Supplementary Material for

Title: Drug-Target identification in COVID-19 disease mechanisms using computational systems biology approaches DOI: 10.3389/fimmu.2023.1282859

Anna Niarakis et al.

*Corresponding author. Email: anna.niarakis@inria.fr

This PDF file includes:

Figs. S1 to S17 Tables S1 to S17 with the exception of Tables S8 and S9 that are provided in a separate excel file.

Fig. S1.

A) Carnival network of mechanistic hypotheses connecting the top 10 deregulated kinases with the top 30 deregulated TFs. Kinases are represented as hexagon-shaped nodes, TFs as rounded rectangles, and intermediary signaling proteins as elliptical nodes. Up-regulated nodes are indicated in red while down-regulated nodes are colored in blue. Activatory reactions are indicated with arrow-shaped edges whereas inhibitory ones are represented by T-shaped edges. Bold outlines denote proteins already present in the COVID-19 Disease Map. Blue outlines denote PAMPs and Interferon-1 pathway members, red outlines are ER stress pathway members and purple outlines indicate TGFbeta pathway members of the pathways manually curated by the COVID-19 Disease Maps community. B) Highlighted C19DMap diagrams containing deregulated kinases and TFs are shown in dark pink. Users can click on the highlighted boxes and enter the diagram.

Fig. S2.

Overlap of (a) DEGs and (b) TFs between SARS-CoV-2-infected NHBE and A549 cells by LAMP and GO Enrichment analysis.

Fig. S3.

(A) Venn diagram of the combined pathway gene sets from COVID-19 Disease Map, WikiPathways, and Reactome with 1,840 human pathways containing 12,037 unique genes. (B) Over-representation analysis (criteria: absolute fold change > 1.5 and p-value < 0.05) revealed 11 pathways altered in both cell lines. WP = WikiPathways

Fig. S4.

C19DMap (DM), WikiPathways (WP) and Reactome pathways significantly enriched for DEGs in SARS-CoV-2-infected NHBE cells.

Fig. S5. C19DMap (DM), WikiPathways (WP) and Reactome pathways significantly enriched for DEGs in SARS-CoV-2-infected A549 cells.

Fig. S6.

A) UMAP of both whole data sets (GSE145926 and GSE160664), where all cell types were highlighted and reported. B) Overlap of overexpressed (positive) DEGs among all detected lung epithelial cell types of COVID-19 patients relative to healthy controls.

B)

Fig. S7.

The Boolean network obtained after the processing of the CellDesigner XML file of the Type I IFN of the C19DMap repository with CaSQ 9.0.2. After post-processing, the final version of the model contains 121 nodes and 190 edges. Colour code: Red: Viral proteins, Turquoise: Drugs, Pink: host cell inputs, Purple: Host cell proteins, Light blue: Phenotypes of interest

Fig. S8.

Example of the in-silico simulation in Cell Collective. The orange line presents the inflammation activity level. The left graph presents the increase of inflammation phenotype when viral components are activated after the time step 20. The right graph presents the decrease of inflammation phenotype in the presence of viral components upon addition of the GRL0617, Azithromycin, and MNS drugs to the system (at time step 20).

Fig. S9.

Sensitivity analysis showing the association between inputs (external components) and outputs (phenotypes). A) All the inputs, except drugs, were active. Inflammation phenotype has the highest positive association with protein E. The 'ISG expression antiviral response phenotype' has the highest association (negative) with Nsp3. B) All the inputs were active. The 'Inflammation phenotype' has the highest positive association with viral protein E and negative association with the MNS drug. An increase in viral proteins leads to higher inflammation. In contrast, the increase in MNS reduces inflammation. PCC is a partial correlation coefficient measuring the strength of association between external components and output variables.

Fig. S10.

The result of input propagation can be visualized in the heatmap where columns represent components of the system and rows represent the 8 selected input conditions. A white cell denotes that the corresponding component is fixed at value 0 in this input condition. Likewise, a blue cell denotes that it is fixed at 1. Red cells denote components which are not fixed by input propagation.

Fig. S11.

Close-up comparison of the effect of p38 knockout (KO) on the phenotype scores of the macrophages model personalized for patient C141. Phenotype scores of the recruitment of immune cells were gathered for the wild-type C141 (red) and the p38 knockout C141 MaBoSS simulation (blue).

Fig. S12.

High-throughput study of all the KO mutants of the Boolean models considered in the multiscale simulations. The resulting scores for the relevant phenotypes apoptosis of respiratory epithelial cells (A) and the recruitment of immune cells by macrophages (B) were compared to the wild-type values (red bars). The green bar represents the score of FADD knockout, and the blue bar represents the score of p38 knockout.

Fig. S13.

Simulation of wild type and mutants using PhysiBoSS. Our framework can simulate wild-type respiratory epithelial cell state (A) and wild-type immune cell recruitment (B) to study the effect of knockouts such as FADD in respiratory epithelial cell apoptosis (C) or p38 in immune cell recruitment (D).

Fig. S14.

Drug targets derived from the multimodal omics data analysis and corresponding disease mechanisms in C19DMap repository.

Fig. S15.

CAP score across different populations and stratified by sex. The heatmap displays the CAP score for each gene of the 79 genes computed for each different population and sex. The populations tested are afr: African/African American, eas: East Asian, asj: Ashkenazi Jewish, nfe: non-Finnish European, fin: Finnish European, sas: South Asian, amr: Latino/Admixed American.

Fig. S16.

DRP score for the set of 52 drugs was computed for each population and sex. The populations tested are afr: African/African American, eas: East Asian, asj: Ashkenazi Jewish, nfe: non-Finnish European, fin: Finnish European, sas: South Asian, amr: Latino/Admixed American.

Fig. S17.

C19DM-Neo4j data model: an example of a protein phosphorylation process. For illustration purposes, we show a single process from the Endoplasmic Reticulum Stress map: DDIT3 phosphorylation activated by MAPK14. Nodes represent macromolecules (yellow), processes (blue) and state variables (red). Edges represent relationships: CONSUMES (reactant-process relationship), PRODUCES (process-product), CATALYZES (process-catalyzer), HAS_STATE_VARIABLE (macromolecule-state_variable). Properties of nodes are shown as text near nodes. Entries of the HGNC database and PubMed IDs for supporting references. The C19DM-Neo4j database and the Cypher query language offer flexible querying of the COVID-19

Table S1.

Highlighted C19DMap diagrams, including deregulated kinases and TFs, identified in A549 cells using the footprint analysis.

A549 cells					
C19DMap diagram	hgnc_carnival				
Interferon 1 pathway	IRF3, TBK1, IKBKE				
TGFbeta signaling	MAPK3, SMAD1				
PAMP signaling	TICAM1, IKBKE, IRF3, TBK1				
Pyrimidine deprivation	IRF3, TBK1				
Orf3a protein interactions	TICAM1				
Endoplasmic Reticulum stress	ATF6, ATF4, MBTPS1				
Interferon lambda pathway	IRF3, TBK1				

Table S2.

TFs that regulate DEGs in SARS-CoV-2-infected NHBE and A549 cells; "Common" indicates TFs detected in both cell types; TFs in red are those present in the C19DMap.

A549 only		Common	NHBE only	TFs present in C19DMap	C19DMap pathways	
E2F4	МҮС	E2F1	TP53	STAT2	IRF3	Interferon 1 pathway PAMP signaling Interferon lambda pathway
THAP11	ZNF263	MAZ	STAT1	REL	BACH1	HMOX1 pathway
ZBTB7A	TEAD1	KLF5	FOS	FOSL1	TBP	E protein interaction TGFbeta signaling
NFYB	MEF2A	FOXP1	ESR1	IRF9	TCF12	Nsp9 protein interactions
AR	MXI1	TBP	RELA	PPARA	TP53	JNK pathway
IRF3	KLF9	E2F6	NFKB1	CEBPB	STAT1	Interferon 1 pathway Interferon lambda
SREBF1	MAX	ATF3	KLF6	RBPJ	FOS	Interferon 1 pathway PAMP signaling

						Interferon 1 pathway
						PAMP signaling
						Pyrimidine
						deprivation
SP1	YY1	GABPA	JUN	GATA3	RELA	Orf3a protein
						interactions
						HMOX1 pathway
						Kynurenine
						synthesis pathway
						Interferon 1 pathway
						PAMP signaling
						Pyrimidine
						deprivation
SNAPC4	NRF1	NR2C2	-	-	NFKB1	Orf3a protein
						interactions
						HMOX1 pathway
						Kynurenine
						synthesis pathway
						Interferon 1 pathway
RUNX2	PRDM14	SIX5	-	-	JUN	JNK pathway
						PAMP signaling
						Interferon 1 pathway
MYCN	ZBED1	TEAD4	-	-	STAT2	Interferon lambda
						pathway
						Interferon 1 pathway
BACHI	FOXP2	TFDP1	-	-	IRF9	Interferon lambda
						pathway
THAP1	CUX1	TCF12	-	-		
EBF1	ZNF143	MYBL2	-	-		
FOXO3	HBP1	SP2	-	-	FOSL1	Endoplasmic reticulum stress
KLF13	BCL6	HIF1A	-	-		
ZEB2	MBD1	ZFX	-	-		
CREB3L1	ARID2	-	-	-	-	-

Table S3.

Differential cell type-specific gene expression between COVID-19 patients and healthy controls. COVID-19 cell sample size (%) represents the absolute count and percentage of lung epithelium cell types in COVID-19 patients-derived samples; Overexpressed DEGs and Downregulated DEGs represent numbers of overexpressed and downregulated DEGs, respectively, in COVID-19 patients vs. healthy controls. 26 COVID-19 overexpressed DEGs were shared between all lung epithelium cell types.

	COVID-19 cell sample size (%)	Overexpressed DEGs	Downexpressed DEGs
Ciliated cells	952 (13.5%)	61	93

Alveolar cells type 1	139 (5.7%)	183	81
Basal cells	469 (10.1%)	166	77
Secretory cells	ecretory cells 237 (6%)		42
Suprabasal cells	Suprabasal cells 958 (27.3%)		116

Table S4.

26 DEGs shared among all detected lung epithelial cell types. The genes in red belong to Type I interferon induction and signalling pathway in C19DMap (WikPathway WP4868).

ATP6V0C	MX1
OAS1	SRGN
MX2	IFIT2
IFI44L	IFIT3
OAS3	IFI44
EPSTI1	GBP1
IFITM1	CCL2
OAS2	RSAD2
XAF1	IRF7
IFIT1	MT-ATP8
ISG15	NME2
SAMD9	IFI6
TAOK1	STAT1

Table S5.

Significant pathways-circuits activity values after Wilcoxon test comparison between 430 SARS-CoV-2-infected and 54 non-infected individuals. The results were obtained by running CoV-Hipathia web tool with GSE152075 dataset.

Pathway: Effector Circuitname	UP/DOWN	statistic	FDR-p.value	Fold Change	logFC
Nsp9 protein interactions: EIF4H	DOWN	-7.56E+00	6.09E-12	6.29E-01	-6.68E-01
Interferon lambda pathway: STAT1,STAT2,STAT3	UP	7.16E+00	5.77E-11	2.01E+00	1.01E+00

Interferon 1 pathway: OAS1,OAS2,OAS3	UP	6.89E+00	2.77E-10	2.88E+00	1.53E+00
Nsp9 protein interactions: MYCBP2	UP	6.57E+00	1.62E-09	1.26E+00	3.32E-01
Nsp9 protein interactions: COMT	DOWN	-6.54E+00	1.62E-09	4.13E-01	-1.28E+00
Nsp9 protein interactions: DCAF7	UP	5.62E+00	4.65E-07	1.23E+00	2.93E-01
Nsp9 protein interactions: CYB5R3	DOWN	-5.57E+00	5.35E-07	7.47E-01	-4.20E-01
JNK pathway: JUN,JUND	DOWN	-5.47E+00	8.14E-07	5.83E-01	-7.78E-01
Nsp9 protein interactions: MIB1,DLL1	DOWN	-4.83E+00	1.38E-06	1.31E-01	-2.93E+00
E protein interactions: STOML3,ASIC1	DOWN	-5.12E+00	2.10E-06	3.48E-01	-1.52E+00
Renin-angiotensin pathway: LNPEP	UP	4.87E+00	1.45E-05	1.25E+00	3.23E-01
Nsp9 protein interactions: AP2M1	DOWN	-4.56E+00	6.26E-05	8.04E-01	-3.14E-01
E protein interactions: CCNT1,CDK9	DOWN	-4.52E+00	6.73E-05	5.00E-01	-1.00E+00
Interferon 1 pathway: ISG15	UP	4.26E+00	1.81E-04	2.55E+00	1.35E+00
Kynurenine synthesis pathway: AHR	UP	4.28E+00	1.81E-04	1.18E+00	2.35E-01
Nsp9 protein interactions: GFER	DOWN	-4.10E+00	1.98E-04	4.41E-01	-1.18E+00
Nsp9 protein interactions: IMPDH2	DOWN	-4.13E+00	3.10E-04	6.98E-01	-5.19E-01
Renin-angiotensin pathway: MAS1	UP	4.06E+00	3.50E-04	2.45E+00	1.29E+00
Nsp4 and Nsp6 protein interactions: Nsp3:Nsp4:Nsp6	DOWN	-3.73E+00	5.78E-04	5.55E-01	-8.49E-01
E protein interactions: CRB3,PATJ,MPP5	DOWN	-3.69E+00	5.88E-04	4.71E-01	-1.09E+00

Coagulation pathway: MAS1	UP	3.85E+00	5.88E-04	1.28E+01	3.68E+00
HMOX1 pathway: RBX1,KEAP1,CUL3	DOWN	-3.87E+00	6.33E-04	2.73E-01	-1.87E+00
Orf3a protein interactions: HMOX1,ALG5,ARL6IP6	DOWN	-3.46E+00	7.28E-04	2.45E-01	-2.03E+00
Nsp4 and Nsp6 protein interactions: DNAJC11	DOWN	-3.63E+00	8.61E-04	5.67E-01	-8.19E-01
Nsp9 protein interactions: SEPSECS	UP	3.65E+00	1.48E-03	1.66E+00	7.35E-01
Nsp4 and Nsp6 protein interactions: TIMM29,TIMM22,TIMM10 B	DOWN	-3.24E+00	1.70E-03	3.85E-01	-1.38E+00
Nsp4 and Nsp6 protein interactions: IDE	DOWN	-3.44E+00	1.77E-03	5.59E-01	-8.40E-01
Nsp9 protein interactions: MRPS5,MRPS2	DOWN	-3.50E+00	2.13E-03	6.66E-01	-5.86E-01
Nsp9 protein interactions: FBLN5,LOXL1	DOWN	-3.22E+00	2.68E-03	3.35E-01	-1.58E+00
Apoptosis pathway: CASP7	UP	3.37E+00	3.66E-03	1.34E+00	4.22E-01
Nsp9 protein interactions: COPS6,EDN1	DOWN	-3.00E+00	4.52E-03	4.26E-01	-1.23E+00
Nsp9 protein interactions: POLR2A,GTF2F2,POLR2G	DOWN	-2.99E+00	9.43E-03	5.54E-01	-8.53E-01
Nsp9 protein interactions: BAG6,EDN1	DOWN	-2.68E+00	1.51E-02	8.07E-01	-3.10E-01
Nsp9 protein interactions: AP2A2	DOWN	-2.74E+00	2.65E-02	8.02E-01	-3.18E-01
Nsp9 protein interactions: RALA	UP	2.70E+00	2.84E-02	1.31E+00	3.87E-01
Nsp9 protein interactions: SBNO1	UP	2.64E+00	3.18E-02	1.06E+00	8.03E-02
Nsp9 protein interactions: DDX10	UP	2.64E+00	3.18E-02	1.28E+00	3.53E-01

Nsp9 protein interactions: UBQLN4,EDN1	DOWN	-2.37E+00	3.18E-02	9.24E-01	-1.13E-01
PAMP signalling: ITCH	UP	2.62E+00	3.26E-02	1.08E+00	1.18E-01
Nsp9 protein interactions: ZNF503	DOWN	-2.47E+00	3.39E-02	6.31E-01	-6.63E-01
Nsp9 protein interactions: CCDC86	DOWN	-2.53E+00	3.42E-02	7.05E-01	-5.05E-01
Nsp9 protein interactions: TCF12	UP	2.53E+00	3.97E-02	1.04E+00	6.07E-02
Nsp9 protein interactions: MAT1A,MAT2A,MAT2B	DOWN	-2.36E+00	4.34E-02	6.69E-01	-5.81E-01
Nsp9 protein interactions: COPS2,COPS4,COPS5	DOWN	-2.44E+00	4.57E-02	6.84E-01	-5.49E-01
Nsp9 protein interactions: MEPCE,LARP7	DOWN	-2.45E+00	4.57E-02	8.06E-01	-3.11E-01
Nsp4 and Nsp6 protein interactions: ATP6AP1	DOWN	-2.41E+00	4.99E-02	8.33E-01	-2.63E-01
Nsp9 protein interactions: LARP4B	UP	2.39E+00	5.07E-02	1.03E+00	4.31E-02
Nsp9 protein interactions: ZNF503,DCAF7	DOWN	-2.27E+00	5.07E-02	7.46E-01	-4.23E-01

Table S6.

Simulation scenarios and model behavior.

No	Biological Scenarios	Simulation results	Model performance (agreement/ partial agreement/ disagreement)
1	An unbalanced immune response, characterized by a weak production of type I interferons (IFN-Is) and an exacerbated release of proinflammatory cytokines, contributes to the severe forms of the COVID-19 disease. [PMID:	When all of the viral components are active, the inflammation phenotype is activated.	Agreement

	32726355]		
2	SARS-CoV-2-inhibition of type I IFN responses in infected cells leads to delayed or suppressed type I IFN responses, allowing the virus to replicate unchecked and induce tissue damage. [PMID: 33619493, 33097660] SARS-Cov-2 is a poor inducer of IFN-I response <i>in vitro</i> and in animal models compared to other respiratory RNA viruses. [PMID: 32726355] Multiple viral structural and non-structural proteins antagonize interferon responses, contributing to inflammation. [PMID: 33619493, 32346093] The suppression of interferon signalling is a mechanism widely used by SARS-CoV-2 in diverse tissues to evade antiviral innate immunity, and targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19. [PMID: 33140044]	When all of the viral components are active, the type 1 interferon immune response is inactive while the inflammation phenotype gets activated. We observe the inflammation reduction and activation of ISG expression_antiviral response_phenotype after deactivating all of the viral components.	Agreement
3	The viral ORF6, ORF8 and nucleocapsid proteins were potent inhibitors of the type I interferon signalling pathway, a key component for the antiviral response of host innate immunity. All three proteins strongly inhibited type I interferon (IFN- β) and NF- κ B-responsive promoters. [PMID: 32589897]	In the presence of the ORF6 and ORF8 complex, and nucleocapsid protein (N), NFkB pathways and the type I interferon secretion are inactive.	Agreement
4	SARS-CoV-2 desensitizes host cells to interferon by inhibiting the JAK-STAT pathway. [PMID: 33140044]	By activating the viral components, we observe the deactivation of STAT1 and STAT2_phosphorylated, which are part of the JAK/STAT pathway.	Agreement
5	The antiviral response is intensified by various signalling factors, including sensors and transcriptional regulators, which are themselves ISGs induced by ISGF3 and/or directly by the IRF3/IRF7 transcriptional activators. [PMID: 32726355] The IRF3 gene is highly expressed in the activated CD4+ T cells of COVID-19 patients.[PMID: 32783921]	Interferon regulatory factor 3 (IRF3 homodimer complex_nucleus) is activated by adding Azithromycin drug to the viral components including orf7a/b, orf3a, viral dsRNA, Nsp1, Nsp13, and E protein. (Initial condition of the IRF3 affects complex formation.)	Agreement

6	Several interferon (IFN)-stimulated genes (ISGs; including ISG15, IFI44, IFI44L, and RSAD2) were specifically upregulated in PBMCs from COVID-19 patients, enhancing antiviral and immune-modulatory functions after viral infection. [PMID: 32783921]	When all of the viral components are active, the ISG expression_antiviral response_phenotype is inactivated; however, adding the Azithromycin_drug increases the ISG antiviral response. ISG15 ubiquitin-like modifier is inactive in this condition; however, blocking orf6 and activating STAT1/2_IRF9_complex can upregulate the expression of the ISG15 by affecting ISRE_complex pathways.	Partial agreement
7	Inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. [PMID: 32726803]	When all of the viral components are active, the type 1 interferon response is inactive; By activating the GRL0617 drug, we didn't observe any effect on the antiviral interferon pathways or reduction of viral replication. The model suggests that applying GRL-0617 alone cannot impact this pathway.	Disagreement

Table S7.

A list of 54 drug targets identified from the integrative and computational modeling analyses of omics data and C19DMap diagrams.

MAPK11	STAT1	TREML4
SMAD1	FOS	TBK1
TICAM1	JUN	ARL6IP6
TBK1	RELA	CASP7
IKBKE	NFKB1	LNPEP
IRF3	STAT2	HMOX1
ATF4	IRF9	FADD
ATF6	BACH1	AKT1
MBTPS1	TBP	ALG5
TP53	TCF12	AGTR1/2
STAT3	IFIH1	EGFR
ISG5	OAS1	KEAP1
JUND	OAS2	CUL3
AHR	OAS3	Е
FOSL1	IRF7	nsp15
MAS1	BAX	nsp14
RBX1	IFNB1	nsp3
TLR9	TLR7	nsp13

Tables S8 and S9 provided as a separate excel file

Table S10.

Top ranking instances across all pathways of the C19DMap bipartite graph.

Ranking	Aggregated centrality value	Map species
1	3.088928834	UNIPROT:P0DTD1 Replicase polyprotein 1ab SARS COV2
2	3.060313914	UNIPROT:P0DTC9 Nucleoprotein NCAP_SARS2
3	3.045092464	UNIPROT:Q9BYF1 Angiotensin-converting enzyme 2
4	2.974406697	UNIPROT:P0DTC3 ORF3a protein SARS COV2
5	2.960697776	UNIPROT:P59632

		ORF3a protein SARS COV
6	2.926930595	UNIPROT:P59637 Envelope small membrane protein SARS COV
7	2.921492419	UNIPROT:P59595 Nucleoprotein SARS COV
8	2.91891734	Nsp6
9	2.917060121	UNIPROT:P0DTC4 Envelope small membrane protein SARS COV2
10	2.894981602	UNIPROT:P0DTC1 Replicase polyprotein 1a SARS COV2

Table S11.

Top ranking instances by the aggregated centrality values within the Interferon type I pathway.

Aggregated centrality value	Map species	
2.99852173	UNIPROT:Q14653 IRF3	
2.90197689	Nsp3	
2.833324697	UNIPROT:Q04206;UNIPROT:P19838 RELA:NFKB1	
2.770348427	Nsp15	
2.673571447	UNIPROT:Q7Z434 MAVS	
2.568232753	Viral_dsRNA	
2.522809862	UNIPROT:P01574 IFNB	
2.425625918	Orf6	
2.393485439	UNIPROT:Q14164;UNIPROT:Q9UHD2;UNIPROT:Q13114;UNIPRO T:Q92844 IKBKE:TBK1:TRAF3:TANK	
2.341295307	UNIPROT:015455 TLR3	

Table S12.

Top ranking instances by the aggregated centrality values within the Interferon lambda pathway.

Aggregated centrality value	Map species
2.647094921	UNIPROT:Q14653 IRF3
2.614378989	IFN_III
2.324754461	UNIPROT:P10914 IRF1
2.313925511	UNIPROT:Q8IZI9;UNIPROT:Q8IZJ0;UNIPROT:Q8IU54;UNIPROT:K9M1 U5 IFNL3: IFNL2:IFNL1:IFNL4
2.122800448	UNIPROT:Q8IU57;UNIPROT:P23458;UNIPROT:P29597 IFNLR1:JAK1:TYK2
2.027010129	dsRNA
1.923644106	UNIPROT:O95786 RIG-I
1.814816851	UNIPROT:O14920;UNIPROT:O15111;UNIPROT:O95786;UNIPROT:Q9U HD2;UNIPROT:Q7Z434 IKK:TBK1:RIG-I:MAVS
1.790330986	UNIPROT:O95786;UNIPROT:Q7Z434 RIG-I:MAVS
1.537042334	UNIPROT:Q7Z434;UNIPROT:O95786 MAVS:RIG-I

Table S13.

Top ranking instances by the aggregated centrality values within the Apoptosis pathway.

Aggregated centrality value	Map species
2.790670304	UNIPROT:Q14790 CASP8
2.575114314	UNIPROT:P55211 CASP9

2.46327704	Apoptosis
2.33125067	UNIPROT:P59637 Envelope small membrane protein SARS
2.208875087	UNIPROT:P42574 CASP3
2.208875087	UNIPROT:P55210 CASP7
2.179943105	UNIPROT:Q13158 FADD
2.146130422	UNIPROT:P31749 AKT1
1.796281512	UNIPROT:P999999 CYCS
1.775255449	UNIPROT:P55957 BID

Table S14.

Top ranking instances by the aggregated centrality values within the Coagulation pathway.

Aggregated centrality value	Map species
3.024512997	SARS_CoV_2_infection
2.768981505	UNIPROT:P00734 Prothrombin/ Thrombin (F2)
2.742875284	UNIPROT:P00747 Plasminogen (PLG)
2.664962377	UNIPROT:P13671;UNIPROT:P07357;UNIPROT:P01031;UNIPROT:P10643 ;UNIPROT:P07360;UNIPROT:P02748;UNIPROT:P07358 C6:C8A:C5:C7:C8G:C9:C8B (C5b-9)
2.65809911	UNIPROT:P30556 AGTR1
2.657606153	UNIPROT:P0C0L5 C4B
2.631358595	Thrombosis

2.549145423	UNIPROT:P00750 PLAT
2.540683322	UNIPROT:P04070 PROC
2.432797266	UNIPROT:P05121 SERPINE1

Table S15.

Top ranking instances by the aggregated centrality values within the Renin-Angiotensin pathway.

Aggregated centrality value	Map species	
2.952636737	UNIPROT:P30556 AGTR1	
2.876342802	UNIPROT:Q9BYF1 ACE2	
2.760902828	UNIPROT:P12821 ACE	
2.56692845	UNIPROT:P04201 MAS	
2.382326458	UNIPROT:P50052 AGTR2	
2.296031373	UNIPROT:P0DTC2;UNIPROT:P59594 SPIKE_SARS2: SPIKE_SARS	
2.237870739	angiotensin_A	
2.217315056	angiotensin_1-12	
2.141851032	angiotensin_3-7	
2.135741406	UNIPROT:P08473 EPN	

Table S16.

11 out of the 54 identified targets that rank in the top 30% instances of the aggregated network by aggregated centrality values.

Protein / Gene	Node label	Rank	Aggregated centrality value
HMOX1	UNIPROT09601	32	2,74319632
STAT2	UNIPROT52630	92	2,4594734
RBX1	UNIPROT62877	98	2,43757737
ATF6	UNIPROT18850	129	2,33493298
TREML4	UNIPROT:Q6UXN2	145	2,28702511
ATF4	UNIPROT18848	385	1,90123974
TCF12	UNIPROT:Q99081	512	1,84628427
OAS3	UNIPROT:Q9Y6K5	548	1,80576535
OAS2	UNIPROT29728	549	1,80576535
OASI	UNIPROT00973	550	1,80550953
ISG15	UNIPROT05161	561	1,78758416

Table S17.

Number of drug candidates targeting transcription factors detected; "Common Transcription Factor" represents transcription factors detected for both NHBE and A549 cell types listed in Table 1; "External Clinical Trials" represents drugs already in external clinical trials for COVID19 designated in DrugBank.

	External Clinical Trials	Not External Clinical Trials
Common Transcription Factor	47	160
Not Common Transcription Factor	36	103