1); 

ribonucleotide reductase catalytic subunit M1 (RRM1). 

Three gene expression signatures previously reported to predict gemcitabine 

sensitivity were also evaluated in our study: 

Mourragui et al. signature: This signature was identified based on in vitro sensitivity of 1,000 

immortalized cancer cell lines to gemcitabine [18]. It consists of a weighted linear sum of 

expression of 1774 genes which was applied to each bulk tissue sample in the RPLS cohort. 

Nicolle et al. signature: Also known as GemPred, this signature was identified based on in vitro 

sensitivity of 38 primary pancreatic adenocarcinoma (PDAC) cell lines to gemcitabine [19]. 

Whole-transcriptome profiles of RPLS samples were submitted to the GemPred web 

application (http://cit-apps.ligue-cancer.net/pancreatic_cancer/GemPred) in order to return 

a score per sample. Unreferenced values were used for further analysis. 

Tiriac et al. signature: This signature was identified based on in vitro sensitivity of 77 PDAC 

organoids to gemcitabine [20]. It consists of 225 genes whose expression correlates (95 

positively, 130 negatively) with gemcitabine sensitivity. These genes were combined into a 

weighted linear formula where each gene was assigned a coefficient proportional to its 

correlation coefficient, enabling assignment of an overall signature score to each of the bulk 

tissue samples in the RPLS cohort. 

 

Digital cytometry 

Cell type-specific deconvolution of the RPLS signature was performed in our RPLS cohort using 

CIBERSORTx [21]. Briefly, two public single cell RNA-sequencing (scRNA-seq) datasets from 

iCCA patients were downloaded from GEO (GSE125449 [22], GSE151530 [23]). These data 

were processed independently using the ‘Seurat’ package (v3) [24], including exclusion of 

outlier cells (mitochondrial content >0.05, gene counts <200 or 2500) and log normalization 

(scale factor of 10000). Six types of cells were commonly annotated by the original two scRNA-

seq studies: B cells, cancer-associated fibroblasts (CAFs), T cells, tumour cells, tumour-

associated myeloid cells (reannotated from cells originally reported as tumour-associated 
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macrophages), and tumour-associated endothelial cells (TECs). Only genes commonly 

detected in both datasets were used for gene expression classifier construction. 

Independently, a signature matrix was constructed for each scRNA-seq dataset in CIBERSORTx 

(‘scRNA-Seq’ as input data type with default settings). Each signature matrix was then applied 

independently to impute cell expression of the RPLS signature genes in our biopsy tissues 

(whole biopsies, tumour regions, tumour-associated stroma regions). This involved running 

the ‘Impute Cell Expression’ module of CIBERSORTx in ‘Group Mode’ with ‘S-mode’ batch 

correction and quantile normalization set as disabled. Each gene in the RPLS signature was 

only considered to originate from a specific cell type if this association was reproducible using 

both independent signature matrices (cell type-specific gene expression >1). 

 

Immunogenomic and microenvironment analyses 

Immune cell composition was predicted by cellular deconvolution using the xCell tool [25], 

implemented in the ‘immunedeconv’ package [26] with default settings. Anti-tumour immune 

activity was inferred using the cytolytic score, defined as the geometric mean of expression 

of granzyme A (GZMA) and perforin (PRF1) [27]. Cytokine activity was estimated using the 

CytoSig tool with default settings [28], implemented in Python on transcriptome data that 

was centralised and log2-transformed (including a pseudo-count of 1). Cancer testis antigen 

(CTA) expression was investigated using ssGSEA of CTA lists reported by CTdatabase 

(http://www.cta.lncc.br/) [29]. A gene expression-based microsatellite instability signature 

was calculated for RPLS samples using the Tumour Immune Dysfunction and Exclusion (TIDE) 

webtool [30]. A gene expression-based signature predictive of BRCA gene functionality and 

comprised of a weighted linear formula of 60 genes was used to assign a “BRCAness” score to 

each RPLS sample [31]. DNA repair signatures were obtained from Reactome [32]. Signatures 

associated with cancer-associated fibroblast subtypes detected in iCCA were investigated 

using ssGSEA with the gene lists reported in the original study [33].  

 

IMMORTALIZED iCCA CELL LINES 

Integration of cell line and RPLS tissue transcriptome data 

Transcriptome data (RNA-seq) for 25 iCCA cell lines was downloaded from DepMap (22Q2) 

[34] quantified in log2(TPM+1) units. In total, 14,728 genes were commonly detected in the 

cell line dataset and our RPLS tumour core (TC) dataset. Datasets were combined together by 
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performing quantile normalization (‘PreProcess’ package) followed by Combat batch 

correction (‘sva’ package) [35]. Removal of batch effects was confirmed by principal 

component analysis. 

 

Classification of cell lines as LS- or RP-like 

To develop a scoring method for RP- and LS-likeness, generalized linear models were run to 

identify genes individually capable of differentiating RP TCs from LS TCs in the adjusted 

dataset. In total, 441 significant genes (p<0.05) were identified. To generate an optimized 

classifier from these genes, least absolute shrinkage and selection operator (LASSO) 

regression was performed, resulting in the following classifier: -0.473260081235793 + (-

0.20222060165566*CERS2) + (-0.0619806057536049*CHST9) + (-

0.158248138046384*DCDC2) + (0.343556411268419*IGFBP4) + (-

0.157768591678966*KPNA6) + (0.153671854832587*PDE12) + 

(0.041350560922029*PTPRU) + (-0.00927545715353832*SLC5A9) + 

(0.029840846853945*SPTLC3) + (0.105321982050334*STEAP2). This classifier was then 

applied to the adjusted cell line data to identify LS-like (< median; n=12) and RP-like (> median; 

n=13) cell lines. 

 

Pharmacologic, genomic and transcriptomic comparison of LS- and RP-like cell lines 

Gemcitabine sensitivity was compared between LS- (n=4) and RP-like (n=4) cell lines using 

previously reported high-throughput drug screening data from Saha and colleagues [36]. 

Differential expression of pathways and processes was compared between LS- and RP-like cell 

lines using ssGSEA, as earlier described (section 1.6.2). Hotspot mutation data were available 

for all 25 iCCA cells through DepMap (22Q2) [34]. Association of recurrent hotspot mutations 

(IDH1, KCNA1, KIF4B, KRAS, PTEN, TBX5, TP53) with LS- or RP-like cell lines was investigated 

by fisher’s exact test for count data. 

 

Identification of differential genetic dependencies 

Genome-wide CRISPR inactivation screen data were available for 24 iCCA cell lines through 

DepMap (22Q2) [37], with gene effect scores inferenced by Chronos [38]. Pan-essential genes 

(n=2040) as reported by Dempster and colleagues [39] were filtered out from the dataset. To 

determine an appropriate cut-off value for a deleterious fitness effect, we calculated the 
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median Chronos score for each of the 2040 pan-essential genes across the 24 iCCA cell lines. 

We selected the largest of these median values as our negative fitness threshold (-

0.0141220545). Therefore, non-essential genes were identified as enhanced survival 

dependencies if they met the following criteria: (1) mean Chronos score below the threshold 

(-0.0141220545) among cell lines in LS-like and/or RP-like subgroups; (2) significant difference 

in Chronos scores between LS-like and RP-like subgroups (Wilcoxon p<0.05). As true survival 

dependencies likely arise from multiple genes within common networks, we prioritized 

enhanced survival dependencies annotated within a common pathway (informed by 

ENRICHR; described in section 1.6.2). Dependency networks were visualized using CytoScape 

(StringDB score 0.75) and manually annotated based on MSigDB associations. The potential 

druggability of genes was investigated using The Drug Gene Interaction Database (DGIdb 4.0) 

[40]. 

 

ANALYSIS OF SINGLE CELL RNA-SEQUENCING DATASETS 

Single cell RNA-sequencing dataset pre-processing and filtering 

In this manuscript, 3 single cell RNA-sequencing (scRNA-seq) datasets were analysed: 

GSE125449 [22]: Data were pre-processed as described in section 1.6.4. Cell type annotation 

was retained as previously reported by the authors, with the exception of tumour-associated 

macrophages which were renamed as tumour-associated myeloid cells. Exclusively 

considering samples where tumour cells were retained, the following cell numbers were 

included for analysis: 739 tumour cells, 354 cancer-associated fibroblasts, 386 tumour-

associated myeloid cells, 2138 T cells (corresponding to 9 samples). A tumour-origin RPLS 

score (predicted by digital cytometry; section 1.6.4) was calculated for each tumour cell using 

the ‘escape’ package. Samples were ranked according to tumour-origin RPLS scores and 

classified as LS- or RP-like based on median expression. 

GSE151530 [41]: Data were pre-processed as described in section 1.6.4. Cell type annotation 

was retained as previously reported by the authors, with the exception of tumour-associated 

macrophages which were renamed as tumour-associated myeloid cells. Exclusively 

considering samples where tumour cells were retained, the following cell numbers were 

included for analysis: 960 tumour cells, 314 cancer-associated fibroblasts, 478 tumour-

associated myeloid cells, 1032 T cells (corresponding to 10 samples). A tumour-origin RPLS 

score (predicted by digital cytometry; section 1.6.4) was calculated for each tumour cell using 
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the ‘escape’ package. Samples were ranked according to tumour-origin RPLS scores and 

classified as LS- or RP-like based on median expression. 

GSE171899 [42]: Data were pre-processed and cells were annotated by the original authors, 

as indicated in their manuscript. This dataset was exclusively comprised of immune (CD45+) 

cells and only cells originating from 3 patients who underwent adjuvant chemotherapy were 

considered: 39 cDC1 (BATF3+), 374 cDC2 (CD1C+), 185 lymphoid, 465 macrophages (ID3+), 

365 macrophages (MARCO+), 200 macrophages (TREM2+), 535 monocytes (CD14+), 38 

monocytes (FCGR3A). A myeloid-origin RPLS score (predicted by digital cytometry; section 

1.6.4) was calculated for each immune cell using the ‘escape’ package. 

 

Biological analysis of LS-like and RP-like iCCA in scRNA-seq datasets 

Biological pathway and process expression were calculated in single cells using the ‘escape’ 

package (using MSigDB reference signature databases, as described in section 1.6). The 

following signatures associated with myeloid cell phenotypes and processes were also used: 

inflammatory and tolerogenic hepatic macrophages [43]; activated dendritic cells (aDC), 

immature dendritic cells (iDC), plasmocytoid dendritic cells (pDC) [25]; antigen processing and 

presenting machinery (APM score) [44]; MHC presentation (classical, class I) [32]; 

immunoinhibitors and immunostimulators [45]. Transcription factor activities and cytokine 

activities were also calculated for single cells as earlier described (section 1.6). 

Ligand:receptor (LR) interactions were identified using CellChat with default settings [46]. 

Only reproducible interactions (identified in GSE125449 and GSE151530) identified in one 

tumour subgroup but not the other (LS-like or RP-like) were considered as significant. The 

potential druggability of genes was investigated using The Drug Gene Interaction Database 

(DGIdb 4.0) [40]. Clinically actionable targets were identified according to Pharos (Tclin level) 

[47]. T cell subtypes were assigned using the ‘ProjecTILs’ package [48]. Immune-oncology 

targets of interest were defined by the The Cancer Research Institute (CRI) iAtlas consortium 

(https://isb-cgc.shinyapps.io/shiny-iatlas/) [49]. Metabolic flux inference was performed 

using METAFLUX[50] with default settings, involving calculation of metabolic reaction activity 

scores (cubic root normalised) per cell followed by median-based collapsing of activity scores 

per sample. 
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RESECTED CHOLANGIOCARCINOMA DATASETS 

Transcriptome analyses 

The following transcriptome datasets were analysed as part of our study: 

Andersen cohort: This cohort is comprised of 138 resected iCCA and 37 resected pCCA (with 

survival data), originating from Australia, Europe (Belgium, France, Germany, Italy), and USA. 

Transcriptome data (humanRef-8v2 BeadChip and Human HT-12 v3 Expression BeadChip, 

Illumina) were generated by our group, as previously reported [51, 52]. Data were processed 

from raw IDAT files using background subtraction (iScan system, Illumina), followed by 

quantile normalization (‘preprocessCore’, R package). Data were quantified as normalized 

signal intensity (arbitrary units, ‘a.u.’). 

Dong cohort: This cohort is comprised of 244 resected iCCA (with survival data), originating 

from China. Transcriptome data (RNA sequencing) were retrieved from the supplementary 

information of the original manuscript [53]. Data were quantified using log2(TPM+1), as 

reported by the original study authors. 

GSE107943 cohort: This cohort is comprised of 30 resected iCCA (with classification as large 

duct- or small duct-type) from Korea. Transcriptome data (RNA sequencing) were retrieved 

from GEO (GSE107943) [54, 55]. Data were quantified using RPKM, as reported by the original 

study authors. 

Job cohort: This cohort is comprised of 70 resected iCCA (with survival data), originating from 

France. Transcriptome data (Human Transcriptome Array 2.0, Affymetrix) were retrieved 

form ArrayExpress (E-MTAB-6389) [56]. Data were processed from raw CEL files using Robust 

Multichip Average (RMA) normalization, as implemented in the ‘oligo’ R package. Data were 

quantified as normalized signal intensity (arbitrary units, ‘a.u.’). Genes with multiple probes 

were quantified as the median signal intensity across probes. 

Jusakul cohort: This cohort is comprised of 81 resected iCCA (with survival data), originating 

from Asia (Korea, Singapore, Thailand), Brazil and Europe (France, Romania). Transcriptome 

data (HumanHT-12 V4.0 expression BeadChip) were retrieved from Gene Expression Omnibus 

(GEO; GSE89747) [57]. Data were extracted from raw IDAT files and underwent quantile 

normalization (‘preprocessCore’, R package). Data were quantified as normalized signal 

intensity (arbitrary units, ‘a.u.’). 

Montal cohort: This cohort is comprised of 182 resected extrahepatic CCA (with survival data), 

originating from Europe (Spain, Switzerland) and USA. Transcriptome data (Human Genome 
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U219 Array, Affymetrix) were processed by the original study authors, as reported in the 

original manuscript [58]. Data were quantified as normalized signal intensity (arbitrary units, 

‘a.u.’). 

Nakamura cohort: This cohort is comprised of 111 resected iCCA (with survival data), 

originating from Japan. Transcriptome data (RNA sequencing) were retrieved from European 

Genome Phenome Archive (EGA; EGA00001000950) [59] and processed using standard 

bioinformatic pipelines, as previously reported by us [60]. Data were quantified using 

log2(RPKM+1). 

Sia cohort: This cohort is comprised of 119 resected iCCA (with survival data), originating from 

Europe (Italy, Spain) and USA. Transcriptome data (Whole-Genome DASL HT assay, Illumina) 

were processed by the original study authors, as reported in the original manuscript [61]. Data 

were quantified as normalized signal intensity (arbitrary units, ‘a.u.’). 

 

Genomic analyses 

Genomic data were available for the Andersen, Dong and Nakamura cohorts, as follows: 

Andersen cohort: Mutation data (TruSeq Amplicon Panel, Illumina) were available for 87% 

(120/138) of this cohort. Data were processed and analyzed as previously reported by our 

group [60]. FGFR2 fusion data (quantitative polymerase chain reaction of known breakpoint 

regions) were also available for 80.4% (111/138) of the cohort [60]. 

Dong cohort: Mutation data (whole-exome sequencing) and FGFR2 fusion data (RNA-seq) 

were available for 97.1% (237/244) and 100% (244/244) of this cohort, as originally reported 

by the study [53]. 

Nakamura cohort: Mutation data (whole-exome sequencing) and FGFR2 fusion data (RNA-

seq) were available for 100% (111/111) of this cohort [59], and these data were processed as 

originally reported by our group [60]. 

In each of these iCCA cohorts, cancer-relevant hotspot mutations were identified using the 

Cancer Hotspots database (https://www.cancerhotspots.org/) from Memorial Sloan 

Kettering Cancer Centre (MSKCC) [62]. 

 

ANIMAL MODELS 

Changes in RPLS signature expression was evaluated in 14 iCCA-relevant mouse models 

relative to their study-specific controls. Human homologs were identified for mouse genes 
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using the ‘HMD_HumanPhenotype’ file at Mouse Genome Informatics (MGI; 

informatics.jax.org) [63]. 

GSE66717: Transcriptome data (Affymetrix Mouse Gene 1.0 ST Array) were downloaded for 

Pten-/- (n=4), Pten-/- Tgfbr2-/- (n=4), and control (n=3) mice deposited in GSE66717 [64]. Raw 

CEL files were subjected to RMA normalization using the ‘oligo’ R package.  

GSE140498: Transcriptome data (Affymetrix Mouse Gene 1.1 ST Array) were downloaded 

from GSE140498 [65] for the following samples: NEMO single knockout (n=3), 

NEMO/JNK1Δhepa double knockout (n=3), JNK(1/2)Δhepa double knockout with 

diethylnitrosamine (DEN) treatment (n=3), JNK(1/2)Δhepa double knockout with bile duct 

ligation (BDL; n=3), NEMO/JNK(1/2)Δhepa triple knockout (n=3), control mice with DEN 

treatment (n=3), control mice with bile duct ligation (n=3), and control mice (n=3). 

GSE141511: Transcriptome data (RNA-seq) were downloaded for microdissected control 

(n=3), ductular proliferation (n=3), intraductal papillary neoplasia of the bile duct (IPNB; n=3) 

and tumour (n=3) tissues from cholangiocyte-directed KrasG12D mice with diet-induced 

inflammation (3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-treated) deposited in 

GSE141511 [66]. HTseq count files were merged using ‘tximportData’ and quantified in counts 

per million (CPM) using ‘edgeR’ [67]. 

AKT/YapS127A: Normalized transcriptome data (Affymetrix array) for this sleeping beauty 

model of iCCA [68] (n=3) and control mice (n=4) was kindly provided by Prof. Diego Calvisi 

(Universität Regensburg, Germany). 

AKT/NICD: Transcriptome data (Mouse Gene Expression BeadChips, Illumina) for this sleeping 

beauty model of iCCA [69] (n=4) and control mice (n=3) were generated and analysed as part 

of our previous study [52]. 

Genetically engineered models of iCCA: Transcriptome data (RNA-seq) from five iCCA 

genetically engineered mouse models (GEMMs) harbouring cholangiocyte (CK19)-specific 

genomic alterations were kindly provided by Dr. Luke Boulter (University of Edinburgh, UK) 

[70]:, Kras & Nf2 (n=3), Kras & shTrp53 (n=3), Kras & Tp53 (n=3), Kras & Nf2 & Tp53 (n=3), 

Kras & Tp53 & Plbx2 (n=3). Mouse gene IDs were batch annotated using informatics.jax.org. 

 

OTHER CANCER DATASETS 

Surgical HCC cohorts 
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TCGA-LIHC: This cohort is comprised of 359 resected HCC (histologically confirmed and 

survival data available), originating from USA and published as part of the The Cancer Genome 

Atlas [71]. Data were generated by RNA-seq and downloaded in RSEM normalized units from 

Broad GDAC Firehose (https://gdac.broadinstitute.org/). Clinical data were downloaded from 

cBioPortal (https://www.cbioportal.org/) [72]. 

GSE14520: This cohort is comprised of 178 resected HCC (histologically confirmed and survival 

data available). Transcriptome data (Affymetrix Human Genome U133A 2.0 Array) were 

retrieved from Gene Expression Omnibus (GSE14520) [73]. Data were processed from raw 

CEL files using Robust Multichip Average (RMA) normalization, as implemented in the ‘oligo’ 

R package. Data were quantified as normalized signal intensity (arbitrary units, ‘a.u.’). Genes 

with multiple probes were quantified as the median signal intensity across probes. 

 

Advanced basket cohorts 

MET500 cohort: This basket cohort was comprised of 490 metastatic biopsies representative 

of 22 primary cancer groups [74]. Processed, normalized data (RNA-seq) were downloaded 

from the following weblink: https://met500.path.med.umich.edu/. Samples were stratified 

by metastatic sites: abdominal (n=32), liver (n=130), lung & respiratory (n=37), lymph node 

(n=114), other (n=177). 

POG570 cohort: This basket cohort was comprised of 438 metastatic biopsies representative 

of 26 primary cancer groups [75]. Transcriptome data (RNA sequencing) were downloaded 

from https://www.bcgsc.ca/downloads/POG570/, followed by Ensembl ID mapping using 

‘biomaRt’. Data were quantified in TPM. Clinical and treatment information were also 

downloaded from the POG570 downloads repository: abdominal (n=54), liver (n=198), lung & 

respiratory (n=37), lymph node (n=87), other (n=62). 

 

Metastatic colorectal cancer cohorts 

New EPOC trial: Transcriptome data (normalized Affymetrix array, collapsed by median gene 

expression) for primary colorectal tumours (n=204) and resected liver metastases (n=145) 

from the phase III New EPOC trial [76] was kindly provided to us by the S:CORT consortium. 

 

STATISTICAL ANALYSES 
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Statistical analyses were conducted in R version 4.0.3, unless otherwise stated. Heatmaps 

were generated using ‘gplots’. Bar plots, violin plots, and XY plots were generated in ‘ggplot2’. 

Kaplan-Meier survival analysis and Cox proportional hazards modelling were performed using 

‘survival’ and ‘survminer’ packages. Forest plots were generated using the ‘forestplot’ 

package. Simpson’s index was computed using the ‘vegan’ package. Unrooted dendrograms 

based on Manhattan distance and complete linkage were generated using ‘cluster’ and ‘ape’ 

packages. Data normality was investigated using Shapiro-Wilk test. Quantitative data were 

compared across multiple groups using Kruskal-Wallis or ANOVA statistics for non-normal and 

normal data, respectively. Qualitative data was compared between two groups using 

Pearson’s Chi-squared test, except when one cell in a contingency table has an expected 

frequency below 5 in which case Fisher’s exact test was applied. Correlation analysis was 

performed using Spearman or Pearson statistics for non-normal and normal data, 

respectively. 

 

 

SUPPLEMENTAL FIGURES 

 

Figure S1: Patient treatment in the RPLS cohort. (A) Swimmer plot of patient management 

in the RPLS cohort, including a zoomed view on the first 12 months following initiation of 
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chemotherapy. (B) Comparison of number of chemotherapy regimens (Welch t-test) received 

by LS (n=6) and RP (n=7) patients. 

 

 

 

Figure S2: RPLS signature expression and predictive performance in the RPLS cohort. (A) 

Spearman correlation analysis of RP-high and LS-high gene expression. (B) Forest plot of Cox 

proportional hazards statistics derived from multivariable analysis of RPLS scores and 

systemic features differentially expressed between RP and LS patients. HR: hazard ratio; ns: 

not significant. (C) Forest plot of Cox proportional hazards statistics derived from 

multivariable analysis of RPLS scores and an optimized systemic signature (defined by AIC 

backwards elimination using all haematological and systemic features). The final formula 

derived for this optimized signature was: -211.622 + 41.2*Bili + 1.208*ALP. 
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Figure S3: Representative markup of a diagnostic biopsy from the RPLS cohort. Target 

regions were geospatially macrodissected for whole transcriptome profiling (Tempo-seq). 

 

 

Figure S4: Inter- and intra-sample heterogeneity of macrodissected biopsy regions in the 

RPLS cohort. (A) Differential intra-sample transcriptomic heterogeneity (Wilcoxon test) 
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defined by Simpson’s index between LS and RP biopsies: tumour cores (TCs; 11 LS, 9 RP), 

tumour stroma (TSs; 5 LS, 6 RP), invasive fronts (IFs; 3 LS, 3 RP) and non-malignant regions 

(NRs; 4 LS, 4 RP). (B) Phylotranscriptomic trees (Euclidean distance, Ward linkage) for 

individual biopsies with 3 or more geospatially macrodissected samples.  

 

 

Figure S5: Transcriptomic profiles of tumour stroma and non-malignant regions of biopsies 

in the RPLS cohort. (A) Differentially expressed genes (min. 2-fold difference, p<0.05, 

Wilcoxon rank-sum test), differentially active transcription factors (p<0.05, Wilcoxon rank-

sum test; DoRothEA), differentially expressed pathways (p<0.05, Wilcoxon rank-sum test; 

ssGSEA of KEGG and Hallmarks gene lists), and differentially active cytokines (p<0.05, 

Wilcoxon rank-sum test; CytoSig) between RP (n=6) and LS (n=5) tumour stroma. (B) 

Differential expression of iCCA cancer-associated fibroblast subtypes in tumour stroma. (C) 

Differentially expressed genes (min. 2-fold difference, p<0.05, Wilcoxon rank-sum test), 

differentially active transcription factors (p<0.05, Wilcoxon rank-sum test; DoRothEA), 

differentially expressed pathways (p<0.05, Wilcoxon rank-sum test; ssGSEA of KEGG and 
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Hallmarks gene lists), and differentially active cytokines (p<0.05, Wilcoxon rank-sum test; 

CytoSig) between RP (n=4) and LS (n=4) non-malignant regions. 

 

 

Figure S6: Genomic stability and immunogenicity of tumour cores in the RPLS cohort. 

Differential expression (Wilcoxon test) of signatures for (A) DNA repair processes (Reactome), 

(B) BRACness, (C) microsatellite instability, and (D) cancer testis antigen expression in LS and 

RP biopsies.  
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Figure S7: Evaluation of LS- and RP-like iCCA cell lines. (A) Principal component analysis of 

RPLS tumour core (TC) and iCCA cell line (DepMap) transcriptome profiles before and after 

data integration. PC: principal component; QN: quantile normalization. (B) Differential 

sensitivity of LS- and RP-like iCCA cell lines to gemcitabine using data from Saha et al. (Cancer 

Discovery 2016). IC50: half maximal inhibitory concentration; Ln: natural log. (C) Hotspot 

mutations in recurrently altered genes across LS- and RP-like cell lines (p-values from fisher’s 

exact test). 
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Figure S8: Metabolic flux inference in LS- and RP-like myeloid cells. (A) Differentially active 

metabolic pathways between myeloid cells in RP-like and LS-like tumours. Activity was 

inferred using METAFlux in two single cell RNA-sequencing datasets. Only pathways 

consistently differentially active (Wilcoxon p<0.05) in both datasets are shown. (B) 

Differentially active reactions (within differentially active pathways) between myeloid cells in 

RP-like and LS-like tumours. Reactions were pre-defined by BiGG Models and activity was 

inferred using METAflux in two single cell RNA-sequencing datasets. Only reactions 

consistently differentially active (Wilcoxon p<0.05) in both datasets are shown. 

 

 

Figure S9: Correlation analysis of RP-high and LS-high gene expression in resected cohorts. 

Statistics were computed by Spearman’s correlation statistics. 
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analysis of RPLS scores and correlated clinicopathologic variables in the Dong cohort (n=244). 

γ-GT: γ-glutamyltransferase; CA 19-9: carbohydrate antigen 19-9; CEA: carcinoembryonic 

antigen; HR: hazard ratio; ns: not significant. 

 

 

Figure S12: Prognostic associations of the RPLS signature in hepatocellular carcinoma. 

Kaplan-Meier survival curves with log-rank statistics for high (>median) and low (<median) 

RPLS signature expression in the TCGA-LIHC and GSE14520 cohorts of resected hepatocellular 

carcinoma patients. 
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Table S10: Univariable and multivariable progression-free survival (PFS) analysis of the RPLS 

signature, clinicopathologic and genomic features in colorectal cancer liver metastases (New 

EPOC trial). 

Table S11: Univariable and multivariable overall survival (OS) analysis of the RPLS signature, 

clinicopathologic and genomic features in colorectal cancer liver metastases (New EPOC trial). 
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