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Supplementary Methods 

Sample collection 

Surgically removed fresh samples (primary CRC, lCRC, oCRC and adjacent normal tissues) and 

PBMC were obtained from 7 patients at the Sixth Affiliated Hospital, Sun Yat-sen University (online 

supplemental table 1). Sample was divided into two portions. One fresh portion was used for 

scRNA-seq and another portion embedded in optimal cutting temperature compound (OCT) was 

used for spatial transcriptomic analysis. CRC diagnosis was confirmed by histopathological 

examination and the tumor stage was defined according to the 8th edition of the American Joint 

Committee on Cancer (AJCC). Clinical information about CRC patients was obtained from their 

medical records. The study was approved by the institutional review board of the SYSUCC and 

informed consent was obtained from each participant. 

Sample preparation and scRNA sequencing 

Fresh tissue sample was temporarily placed in RPMI-1640 medium (Corning) with 20% fetal 

bovine serum (FBS, Cell Technologies) on ice and processed for scRNA-seq following the protocols 

described previously.[1] Tissue sample was cut into small pieces in a cell-culture dish and digested 

in a centrifuge tube with a digestion mixture containing Collagenase II (Sigma), Collagenase IV 

(Sigma) DNase I (Sigma) and Dispase (Corning) for 30 min at 37 °C. The cell suspension was filtered 

through 40-μm cell strainer (BD Falcon) to obtain single-cell suspension, which was then with 

blood cell lysis buffer (Boster Biological Technology) on ice for 7 min followed by brief 

centrifugation. The remaining cells were washed twice with PBST buffer containing 0.1% BSA. Cell 

viability was measured with Acridine Orange/Propidium Iodide (AO/PI) kit. scRNA-seq libraries 

were prepared using ChromiumTM Single Cell G Chip (10 × Genomics, 1000120) and Chromium 

Single Cell 3’ Library & Gel Bead Kit v3.1 (10 × Genomics, 1000121) and sequencing was 

accomplished on an Illumina NovaSeq6000 System using a paired-end 150 bp. 

Single-cell RNA sequencing data analysis 

The Cell Ranger Single-Cell toolkit was applied to align reads for each sample based on the 

human reference genome GRCh38 (https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-

GRCh38-2020-A.tar.gz). Seurat [2] R package was used for downstream analyses. Further quality 

control was applied to cells based on these thresholds: 1) the number of expressed genes larger 

than 150 and lower than 6,000; 2) the cells with less than 10% mitochondrial RNA content. 

DoubletFinder [3] R package was applied to remove potential doublets. The filtered gene 

expression matrix for each sample was normalized and scaled by “NormalizeData” and “ScaleData” 
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functions in Seurat.[2] Harmony [4] R package was used to adjust batch effects between different 

patients and integrate the gene expression matrices of all samples. Finally, we identified 36,601 

genes and detected 230,818 cells from 70 samples. We performed principal component analysis 

(PCA) on the corrected expression matrix using highly variable genes (HVGs) identified by 

“FindVariableGenes” function. Next, “RunPCA” function was used to perform the PCA and 

“FindNeighbors” function was used to construct a K-nearest-neighbor graph. The most 

representative principal components were used to determine different cell types with 

“FindCluster” function. We annotated cell types and 10 clusters were identified based on 

expression of the following marker genes: CD79A and MS4A1 for B cells, ENG and PECAM1 for 

endothelial cells, KRT8 and EPCAM for epithelial cells, DCN and COL3A1 for fibroblasts; GPM6B and 

PLP1 for glial cells, TPSAB1 and CPA3 for mast cells, PPBP and PF4 for megakaryocytes, CD14 and 

CD68 for myeloid cells, TNFRSF17 and JCHAIN for plasma cells and CD3D and CD3E for T cells. We 

performed unsupervised clustering on all T cells. We defined cells as CD4 cells if they had CD4 

expression higher than CD8 and CD8 cells if they had CD8 expression higher than CD4. We 

performing unsupervised clustering on CD4 cells and CD8 cells separately to identify the 

expression of CD8-negative in all subpopulations of CD4 cells and the expression of CD4-negative 

in CD8 subpopulations. 

Differential expression analysis 

To identify differentially expressed genes for each cell subtype, the functions “FindAllMarkers” 

(multiple condition comparisons) and “FindMarkers” (two condition comparisons) from the Seurat 

[2] package were used with default parameters. The expression differences with P < 0.05 and 

log2(fold change, FC) > 0.25 were considered as differentially expressed genes.  

Epithelial cell characterization 

Fourteen epithelial cell subtypes were identified and annotated based on expression of some 

markers, including Tuft cells (PLCG2 and SH2D6),[5] proliferation cells (MKI67 and PTTG1),[6] 

goblet cells (MUC2 and ITLN1),[7] enteroendocrine cells (PYY and CHGA),[8] enterocytes (CA2 and 

CA7) [9] and cholangiocytes (IFI6 and TM4SF4). The CytoTRACE algorithm [10] was used for 

predicting the differentiation status of five malignant cell subtypes. CytoTRACE scores ranged from 

0 to 1 with high score indicating low differentiation status and low score indicating high 

differentiation. 

Copy number variation calling 

We used the inferCNV R package (inferCNV of the Trinity CTAT Project, provided at 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2023-330243–484.:470 73 2024;Gut, et al. Li R



 

3 

 

https://github.com/broadinstitute/inferCNV) to infer the large-scale chromosomal copy number 

variations of each cell. Other parameters were set as default. All epithelial cells from adjacent 

normal tissues served as references. In addition, CopyKAT [11] was used to assume the major 

genetic distance among the cell subtypes and to classify the single cells into two clusters, i.e., 

diploid cell cluster and aneuploidy cell cluster. 

Tissue preference of each cell subtype 

We calculated the ratio of observed to expected cell numbers in each cell subtype (Ro/e) to 

quantify the preference of each cell subtype across tissues as previously suggested.[12] In brief, 

the expected cell numbers of each cell subtype in each tissue were obtained from the Chi-square 

test, and Ro/e > 1 for a cell subtype in a tissue indicated preference of this cell subtype in this 

tissue. 

Genomic instability estimate 

To estimate the genomic instability of each malignant cell, we used the genomicInstability R 

package which used the aREA algorithm to quantify the enrichment of sets of contiguous genes 

(loci-blocks) on the gene expression profiles and estimate the Genomic Instability Score (GIS) for 

each analyzed cell. 

Stromal cell characterization 

Fibroblast cells were separated into 13 distinct subtypes and were annotated as 

myofibroblasts (marker genes: ACTA2 and COL1A1),[13] pericytes (RGS5 and NDUFA4L2), [13] 

vascular smooth muscle cells (PLN and RERGL).[14] Among the 13 subtypes, 9 were enriched in 

primary CRC or metastatic CRC (Ro/e > 1) and thus were termed as cancer-associated fibroblasts 

(CAFs). Endothelial cells were separated into 10 distinct cell subtypes and were annotated as vein 

clusters (ACKR1 and VWF),[15] arterial clusters (GJA4 and HEY1),[16] capillaries (KDR and 

RGCC),[16] lymphatics (PROX1 and LYVE1).[17] 

Cell developmental trajectory analysis 

RNA velocity analysis was conducted using velocyto [18] and scVelo.[19] We used the 10 × 

velocyto pipeline to count spliced and non-spliced reads for each sample from cellranger-

generated BAM files. To predict the root and terminal states of the underlying Markov process, the 

respective scVelo function was applied. We also used a python package PAGA [20] to verify the 

pseudotime between each epithelial cell subtype. The single-cell trajectory analysis of 

myofibroblast cell subtypes was performed with Monocle2 [21] using DDR-Tree and default 

parameters. 
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Spatial transcriptomic analysis 

OCT embedded tissue samples were cryo-sectioned to slides at 10-μm thick and adhered to 

the capture regions (6.5 mm × 6.5 mm) of the visium spatial tissue optimization slide (10 × 

Genomics). After fixation and permeabilization, the released mRNA was captured by the 

oligonucleotides. cDNA synthesis was performed by using the Master mixture containing reverse 

transcriptional reagents and fluorescently labeled nucleotides. cDNA was then covalently linked to 

oligonucleotides and retained in the visium spatial tissue optimization slide when the tissue was 

removed. The library was built after the above operations and Illumina NovaSeq 6000 System was 

used to perform the sequencing. Sample information on spatial cohort is shown in online 

supplemental table 2. 

The Spaceranger software from 10 × Genomics was used to process the fastq files and images 

of spatial transcriptomics for each sample based on the human reference genome GRCh38. UMI 

count spot matrices, images and spot-image coordinates were imported into R. To infer the spatial 

organization of certain cell subtypes, we used Seurat [2] R package to integrate spatial and single-

cell data. Raw UMI counts were normalized by “SCTransform” function. Dimensionality reduction 

and clustering were performed as before. Cell subtypes distributions were visualized in spatial 

context over H&E images. 

Single cell gene set enrichment analysis  

We conducted the gene set enrichment analysis for select cell subtypes by the irGSEA R 

package, with the Hallmark or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways being 

derived. Finally, the “irGSEA.heatmap” and “irGSEA.halfvlnplot” functions were applied to visualize 

enrichment score. 

Transcription factor module analysis 

We applied the pySCENIC [22] workflow to detect active transcription factor modules in five 

malignant cell subtypes, using transcription factor motif scores for hg38 human reference genome 

from the RcisTarget database. 

Identification of master transcription factors   

Master transcription factors that regulate differentially expressed genes in P1 and P3 cells 

were analyzed using the plugin iRegulon [23] in Cytoscape network.[24] iRegulon used > 9,000 

known position weight matrices from various sources and different species. Candidate binding TFs 

were identified using a ‘motif2TF’ procedure. Predicted master transcription factors were ranked 

according to the normalized enrichment score. 
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Cell-cell interaction analysis 

We used CellChat [25] with default parameters to identify significant ligand-receptor pairs 

within primary CRC samples. We used all categories of ligand-receptor interactions in the database 

for the analysis, focusing on the differences in predicted cell-cell communications between P1 cells 

and P6 cells. Finally, the “netVisual_bubble” function was applied to visualize communication 

probabilities by ligand-receptor pairs in different directions. We also used the intercellular signaling 

network (iTALK) [26] R package to verify these significant ligand-receptor pairs between stem-like 

cell subtypes and CAFs. 

Estimate of the corresponding cell fractions in TCGA-COAD RNA-seq data 

We used a computational R package Estimate the Proportion of Immune and Cancer cells 

(EPIC) [27] to estimate the cell fractions of P1 stem-like cells, CAFs and 4 endothelial cell subtypes 

(Art_NOTCH4, Tip_COL4A1, Veins_ACKR1 and Veins_SERPINE1) from TCGA-COAD RNA-seq data. 

The score of P1-CAFs interaction network was the product of the mRNA levels of ligand-receptor 

pairs (PDGFA-PDGFRA, DLL4-NOTCH2 and DLL4-NOTCH3) times the cell fractions of corresponding 

cell subtypes. The score of P1-endothelial cell interaction network was also calculated by 

integrating the mRNA levels of ligand-receptor pairs (DLL4-NOTCH1, DLL4-NOTCH4, JAG1-NOTCH1 

and JAG1-NOTCH4) and the cell fractions of corresponding cell subtypes. 

Cell subtype similarity analysis  

We used the following steps to evaluate the similarity of cell subtypes: (1) Identify top 1,000 

highly variable genes across different cell subtypes, (2) calculate the mean value of the top 1,000 

highly variable genes in each cell subtype, and (3) cluster the hierarchical, using the distance 

defined by (1-Pearson correlation coefficient)/2. 

Single-cell flux estimation and cell metabolite prediction 

We used scfea [28] tools which utilizes a graph neural network model to estimate cell-wise 

metabolic flux by using scRNA-seq data. We chose “module gene m168” as moduleGene file, 

“cmMat c70 m168” as stoichiometry file, and parameter “sc imputation = True”. 

Cell-cell metabolic communication 

We used MEBOCOST,[29] a Python-based computational tool to infer metabolite, mediated 

cell-cell communication events. The cutoff was set as 0.25 and other parameters were defaulted. 

Plasmid and lentiviral constructions and transduction 

HT-29 and SW-480 cells with DLL4, ASCL2 or PTPRO knockdown were generated using the 

pLKD-U6-MCS-CMV-Puro vector (Umine Biotechnology). Both shControl vector and recombinant 
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viruses were produced in 293T cells. The infection was performed in HT-29 and SW-480 cell lines in 

the presence of polybrene (Sigma-Aldrich) and selected using puromycin. The shRNA sequences 

are shDLL4-1: 5’-gcaagaagcgcaatgaccactctcgagagtggtcattgcgcttcttgc-3’; shDLL4-2: 5’-

gcactccctggcaatgtacttctcgagaagtacattgccagggagtgc-3’. shASCL2-1: 5’-

gcgtgaagctggtgaacttctcaagagaaagttcaccagcttcacgc-3’; shASCL2-2: 5’-

ccagcaagaagctgagcaattcaagagattgctcagcttcttgctgg-3’. shPTPRO-1: 5’-

gcagtgactatgaaactacgtctcgagacgtagtttcatagtcactgc-3’; shPTPRO-2: 5’-

gcagcacattcgggatcatgactcgagtcatgatcccgaatgtgctgc-3’. shControl: 5’-

ttctccgaacgtgtcacgtttcaagagaacgtgacacgttcggaga-3’. 

Quantitative reverse-transcription PCR 

Total RNA from MSS CRC cell lines and human ovarian fibroblasts were extracted using TRIzol 

reagent (Invitrogen) and was reverse-transcribed using the RevertAid First Strand cDNA Synthesis 

Kit (K1622, Thermo Fisher Scientific) with random primers. Relative mRNA level of ASCL2, PTPRO 

and DLL4 was determined by RT-qPCR on a Light Cycler 480 II using the SYBR Green method. β-

ACTIN as internal control. The q-PCR primers are ASCL2-F: 5’-caaccgcgtgaagctggtgaact-3’; ASCL2-R: 

5’-tctccaccttgctcagcttcttgc-3’. PTPRO-F: 5’-gcagtttgtacacatggtccgac-3’; PTPRO-R: 5’-

caatgaatgttcctgtccgtccc-3’. DLL4-F: 5’-aagagttgcctgagtggaatttc-3’; DLL4-R: 5’-agcttgttagggtccttacgg-

3’. β-ACTIN-F: 5’-cagggcgtgatggtgggcatg-3’; β-ACTIN-R: 5’-gtagaaggtgtggtgccagatt-3’.  

Cell proliferation and invasion assay 

Invasion assay was performed in a 24-well Millicell chamber in triplicate. The 8-μm pore 

inserts were pre-coated with 30 μg of Matrigel (BD Biosciences). HT-29 and SW-480 cells (4 × 104) 

in serum-free medium were added to the upper chamber. RPMI-1640 containing 20% FBS was 

supplied to the lower chambers. After 24 h incubating at 37 °C with 5% CO2, cells migrated through 

the filters were fixed with methanol and stained with crystal violet. Cell numbers in 3 random fields 

were counted and the experiments were performed in triplicate. The migration assay was tested in 

a similar method without Matrigel. CRC cells (2000 per well) were seeded in 96-well plates with 

100 μl of basal or conditional medium collected from the cultivation of ovarian fibroblasts. After 

treated with vehicle or V9302, cell viability was measured using CCK-8 assays (Dojindo) at defined 

time of culture. Each experiment was performed with at least three replicates. 

Sphere formation assay 

HT-29 and SW-480 cells (with or without PTPRO knockdown) were prepared as single-cell 

suspension and plated into a 24-well ultra-low attachment plate (Corning, CLS3473. 1000 cells per 
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well). Cells were cultured in serum-free DMEM/F12 medium supplemented with 20 ng/mL EGF, 

20 ng/mL bFGF and 1% B27 supplement. After 20 days, the sphere pictures were captured by using 

inverted microscope and sphere area was analyzed by Image J software. 

Immunohistochemical staining 

Paraffin-embedded tissue samples were used for Immunohistochemical (IHC) analysis. 

Antibody against DLL4 (Invitrogen, PA5-85931), ETV4 (Proteintech, 10684-1-AP) or ELF3 (Signalway 

Antibody, 38856) was used. We applied the immune reactive score (IRS) to determine DLL4, ETV4 

and ELF3 protein levels. The staining intensity was estimated as negative (0), weak (1), moderate 

(2), and strong (3). The extent of staining was graded as 1 (≤25%), 2 (26%–50%), 3 (51%–75%), or 4 

(>75%). The IRS was calculated by multiplying the score of intensity and extent. 

Western blot analysis 

Total protein (30 μg) extracted from HT-29 and SW-480 cells was subjected to SDS-PAGE and 

transferred to PVDF membranes (Millipore). Membranes were then incubated overnight at 4 °C 

with primary antibody and visualized with a Phototope Horseradish Peroxidase Western Blot 

Detection kit (WBKLS0100, Millipore). Rabbit anti-DLL4 antibody (Invitrogen, PA5-85931), Rabbit 

anti-ASCL2 antibody (Signalway Antibody, 34038), mouse anti-PTPRO antibody (Proteintech, 

67000-1-Ig) and mouse anti-β-ACTIN antibody (Proteintech, 66009-1-Ig) were used. 

Immunofluorescence staining 

Paraffin-embedded tissue samples that were performed single-cell sequencing and spatial 

transcriptomic analyses were used for immunofluorescence analysis of interesting protein levels. 

Immunofluorescence staining was performed using PANO 7-plex IHC kit (Panovue). For primary 

CRC tissue slides antibody against ASCL2 (Bioss, bs-12349R), PTPRO or EPCAM (Abcam, ab71916) 

were used. The slides were washed after incubating each primary antibody, then the secondary 

antibody and different dyes were applied and incubated at room temperature. After tyramide 

signal amplification, cell nuclei were counterstained with DAPI. The multispectral images were 

obtained using the Mantra System (PerkinElmer, Waltham, Massachusetts, US). 

CRC cells transendothelial migration assay 

HUVEC cells (5 × 104) were seeded on type I collagen coated transwell inserts and grown for 

24 h in 5% CO2 at 37 °C to form monolayer. CRC cells with different treatment were labeled with 10 

μM of the lipophilic fluorescent dye DiO (C1038, Beyotime) for 20 min at 37 °C and then 

suspended in serum free 1640 medium and added to the upper chamber. Medium with serum was 

added to the lower chamber. CRC cells were cultured 18 h for their migration. After that, we used 
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cotton swab to remove non-migrating cells on the upper face of the filter, cells on the lower face 

were then fixed with 4% formaldehyde for 10 min and washed with PBS buffer. The migrated CRC 

cells were observed using epifluorescence microscope. Cell numbers in 3 random fields were 

counted. 

Glutamine (Gln) detection 

Glutamine levels in culture medium and CRC cells were detected following the instruction 

manual of Glutamine Microplate Assay Kit (AS0160, sabbiotech). Briefly, human ovarian fibroblasts 

and CRC cells were cultured in glutamine free 1640 medium for 24 h. Then the conditional medium 

was collected to determine the glutamine levels released from ovarian fibroblasts and CRC cells. 

For intracellular glutamine detection, CRC cells were cultured with conditional medium from 

ovarian fibroblasts or control medium. CRC cells were treated with V9302 or vehicle and the 

cultivation were collected and sonicated. Then the lysate was used for glutamine detection. The 

results were normalized to cell number. 

Establishment of mouse ovarian metastasis model 

Five-week-old female BALB/c nude mice were obtained from Beijing Vital River Laboratory 

Animal Technology and allowed to acclimate to local conditions for 1 week under a 12 h light/12 h 

dark cycle. Luciferase labeled CRC cells (5 × 105) with ASCL2, PTPRO or DLL4 stable knockdown 

were injected into the tail vein of mice (n = 10). After 40 days, mouse ovarian tissues were 

collected. Ovarian metastasis was determined by bioluminescence imaging and hematoxylin-eosin 

staining. Animal handling and experimental procedures were approved by the Institutional Animal 

Care and Use Committee of Sun Yat-Sen University and performed in accordance with the relevant 

institutional and national guidelines. 

Public datasets used in this study 

To increase the statistical power, we downloaded the publicly available scRNA-seq data from 

previous study (GSE132465 and GSE144735, termed as KUL3 dataset and SMC dataset).[30] We 

also included the public bulk RNA-seq datasets (GSE50760, GSE75117) from the Gene Expression 

Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/). [31, 32] The dataset GSE50760 (n = 

54) included normal colon, primary CRC, and liver metastases generated from 18 CRC patients. The 

dataset GSE75117 included invasive front (IF), tumor center (TC) and peritoneal metastasis (PM) 

from 16 CRC patients. Bulk RNA-seq data of EVP and D endothelial cells were obtained from the 

GEO accession number GSE114528[33] and the ArrayExpress (https://www.ebi.ac.uk/arrayexpress) 

accession number E-MTAB-7148.[34] Transcriptomic data and clinical information of The Cancer 
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Genome Atlas (TCGA) COAD cohort were downloaded from the UCSC Xena data portal 

(https://xenabrowser.net).[35] 

Statistical analysis 

Comparisons between two groups were performed using two-tailed Student’s t-test under the 

normality assumption. One-way ANOVA with Dunnett’s T3 multiple-comparison test was used to 

compare several groups. Spearman’s correlation was used to measure the correlation between two 

continuous variables and r > 0.3 and P < 0.05 was considered significant. Log-rank test was used for 

univariate survival analyses and showed as the Kaplan-Meier plot. Cox proportional hazards model 

was used to analyze multivariate effects. Receiver operating characteristic (ROC) curve were 

constructed and areas under the curves (AUC) were used to evaluate the diagnostic value of DLL4. 

All statistical analyses and visualization were performed using R or GraphPad Prism. The lines in 

the middle of the box plot are median and the upper and lower lines indicate 25th and 75th 

percentiles. P < 0.05 was considered statistically significant. The number of replicates and statistical 

tests used in figures were shown in corresponding figure legends. 
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