
Appendix A

In this section, the asymptotic properties of QAICb1 and QAICb2 in equations (3.10) and (3.18)

are established under linear mixed models. We will prove that the proposed selection criteria are

asymptotically equivalent when the number of individuals n→∞. In addition, we will show that

QAICb1 and QAICb2 are asymptotically unbiased estimators of the expected K-L discrepancy

d(β0, φ, k) in expression (3.2).

Let B be the parameter space of the unknown parameter β. Let β̄ be the pseudo true parameter

of β, which is the estimator of β obtained by solving the corresponding quasi-score equation. It

should be pointed out that β̄ is not necessarily a global minimizer and is assumed to be existing

and unique.

A.1 Asymptotic Equivalence of QAICb1 and QAICb2

In this section, we will focus on proving the asymptotic equivalence of QAICb1 and QAICb2. It is

the same to prove the asymptotic equivalence of two bias correction terms b1 and b2. Following

Shang and Cavanaugh (2008), we will establish the consistency of the two estimators β̂ and β̂∗

from the original and bootstrap sample, respectively. We will show that as n→∞, we have

β̂ → β̄ and β̂∗ → β̄

based on Assumptions 1 to 4.

Assumption 1.

1. The parameter space B is a compact subset of k-dimensional Euclidean space.

2. The first, second, and third derivatives of the log quasi-likelihood with respect to β exist, and

are continuous and bounded over B.

3. β̄ is an interior point of B.

With Assumption 1, let Qi(yi|β) and Qi(yi|β̃) be the two marginal densities for the ith

individual given β and β̃ in a neighborhood U of B. The log quasi-likelihood ratio is defined by

Ri(yi, β, U) = inf
β̃∈U
{Qi(yi|β)−Qi(yi|β̃)} = inf

β̃∈U

Qi(yi|β)

Qi(yi|β̃)
.

Assume that the following limit

R̄(β̄, U) = lim
n→∞

1

n

n∑
i=1

E0{Ri(yi, β̄, U)}

exists and is finite in a neighborhood U = Uβ for any β in B.

Note that the log quasi-likelihood function Q(β;Y ) is continuous with

lim
β̃→β

Q(β̃;Y ) = Q(β;Y )
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for any β̃ in the space B. Based on the Lebesgue monotone convergence theorem, we have the

following limits

lim
q→∞

R̄(β̄, U
(q)
β ) = R̄(β̄, β) = lim

n→∞

1

n
E0{Q(β̄;Y )−Q(β;Y )}

hold true for a monotone decreasing sequence of neighborhoods U
(q)
β , q = 1, 2, 3, ..., converging to

a parameter β.

For a bootstrap sample Y ∗ = (y∗
′

1 , ..., y
∗′
n )

′
, we can similarly define

R̄B(β̄, U) = lim
n→∞

1

n

n∑
i=1

E0E∗{Ri(y∗i , β̄, U)}

and

lim
q→∞

R̄(β̄, U
(q)
β ) = R̄B(β̄, β) = lim

n→∞

1

n
E0E∗{Q(β̄;Y ∗)−Q(β;Y ∗)}.

Then we provide the next assumption:

Assumption 2.

1. 1
n

n∑
i=1

Ri(yi, β̄, Uβ) converges almost surely to R̄(β̄, Uβ) in a neighborhood Uβ for any β in B

and R̄(β̄, Uβ) > 0 for β in B, where β 6= β̄.

2. 1
n

n∑
i=1

Ri(y
∗
i , β̄, Uβ) converges almost surely to R̄B(β̄, Uβ) in a neighborhood Uβ for any β in B

and R̄B(β̄, Uβ) > 0 for β in B, where β 6= β̄.

Next, we will provide Assumption 3 as well as the proof using the nonparametric and semipare-

metric approaches under the linear mixed model. Assumption 3 and its special case Assumption

3b lay the foundation of the proposed QAICb1 and QAICb2. We can extend Assumption 3 and

Assumption 3b to the generalized linear model with random effects.

Assumption 3. E∗{Q(β;Y ∗)} = Q(β;Y ).

Proof. To prove the Assumption 3, we take advantage of the independent model structure by

assuming the data are not correlated. Shang and Cavanaugh (2008) proved a assumption similar to

Assumption 3 under log likelihood and MLE estimators using parametric, semiparemetric, and

nonparametric settings. As both an MLE estimator and a quasi-score-based estimator are obtained

by solving the first derivative of the log likelihood functions, Assumption 3 can be extended using

quasi-likelihood functions. Moreover, the log quasi-likelihood and log likelihood functions take the

same form other than a constant term arisen from the integral when the linear mixed model is

used.

We will first show the proof of Assumption 3 using the semiparemetric approach.

Semiparametric bootstrap

Notations from models (2.1) and (2.2) will be used here. The semiparemetric bootstrap depends

on resampling over the residuals obtained through the fitted model by

ξ̂i = yi −Xiβ̂, i = 1, ..., n,
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where ξ̂i is the vector of residuals corresponding to the ith individual. Let ξ̂ = (ξ̂1, ..., ξ̂n)′ and the

equation of obtaining the residuals ξ̂ in the matrix form is denoted by

ξ̂ = Y −Xβ̂.

Then a bootstrap sample Y ∗ using the semiparametric bootstrap is achieved by

Y ∗ = Xβ̂ + ξ̂∗, (A1)

where ξ̂∗, denoted by (ξ̂∗1 , ..., ξ̂
∗
n)′, is selected with replacement based on the empirical distribution

of the residuals ξ̂.

Note that the overdispersion parameter is not included because it is set to be 1 when a linear

mixed model is used.

Let V be the variance covariance matrix of Y which is independent of β. With respect to β,

X and Y , the first derivative of the quasi-likelihood function under the independent model setting

can be written by
∂Q(β;Y )

∂β
= X ′V −1(Y −Xβ). (A2)

Actually, the derivative in equation (A2) is the same as the quasi-score equation defined under

the uncorrelated observations. By integrating equation (A2) and ignoring the constant, the log

quasi-likelihood function of the original sample is calculated as

Q(β;X,Y ) =
1

2
X ′(Y −Xβ)′V −1(Y −Xβ), (A3)

and the log quasi-likelihood of the bootstrap sample Y ∗, similar to equation (A3), under the

semiparametric bootstrap setting can be written as

Q(β;X,Y ∗) =
1

2
X ′(Y ∗ −Xβ)′V −1(Y ∗ −Xβ). (A4)

By taking the expectation with respect to the bootstrap distribution over expression (A4) and

applying equation (A1), we have

E∗{Q(β;X,Y ∗)} = E∗{
1

2
X ′(Y ∗ −Xβ)′V −1(Y ∗ −Xβ)}

=
1

2
X ′E∗{(Y ∗ −Xβ)′V −1(Y ∗ −Xβ)}

=
1

2
X ′E∗{(Xβ̂ + ξ̂∗ −Xβ)′V −1(Xβ̂ + ξ̂∗ −Xβ)}

=
1

2
X ′E∗{(Y −Xβ + ξ̂∗ − (Y −Xβ̂))′V −1(Y −Xβ + ξ̂∗ − (Y −Xβ̂))}

=
1

2
X ′E∗{(ξ − (ξ̂ − ξ̂∗))′V −1(ξ − (ξ̂ − ξ̂∗))}

=
1

2
X ′E∗{ξ′V −1ξ − 2ξ′V −1(ξ̂ − ξ̂∗) + (ξ̂ − ξ̂∗)′V −1(ξ̂ − ξ̂∗)}

=
1

2
X ′{ξ′V −1ξ − 2ξ′V −1E∗(ξ̂ − ξ̂∗) + E∗||V −1(ξ̂ − ξ̂∗)||2}. (A5)
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As the distribution of ξ̂∗ is the same as the empirical distribution of ξ̂ and E∗ can also be viewed

as the expectation taken under the empirical distribution, then we have

E∗{(ξ̂ − ξ̂∗)} = E∗(ξ̂)− E∗(ξ̂∗) =
1

n

n∑
i=1

ξ̂i −
1

n

n∑
i=1

ξ̂i = 0.

Thus, the expectation of equation (A5) can be simplified to

E∗Q(β;X,Y ∗) =
1

2
X ′{ξ′V −1ξ}

=
1

2
X ′{(Y −Xβ)′V −1(Y −Xβ)}

= Q(β;X,Y ),

which has validated the proof of Assumption 3 under semi-parametric bootstrap.

Nonparametric bootstrap

When implementing the nonparametric bootstrap approach, we should select data points with

replacement at the individual level when there exists correlation in the data. For the subject indexes

i = 1, ..., n, let the original pairs of sample to be (Xi, yi) with yi denoting the response vector of the

ith subject and Xi the corresponding covariate matrix. Then a bootstrap sample is represented as

(X∗i , y
∗
i ). According to the linear mixed model setting (2.1), let the vector ξi = Zibi+εi, i = 1, ..., n,

then model (2.1) becomes

yi = Xiβ + ξi, i = 1, ..., n,

and the associated bootstrap sample (X∗i , y
∗
i ) can be expressed as

y∗i = X∗i β + ξ∗i , i = 1, ..., n.

With respect to the matrix notation (2.2), we have

Y = Xβ + ξ and

Y ∗ = X∗β + ξ∗, (A6)

where ξ and ξ∗ are N × 1 vectors with ξ = (ξ′1, ..., ξ
′
n)′ and ξ∗ = (ξ∗1

′, ..., ξ∗n
′)′, respectively. We can

see from expression (A6) that, similar to the semiparametric bootstrap, the bootstrap distribution

of ξ∗ is the same as the empirical distribution of ξ̂. Let V ∗ be the variance covariance matrix

of ξ∗ and then V ∗ is a positive definite block diagonal matrix of n blocks with each block being

1
n

n∑
i=1

(ξ − ξ̄)(ξ − ξ̄)′ with ξ̄ to be the mean of ξ. As we have

ξ̄ = E(ξ) = E(Zibi + εi) = 0,

the block of the matrix V ∗ can be denoted by 1
n

n∑
i=1

ξξ′.

Referring to the integrated log quasi-likelihood function in equation (A3), the corresponding

log quasi-likelihood function of a bootstrap sample with respect to X∗ and Y ∗ via nonparametric

bootstrap can be represented as

Q(β;X∗Y ∗) =
1

2
X ′(Y ∗ −X∗β)′V −1(Y ∗ −X∗β).
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By plugging in the variance covariance V , we then have

E∗{Q(β;X∗, Y ∗)} =
1

2
E∗{X ′(Y ∗ −X∗β)′V −1(Y ∗ −X∗β)}

=
1

2
X ′E∗||V −

1
2 (Y ∗ −X∗β)||2

=
1

2
X ′E∗||V −

1
2 (ξ∗)||2

=
1

2
X ′{trace(V −1V ∗) + E∗(ξ

∗)′V −1E∗(ξ
∗)}

=
1

2
X ′trace(V −1V ∗)

=
1

2
X ′ξ′V −1ξ

=
1

2
X ′||V −

1
2 ξ||2

=
1

2
X ′||V −

1
2 (Y −Xβ)||2

=
1

2
X ′(Y −Xβ)′V −1(Y −Xβ)

= Q(β;X,Y ).

Thus, the Assumption 3 holds true under nonparametric bootstrap framework.

To summary, we have showed that the Assumption 3 is valid for any β of B under both the

semiparametric and nonparametric bootstrap approaches. Specially, when β̂ is an estimator of β

by solving the quasi-score equations, we have the following assumption:

Assumption 3b. E∗{Q(β̂;Y ∗)} = Q(β̂;Y ), where β̂ is the estimator by solving the quasi-score

equations.

The last assumption is provided to establish the asymptotic property of the second derivatives

of the quasi-likelihood functions of both the original sample and bootstrap samples. The proof of

this assumption is also given.

Assumption 4. Let ϕ̂(Y, β) = − ∂2

∂β∂β′ Q(β;Y ) and ϕ̂(Y ∗, β) = − ∂2

∂β∂β′ Q(β;Y ∗) be the observed

fisher information over the original sample Y and bootstrap sample Y ∗, respectively. Then as

n→∞,

ϕ̂(Y, β)/n −→ ϕ̄(β) a.s. and

ϕ̂(Y ∗, β)/n −→ ϕ̄B(β) a.s.,

where ϕ̄(β) and ϕ̄B(β) are two positive definite matrices. Moreover, ϕ̄(β̄) = ϕ̄B(β̄).

Proof. From Assumption 1, we know that both quantities ϕ̂(Y, β) and ϕ̂(Y ∗, β) exist and so do

the corresponding limits ϕ̂(Y, β)/n and ϕ̂(Y ∗, β)/n. Let

ϕ̄(β) = lim
n→∞

1

n
E0{ϕ̂(Y, β)} and ϕ̄B(β) = lim

n→∞

1

n
E0E∗{ϕ̂(Y ∗, β)}.

We claim that

lim
n→∞

1

n
ϕ̂(Y, β) = ϕ̄(β) a.s. and lim

n→∞

1

n
ϕ̂B(Y ∗, β) = ϕ̄(β) a.s.
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Next, we will show that ϕ̄(β) = ϕ̄B(β) under the semiparametric and nonparametric bootstrap-

ping approaches. Based on Assumptions 1 and 3, we have

lim
n→∞

1

n
ϕ̂(Y ∗, β) = ϕ̄B(β) a.s.

= lim
n→∞

1

n
E0E∗{ϕ̂(Y ∗, β)}

= lim
n→∞

1

n
E0E∗{−

∂2

∂β∂β′
Q(β;Y ∗)}

= lim
n→∞

1

n
E0{−

∂2

∂β∂β′
E∗{Q(β;Y ∗)}}

= lim
n→∞

1

n
E0{−

∂2

∂β∂β′
Q(β;Y )}

= lim
n→∞

1

n
E0{ϕ̂(Y, β)}

= ϕ̄(β) a.s.

As a special case, when β = β̄ which is the global maximum of the log quasi-likelihood function

Q(β;Y ), we have ϕ̄(β̄) = ϕ̄B(β̄). Note that the β̄ is not necessarily the global maximum under

the model and can be the estimators over quasi-likelihood under any correlation structures. As

Assumption 3 is validated based on the independent model as well as all the calculations involving

quasi-likelihood functions for all the β in the parameter space B, the global maximum of β under

the model should also satisfy Assumption 4.

Proof of Asymptotic Equivalence of QAICb1 and QAICb2. After establishing As-

sumptions 1 - 4, we can show the asymptotic equivalence of QAICb1 and QAICb2 defined by

equations (3.10) and (3.18).

Consider a second-order expansion of the −2Q(β̂;Y ∗) about β̂∗ as

−2Q(β̂;Y ∗) = −2Q(β̂;Y ∗) + (β̂ − β̂∗)′ϕ̂(Y ∗, β∗)(β̂ − β̂∗), (A7)

where β∗ is a vector whose value is between β̂ and β̂∗.

By taking expectations with respect to the bootstrap distribution on both sides of equation (A7),

and referring to the consistency of β̂ and β̂∗ along with Assumption 4, we have

E∗{−2Q(β̂;Y ∗)}

= E∗{−2Q(β̂∗;Y ∗) + (β̂ − β̂∗)′ϕ̂(Y ∗, β∗)(β̂ − β̂∗)}

= E∗{−2Q(β̂∗;Y ∗)}+ E∗{(β̂ − β̂∗)′ϕ̂(Y ∗, β∗)(β̂ − β̂∗)}

= E∗{−2Q(β̂∗;Y ∗)}+ E∗{m(β̂ − β̂∗)′ϕ̄B(β̄)(β̂ − β̂∗)}(1 + o(1)) a.s.

and then we have

E∗{−2Q(β̂;Y ∗)} − E∗{−2Q(β̂∗;Y ∗)}

= E∗{m(β̂ − β̂∗)′ϕ̄B(β̄)(β̂ − β̂∗)}(1 + o(1)) a.s. (A8)

Similarly, consider a second-order expansion of the −2Q(β̂∗;Y ) about β̂ as

−2Q(β̂∗;Y ) = −2Q(β̂;Y ) + (β̂∗ − β̂)′ϕ̂(Y, β∗∗)(β̂∗ − β̂), (A9)
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where β∗∗ is a vector lying between β̂∗ and β̂.

By taking expectations with respect to the bootstrap distribution on both sides of equation

(A9), and referring to the consistency of β̂ and β̂∗ and Assumption 4, we have

E∗{−2Q(β̂∗;Y )}

= E∗{−2Q(β̂;Y ) + (β̂ − β̂∗)′ϕ̂(Y, β∗∗)(β̂ − β̂∗)}

= E∗{−2Q(β̂;Y )}+ E∗{(β̂ − β̂∗)′ϕ̂(Y, β∗∗)(β̂ − β̂∗)}

= E∗{−2Q(β̂;Y )}+ E∗{m(β̂ − β̂∗)′ϕ̄(β̄)(β̂ − β̂∗)}(1 + o(1)) a.s.

and we have

E∗{−2Q(β̂∗;Y )} − E∗{−2Q(β̂;Y )}

= E∗{m(β̂ − β̂∗)′ϕ̄(β̄)(β̂ − β̂∗)}(1 + o(1)) a.s. (A10)

From Assumption 4, we know that ϕ̄B(β̄) = ϕ̄(β̄), we therefore have

E∗{m(β̂ − β̂∗)′ϕ̄B(β̄)(β̂ − β̂∗)} = E∗{m(β̂ − β̂∗)′ϕ̄(β̄)(β̂ − β̂∗)}.

Combining two asymptotic results in equations (A8) and (A10), we have

E∗{−2Q(β̂;Y ∗)} − E∗{−2Q(β̂∗;Y ∗)}

= E∗{−2Q(β̂∗;Y )} − E∗{−2Q(β̂;Y )}(1 + o(1)) a.s.

By the definitions of b1, b2 as well as Assumption 3, as n→∞, we have

b1→ E∗{−2Q(β̂∗;Y )} − E∗{−2Q(β̂∗;Y ∗)}

= E∗{−2Q(β̂∗;Y, )} − E∗{−2Q(β̂;Y ∗)}

+ E∗{−2Q(β̂;Y ∗)} − E∗{−2Q(β̂∗;Y ∗)}

= E∗{−2Q(β̂∗;Y )} − {−2Q(β̂;Y )}

+ E∗{−2Q(β̂;Y ∗)} − E∗{−2Q(β̂∗;Y ∗)}

= E∗{−2Q(β̂∗;Y )− {−2Q(β̂;Y )}}

+ E∗{−2Q(β̂∗;Y )} − E∗{−2Q(β̂;Y }(1 + o(1)) a.s.

= 2E∗{−2Q(β̂∗;Y )− {−2Q(β̂;Y )}}(1 + o(1)) a.s.

= b2(1 + o(1)) a.s.

Therefore, two variants b1 and b2 are asymptotically equivalent, which leads to the asymptotic

equivalence of QAICb1 and QAICb2.

A.2 Consistency of QAICb1 and QAICb2

We will show that b1 and b2 defined in equations (3.9) and (3.17) are consistent estimators of the

bias correction term

E0[E0{−2Q(β;Y )}|β=β̂]− E0[−2Q(β̂;Y )]. (A11)

To prove the consistency of QAICb1 and QAICb2, Lemma 1 and Lemma 2 will be established.
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Let the quantity HB be defined as

HB = E∗{n(β̂ − β̂∗)′ϕ̄B(β̄)(β̂ − β̂∗)} = E∗{n(β̂ − β̂∗)′ϕ̄(β̄)(β̂ − β̂∗)}.

From Section A.1, we know that b1 and b2 are asymptotically equivalent to 2HB. In other

words, to prove the consistence of b1 and b2 is the same to show that 2HB is the consistent

estimator of bias term (A11). To start, we first define the term τ̂(β, Y ) using the first derivative of

log quasi-likelihood functions by

τ̂(β, Y ) = { ∂
∂β

Q(β;Y )
∂

∂β′
Q(β;Y )}.

By Assumption 1, similarly to ϕ̂(β, Y ) in Assumption 4, the limit of τ̂(β, Y )/n exists and

if the limit is defined by τ̄(β), we have

τ̄(β) = lim
n→∞

1

n
E0{τ̂(β, Y )} and

lim
n→∞

1

n
τ̂(β, Y ) = τ̄(β) a.s. (A12)

Lemma 1.

lim
m→∞

HB = tr{τ̄(β̄)ϕ̄(β̄)−1} a.s.

Proof of Lemma 1. Consider a first-order Taylor expansion of ∂
∂βQ(β̂;Y ) around β̂∗. With β̂

being the estimator that maximizes Q(β;Y ), we have

0 =
∂

∂β
Q(β̂;Y )

=
∂

∂β
Q(β̂∗;Y ) +

∂2

∂β∂β′
Q(βα;Y )(β̂ − β̂∗), (A13)

where βα is a random vector between β̂ and β̂∗. By solving equation (A13), we have

β̂ − β̂∗ = −{ ∂2

∂β∂β′
Q(βα;Y )}−1 ∂

∂β
Q(β̂∗;Y )

= −{ϕ̂(Y, βα)}−1 ∂
∂β

Q(β̂∗;Y ). (A14)

Furthermore, by Assumption 4, we know

lim
n→∞

n(β̂ − β̂∗) = lim
n→∞

−{ 1

n
ϕ̂(Y, βα)}−1 ∂

∂β
Q(β̂∗;Y )

= {−ϕ̄(β̄)}−1 ∂
∂β

Q(β̂∗;Y ) a.s. (A15)

By substituting β̂ − β̂∗ of HB using (A14) and applying the asymptotic property in expres-
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sion (A15) combined with the consistency β̂ and β̂∗, we have

lim
n→∞

HB = lim
n→∞

E∗{n(β̂ − β̂∗)′ϕ̄(β̄)(β̂ − β̂∗)}

= lim
n→∞

E∗{
1

n
{n(β̂ − β̂∗)′}ϕ̄(β̄){n(β̂ − β̂∗)}}

= lim
n→∞

E∗{
1

n

∂

∂β′
Q(β̂∗;Y ){−ϕ̄(β̄)}−1ϕ̄(β̄){−ϕ̄(β̄)}−1 ∂

∂β
Q(β̂∗;Y )} a.s.

= lim
n→∞

E∗tr{{
1

n
{ ∂
∂β

Q(β̂∗;Y, I)
∂

∂β′
Q(β̂∗;Y )}}ϕ̄(β̄)−1} a.s.

= lim
n→∞

E∗tr{{
1

n
ψ̂(β̂∗, Y )}ϕ̄(β̄)−1} a.s. (A16)

Utilizing limit (A12) and the consistency of β̂∗, we have

lim
n→∞

1

n
τ̂(β̂∗, Y ) = τ̄(β̄). (A17)

Combining (A16) and (A17), it can be shown that

lim
n→∞

HB = tr{τ̄(β̄)ϕ̄(β̄)−1} a.s.,

which validates Lemma 1.

Next, we will provide Lemma 2 with its proof.

Lemma 2. 2HB is a consistent estimator of the bias adjustment (A11).

Proof of Lemma 2. Similar to the proof of the asymptotic equivalence of two variants b1 and b2,

Taylor expansion is used to construct the equivalence of two expectations. First, we take a second

order expansion of E0{−2Q(β;Y )}|β=β̂ about β̄ to obtain

E0{−2Q(β;Y )}|β=β̂ = E0{−2Q(β̄;Y )}+ E0{−
∂

∂β
2Q(β̄;Y )}(β̂ − β̄)

+ (β̂ − β̄)′E0{−
∂2

∂β∂β′
2Q(βγ ;Y )}(β̂ − β̄)

= E0{−2Q(β̄;Y )}

+ (β̂ − β̄)′E0{−
∂2

∂β∂β′
2Q(βγ ;Y )}(β̂ − β̄)

= E0{−2Q(β̄;Y )}+ (β̂ − β̄)′E0{ϕ̂(Y, βγ)}(β̂ − β̄),

where βγ is a random vector between β̂ and β̄. Then we have

E0{−2Q(β;Y )}|β=β̂ − E0{−2Q(β̄;Y )} = (β̂ − β̄)′E0{ϕ̂(Y, βγ)}(β̂ − β̄). (A18)

Next, considering a second order expansion of −2Q(β̄;Y ) about β̂ and β̂ being obtained by

maximizing Q(β;Y ), we have

−2Q(β̄;Y ) = −2Q(β̂;Y )− ∂

∂β
2Q(β̂;Y )(β̄ − β̂)

+ (β̄ − β̂){− ∂2

∂β∂β′
2Q(βδ;Y )}(β̄ − β̂)

= −2Q(β̂;Y ) + (β̄ − β̂){− ∂2

∂β∂β′
2Q(βδ;Y )}(β̄ − β̂)

= −2Q(β̂;Y ) + (β̂ − β̄)′ϕ̂(Y, βδ)(β̂ − β̄),
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where βδ is a random vector between β̂ and β̄. Similarly, we have

−2Q(β̄;Y )− {−2Q(β̂;Y )} = (β̂ − β̄)′ϕ̂(Y, βδ)(β̂ − β̄). (A19)

We take the expectation on both sides of equation (A19) with respect to the true model and have

E0{−2Q(β̄;Y )} − E0{−2Q(β̂;Y )} = E0{(β̂ − β̄)′ϕ̂(Y, βδ)(β̂ − β̄)}, (A20)

and we obtain the summation of equations (A18) and (A20), which gives us

E0{−2Q(β;Y )}|β=β̂ − E0{−2Q(β̂;Y )}

= (β̂ − β̄)′E0{ϕ̂(Y, βγ)}(β̂ − β̄) + E0{(β̂ − β̄)′ϕ̂(Y, βδ)(β̂ − β̄)}.
(A21)

By taking the expectation on both sides of equation (A21) with respect to the true model, we

can obtain

E0{E0{−2Q(β;Y )}|β=β̂} − E0{−2Q(β̂;Y )}

= E0{(β̂ − β̄)′E0{ϕ̂(Y, βγ)}(β̂ − β̄) + E0{(β̂ − β̄)′ϕ̂(Y, βδ)(β̂ − β̄)}}, (A22)

and expression (A22) is asymptotically equivalent to

lim
n→∞

(β̂ − β̄)′E0{ϕ̂(Y, βγ)}(β̂ − β̄) + E0{(β̂ − β̄)′ϕ̂(Y, βδ)(β̂ − β̄)}. (A23)

So, if we need to show that 2HB is asymptotically equivalent to bias term (A11), it is identical to

establish the asymptotic equivalence of 2HB and expression (A23).

According to Assumption 4 and the consistency of β̂, we have

lim
n→∞

{ 1

n
ϕ̂(Y, βδ)} = lim

n→∞
E0{

1

n
ϕ̂(Y, βγ)} = ϕ̄(β̄) a.s. (A24)

Moreover, by taking the first order expansion of ∂
∂βQ(β̂;Y ) about β̄, we have

0 =
∂

∂β
Q(β̂;Y ) =

∂

∂β
Q(β̄;Y ) +

∂2

∂β∂β′
Q(βε;Y )(β̂ − β̄)

=⇒ β̂ − β̄ = −{ ∂2

∂β∂β′
Q(βε;Y )}−1 ∂

∂β
Q(β̄;Y )

= −ϕ̂(Y, βε)
−1 ∂

∂β
Q(β̄;Y ), (A25)

where βε is a random vector between β̂ and β̄.

Finally, by the previously established (A12), (A24), (A25), and Lemma 1 along with the
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consistency of β̂, the limit of (A23) can be reduced as

lim
n→∞

(β̂ − β̄)′E0{ϕ̂(Y, βγ)}(β̂ − β̄) + E0{(β̂ − β̄)′ϕ̂(Y, βδ)(β̂ − β̄)}

= 2 lim
n→∞

{ 1

n
{n(β̂ − β̄)′}ϕ̄(β̄){n(β̂ − β̄)}}

= 2 lim
n→∞

{ 1

n
{ ∂
∂β′

Q(β̄;Y )}{ 1

n
ϕ̂(Y, βε)}−1ϕ̄(β̄){ 1

n
ϕ̂(Y, βε)}−1}{

∂

∂β
Q(β̄;Y )}

= 2 lim
n→∞

{ 1

n
{{ ∂
∂β′

Q(β̄;Y )}ϕ̄(β̄)−1}ϕ̄(β̄){ϕ̄(β̄)−1{ ∂
∂β

Q(β̄;Y )}}} a.s.

= 2 lim
n→∞

tr{{ 1

n
{ ∂
∂β

Q(β̄;Y )
∂

∂β′
Q(β̄;Y )}}ϕ̄(β̄)−1} a.s.

= 2 lim
n→∞

tr{{ 1

n
τ̂(Y, β̄)}ϕ̄(β̄)−1} a.s.

= 2tr{τ̄(β̄)ϕ̄(β̄)−1} a.s.

= 2 lim
n→∞

HB a.s.

Therefore, we have established the asymptotic equivalence of 2HB and limit (A23), which completes

the proof of Lemma 2.

Based on Lemma 2, we know that two variants b1 and b2 in equations (3.9) and (3.17) are

asymptotically equivalent to bias term (A11) and more specifically, they are consistent estimators

of bias correction term (A11).
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