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SUMMARY
Colorectal cancer (CRC) is a common malignancy involving multiple cellular components. The CRC tumor
microenvironment (TME) has been characterized well at single-cell resolution. However, a spatial interaction
map of the CRC TME is still elusive. Here, we integratemultiomics analyses and establish a spatial interaction
map to improve the prognosis, prediction, and therapeutic development for CRC. We construct a CRC
immune module (CCIM) that comprises FOLR2+ macrophages, exhausted CD8+ T cells, tolerant CD8+

T cells, exhausted CD4+ T cells, and regulatory T cells. Multiplex immunohistochemistry is performed to de-
pict the CCIM. Based on this, we utilize advanced deep learning technology to establish a spatial interaction
map and predict chemotherapy response. CCIM-Net is constructed, which demonstrates good predictive
performance for chemotherapy response in both the training and testing cohorts. Lastly, targeting FOLR2+

macrophage therapeutics is used to disrupt the immunosuppressive CCIM and enhance the chemotherapy
response in vivo.
INTRODUCTION

Colorectal cancer (CRC) is one of the most common malig-

nancies worldwide. Mortality from CRC has decreased slightly

over the past 30 years due to earlier diagnosis and develop-

ments of chemotherapy, targeted therapy and immuno-

therapy. XELOX (combination of oxaliplatin and capecitabine),

FOLFOX (combination of 5-fluorouracil, leucovorin, and oxali-
Cell Repo
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platin), and FOLFIRI (combination of 5-fluorouracil, leucovorin,

and irinotecan) are the first-line chemotherapy regimens

in late-stage CRC. Cetuximab and bevacizumab exhibit

good efficacy, mainly in combination with systematic chemo-

therapy.1,2 In addition, patients with microsatellite instability-

high (MSI-H) or mismatch repair-deficient (dMMR) CRC are

susceptible to immune checkpoint inhibitor (ICI)-based immu-

notherapy with objective clinical responses,3 providing an
rts Medicine 5, 101399, February 20, 2024 ª 2024 The Author(s). 1
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alternative treatment for a subset of CRC patients with

advanced disease.

Nevertheless, a heterogeneous treatment response has been

found in CRC patients, possibly due to heterogeneity of the tu-

mor microenvironment (TME). The TME consists of distinctive

and interacting cell populations, including myeloid cells,

T cells, B cells, natural killer (NK) cells, and other cell types.

Studies of the diversity and reprogramming of the TME have

shown its potential to influence immunotherapy response and

prognosis.4–11 The development of a suppressive TME limits

the response to chemotherapy and immunotherapy treatment

and is characterized by increased levels of pro-tumor macro-

phages, exhausted T cells, and regulatory T (Treg) cells. A high

level of macrophages is associated with a poor prognosis in

various tumor types. Targeting macrophages is a promising

strategy for cancer therapy.12,13 The colony-stimulating factor

1 (CSF1)/CSF1 receptor (CSF1R) axis has gained themost atten-

tion in the context of macrophage-targeting therapies. A variety

of monoclonal antibodies and small molecules targeting CSF1R

or its ligand CSF1 are in phase I studies as monotherapies or in

combination with chemotherapy as well as other cancer immu-

notherapy approaches.8 Nevertheless, anti-CSF1R therapy has

shown limited therapeutic effects and significant toxicity in

several tumor types, including CRC,8 which warrants the explo-

ration of the mechanism underlying the resistance to macro-

phage-targeting therapy.

The CRC TME has been characterized well at single-cell reso-

lution.14–18 However, most of the previous studies focused on

the identification of different cell populations. A spatial interac-

tion map of the CRC TME is still elusive. Moreover, the genera-

tion of high-throughput bulk and single-cell transcriptome data

relies on fresh tumor tissues rather than paraffin sections. Tran-

scriptomics data-driven patient stratification is not pathology

friendly. The prognosis and the therapeutic sensitivity prediction

of CRC patients are also not established well by pathological

methods. To solve these problems, in this study, we integrated

multiomics data (bulk transcriptome, single-cell transcriptome,

andmultiplex immunohistochemistry [mIHC] staining) to uncover

an immunospatial interaction map of CRC. Our work highlights

that the FOLR2+ macrophage-mediated CRC immune module

(CCIM) orchestrates a suppressive CRC TME and leads to ther-

apy resistance in CRC. A seven-color CCIMmIHC panel was de-

signed. Deep learning models were applied to the CCIM mIHC

panel to develop a CCIM-Net for artificial intelligence (AI)-assis-

ted diagnosis, which showed the properties of being efficient,

pathology friendly, and cost effective. Last, we evaluated the

possibility of the multicellular module being a promising thera-

peutic target.

RESULTS

Deeping learning-assisted multiomics integration
workflow for CRC
The detailed workflow of our research is shown in Figure 1A.

We performed the integration analysis on single-cell RNA

sequencing (scRNA-seq) (public, n = 18; in house, n = 8), bulk

transcriptome (total, n = 2,081; n = 1,673 for the integrative

cohort, and n = 408 for four independent cohorts), and mIHC
2 Cell Reports Medicine 5, 101399, February 20, 2024
staining (n = 226) to construct a cell module for prognosis strat-

ification and chemotherapy prediction. A multicellular module

was identified as the CCIM based on the integrative analysis of

scRNA-seq and bulk RNA-seq. With the established CCIM, a

CCIM score was calculated to stratify patients with a poor prog-

nosis in the training (n = 1,405) and 5 testing cohorts (total,

n = 682) (total n = 2,081). Furthermore, we developed an mIHC

imaging panel based on the CCIM to spatially detect the CCIM

pattern. A CCIM deep learning model (CCIM-Net) based on the

previous established CCIM pattern was developed with two co-

horts from different centers (training cohort, n = 181; testing

cohort, n = 45) to facilitate precision chemotherapy. In vivo ex-

periments were performed for validation.

We first explored the TME heterogeneity and molecular signa-

ture for the cellular components in CRC using scRNA-seq

(Figures 1B and 1C). T-distributed stochastic neighbor embed-

ding (t-SNE) was performed on variably expressed genes across

all cells for dimensionality reduction and cell clustering. The cells

were obtained from 18 patients by integrating the public dataset

and our in-house cohort (Figure S1). To define the identity of

each cell cluster, the gene signature was determined by perform-

ing differential gene expression analysis (Figure 1C). Cell type

signatures were used to identify cell clusters using the "SingleR"

package with manual assistance. For instance, the expression of

NKG7,CCL5,CD3D, andCD3Ewas significantly higher in T cells

than in other cell clusters. Myeloid cells highly expressed

S100A8, S100A9, and PLAUR. CD79A and CD79B were used

to annotate B cells. In total, we found six cell types, which are

shown in Figure 1C. Altogether, the integrated scRNA-seq land-

scape covers the major cellular components of the CRC TME,

including various immune cells from all stages of CRC tumor tis-

sues, based on which we applied a deep learning-assisted mul-

tiomics integration workflow for CRC.

Myeloid subpopulations and their immune activities in
CRC
Next, we determined the myeloid populations in CRC. The tu-

mor myeloid populations were further subclustered into den-

dritic cells (DCs), mast cells, FCN1+ monocytes,19 OAS+ mac-

rophages,20 OLR1+ macrophages,21 HSPA6+ monocytes,22

and FOLR2+ macrophages (see Figure 2A and Table S1 for

the featured genes in each population). The key lineage

markers are shown in Figure 2B. For instance, CD1C is highly

expressed in DCs, while KIT is expressed on mast cells.

CD14, CD16, and CD68 were also investigated for monocyte

and macrophage populations. With the help of the lineage

markers, the DC and mast cell populations were identified. In

the next step, we investigated the subpopulations of mono-

cytes and macrophages. Monocytes could be divided into

FCN1+ and HSPA6+ monocytes, respectively, characterized

by expression of classic monocyte markers (S100A8/9/12),

pro-inflammatory cytokines (IL1B, IL6, CCL3, and CCL4), and

heat shock proteins (HSPA6 and HSPA1A/B).22 FCN1+ mono-

cytes have been identified in bronchoalveolar immune cells,23

which fuel inflammation during severe disease. We also identi-

fied FCN1+ and HSPA6+ monocyte subpopulations (Fig-

ure S2A).OLR1wasmore highly expressed in pro-inflammatory

M1-like macrophages and DCs than M2-like macrophage



Figure 1. Depiction of the workflow for multiomics-assisted deep learning analysis

(A) Schematic of this research.

(B) The uniform manifold approximation and projection (UMAP) plot identifies the main cell types in colorectal cancer (CRC).

(C) Diverse cell types of CRC and the expression of markers.

Article
ll

OPEN ACCESS
subpopulations.21 OAS1 is upregulated by type I interferons

(IFNs) and is also involved in the innate immune response.

Therefore, we named the two macrophage subpopulations

that highly express OLR1 or OAS1 OLR1+ macrophages and

OAS+ macrophages, respectively (Figure S2A). Resident mac-

rophages featured high expression of FOLR2, C1QA, C1QB,

and APOE.24 Previous studies have shown that FOLR2 is highly

expressed in resident macrophages and related to the activa-
tion of resident macrophages.25–27 We therefore considered

that FOLR2+ macrophage exhibited a resident phenotype.

In the next step, Gene Ontology (GO) analysis was performed

to characterize the underlying biological processes of each

monocyte/macrophage population. FOLR2+ macrophages

were enriched in lipid metabolism-related processes, while

OLR1+ macrophages were enriched in G protein-coupled re-

ceptor and growth factor receptor binding (Figure 2C). Gene
Cell Reports Medicine 5, 101399, February 20, 2024 3



Figure 2. The properties of myeloid subpopulations

(A) The t-distributed stochastic neighbor embedding (t-SNE) shows seven subclusters of myeloid cells (patients, n = 26).

(B) Stacked violin plot showing the scaled expression level of markers for each population.

(C) The enriched Gene Ontology (GO) terms for each monocyte/macrophage population. The GO analysis was performed with the gene signature for each

monocyte and macrophage subpopulation. The height of each column represents the –log10(p) value of enriched biological processes for each subpopulation.

(D) Heatmap showing the immune pathway activities in myeloid populations. Purple indicates low values, while yellow indicates high values.
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set variation analysis (GSVA) was performed with an immune

gene set28 on the identified myeloid populations (Figure 2D),

which indicated significantly lower anti-tumor immunity activ-

ities in FOLR2+ macrophage populations than in the other

monocyte and macrophage populations (Figure 2D). To deter-

mine the effects of myeloid cell populations on the prognosis

of CRC patients, we combined bulk transcriptome and

scRNA-seq data for further analysis. An integrated cohort that
4 Cell Reports Medicine 5, 101399, February 20, 2024
included 1,673 CRC patients was selected. With the gene

signature of each myeloid subpopulation identified from

scRNA-seq, the association of the myeloid population and

recurrence-free survival (RFS) of CRC patients was analyzed.

We observed that patients with enrichment of FCN+ mono-

cytes, DCs, mast cells, OLR1+ macrophages, HSPA6+ mono-

cytes, and FOLR2+ macrophages exhibited worse RFS survival

(Figure S2B). Taken together, the myeloid populations and their



Figure 3. The anti-inflammatory properties of FOLR2+ macrophages

(A) The UMAP plot shows five monocyte/macrophage subpopulations (patients, n = 26).

(B) Pseudotime analysis of five subclusters of monocytes/macrophages (patients, n = 26). The color key from deep blue to light blue indicates the pseudotime

score from low to high.

(C) Heatmap of the single-sample gene set enrichment analysis (ssGSEA) scores for gene sets in monocyte/macrophage subtypes, calculated according to

single-cell RNA sequencing (scRNA-seq) data.

(D) Transcription factor (TF) activity in monocyte/macrophage subpopulations.

(E) Heatmap of the expression of M1-related and M2-related genes from the scRNA-seq data.

(legend continued on next page)
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immune activities were identified in CRC patients, which helped

to identify the CCIM in our study.

Functionality difference of FOLR2+ macrophages
compared with other macrophage populations
To further analyze the functionality difference of the identified

macrophage populations (Figure 3A), we performed the analyses

below. Single-cell trajectory analysis revealed the pseudotime

differentiation trajectory of monocytes/macrophages. In partic-

ular, the FOLR2+ macrophage subpopulation is located at the

terminal differentiation site (Figure 3B). Distinct macrophage-

related signatures were associated with aspects of macrophage

activity, including antigen presentation, the M1 pathway, com-

plement, the proteasome, FC receptor signaling, and interferon

(IFN)-gamma response function, and were observed in the

different monocyte/macrophage populations (Figure 3C). M1

pathway, complement, FC receptor signaling and IFN-gamma

response functions were downregulated in FOLR2+ macro-

phages compared with other macrophage populations (Fig-

ure 3C). Furthermore, the transcription factor (TF) analysis sug-

gested significantly distinct TF activities among FOLR2+

macrophages and other monocyte/macrophage subpopulations

(Figure 3D). For instance, CEBPB is a TF that plays crucial

roles in macrophages differentiating into the pro-inflammatory

spectrum.29 FOLR2+ macrophages showed significantly less

expression of CEBPB compared with the other populations.

In contrast, macrophage TCF4, which acts as a crucial

Wnt pathway regulator and contributes hypoinflammation

M2 polarization,30 was significantly more expressed in

FOLR2+ macrophages (Figure 3D). In parallel, distinct pro-in-

flammatory and anti-inflammatory expression patterns were

observed in the monocyte/macrophage populations with a pre-

viously defined gene set (Figure 3E). We therefore confirmed

that FOLR2+ macrophages showed a more M2-like phenotype

than other macrophage subpopulations (Figure 3E). M2-like

macrophages exhibit anti-inflammatory characteristics, while

M1-like macrophages feature pro-inflammatory characteristics.

We investigated the inflammatory properties in each mono-

cyte/macrophage subpopulation. The density plot showed that

a large proportion of FOLR2+ macrophages exhibited lower in-

flammatory response GSVA scores than the other monocyte

and macrophage populations, indicating a hypoinflammatory

status of FOLR2+ macrophages compared with other macro-

phage populations (Figure 3F). To validate the results from the

single-sample gene set enrichment analysis (ssGSEA), we

selected one typical inflammation marker, PTGS2 (commonly

known as COX2), as well as one anti-inflammation marker,

CTSD, for validation using mIHC technology. FOLR2+ macro-

phages exhibited lower levels of the inflammatory markers
(F) Density plot indicating the density distribution of the inflammatory response a

the inflammatory response activity score in monocyte and macrophage populatio

method using the inflammatory response signature on the single-cell transcripto

(G) Multiplex immunohistochemistry (mIHC) staining for CD68 (green), FOLR2 (red

replicates, n = 5.

(H) The percentage of FOLR2+ CD68+ cells and FOLR2� CD68+ cells expressi

evaluated by a chi-square test.

(I) The percentage of FOLR2+ CD68+ cells and FOLR2� CD68+ cells expressing
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PTGS2 while showing higher levels of the anti-inflammatory

markers CTSD compared with other monocytes/macrophages

(Figures 3G–3I). Taken together, the terminal differentiation tra-

jectory location, distinct TF activities, gene expression pattern,

and macrophage-related pathway alterations in the FOLR2+

macrophage population suggested their special properties,

which makes it possible to develop new therapeutics that

employ tumor-associated macrophage (TAM) subset targeting.

We then focused on FOLR2+macrophages and their relationship

with T cell populations for CCIM construction.

The components and pathway heterogeneity of T cells in
CRC
We next determined the T cell subpopulations and key genes ex-

pressed in T cells. CD4+ T cells were further subclustered into 5

cell populations: exhausted CD4+ T cells, memory CD4+ T cells,

naive CD4+ T cells, helper T cell 17 (Th17) cells, and Treg cells

(Figure 4A; see Table S2 for the featured genes in each popula-

tion). Treg cells showed high expression of FOXP3. Naive CD4+

T cells exhibited high CCR7 and SELL expression. Th17 cells

expressed GIMAP-family genes, and exhausted T cells were

identified to have high PDCD1 and TIGIT expression. CD8+ cells

were subclustered into tolerant CD8+ T cells, effector memory

CD8+ T cells, exhausted CD8+ T cells, exhausted CD8+ NK

T cells, and tissue-resident CD8+ T cells (Figure 4B; see

Table S3 for the featured genes in each population). In terms of

the feature genes, effector memory CD8+ T cells showed high

expression of GZMK and GIMAP4. Exhausted NK T cells highly

expressed LAG3 and NCR3. Tissue-resident CD8+ T cells ex-

hibited high S100A4 expression. Great expression of DKK3

was found on tolerant CD8+ T cells and TMIGD2, and PDCD1

was identified as the feature gene for exhausted CD8+ T cells.

Next, the key genes involved in T cell regulation pathways,

such as cytolytic, cytokine, and inhibitory pathways, were iden-

tified (Figure 4C), revealing the heterogeneity of T cell activation.

For instance, ZNF683 acted as a TF andwasmainly expressed in

tissue-resident CD8+ T cells. GZMA, GZMB, NKG7, and other

cytolytic genes were mainly expressed in CD8+ T cell subpopu-

lations. Exhausted NK T cells and tissue-resident CD8+ T cells

still had the capacity to release IFNG. The C7 immunological

signature GSVA score alterations further revealed a suppressive

TME in CRC and the modulation of T cell exhaustion (Figure 4D).

Last, the pseudotime analysis suggested that PDCD1was highly

expressed in CD8+ T cells that underwent the exhaustion pro-

cess (Figures 4E–4G). In parallel, high expression of PDCD1

was also observed during the exhaustion process of CD4+

T cells (Figures S3A–S3C). Taken together, the main T cell pop-

ulations were identified in our RNA-seq analysis, which showed

distinct gene expression pattern and pathway activation. We
ctivity score in monocyte and macrophage populations and boxplot indicating

ns. The inflammatory response activity score was calculated with the ssGSEA

me. The p value was calculated with a Kruskal-Wallis test.

), PTGS2 (purple), CTSD (purple), and DAPI (blue). Scale bar, 10 mm. Biological

ng PTGS2. A total of 100 cells were included for analysis. Significance was

CTSD. Significance was evaluated by a chi-squared test.



(legend on next page)
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therefore investigated the relationship between the T cell sub-

populations and FOLR2+ macrophages.

The FOLR2+macrophage-oriented CCIM is composed of
immunosuppressive T cell populations
The complex cell crosstalk was investigated to reveal the regu-

lation of the suppressive CRC TME. The cell-cell interactions

(CCIs) between each cell type were identified.31 FOLR2+ mac-

rophages showed strong CCIs activities with multiple cell

populations (Figure 5A). We next focused on the interaction be-

tween macrophage populations and T cell populations. FOLR2+

macrophages showed the greatest number of CCIs with both

CD4+ T and CD8+ T cells (Figures 5B and 5C; Table S4). In

terms of the T cell subpopulations, exhausted CD4+ T cells,

Treg cells, tolerant CD8+ T cells, and exhausted CD8+ T cells

showed the most CCIs with FOLR2+ macrophages than other

T cells. Taken together, these findings indicate that FOLR2+

macrophages have abundant interactions with exhausted

CD4+ cells, exhausted CD8+ T cells, tolerant CD8+ T cells,

and Treg cells, which may affect the formation of a suppressive

CRC TME. The topological pattern of the FOLR2+ macro-

phages, exhausted CD4+ cells, exhausted CD8+ T cells,

tolerant CD8+ T cells, and Treg cells in the CRC TME was vali-

dated by mIHC staining (Figure 5D). Large proportions of ex-

hausted CD4+ cells (20.3%), exhausted CD8+ T cells (25.2%),

tolerant CD8+ T cells (16.6%), and Treg cells (24.1%) cells

were found in the area around FOLR2+ macrophages (Fig-

ure 5E), which further confirmed the spatial interaction of these

cells. Last, the Voronoi plot suggested aggregation of FOLR2+

macrophages with Tregs cells, exhausted CD4+ T cells, tolerant

CD8+ T cells, and exhausted CD8+ T cells in CRC tissues (Fig-

ure 5F). Therefore, a CCIM was defined as a module that con-

tained at least one FOLR2+ macrophage, one tolerant CD8+

T cell, one Treg cell, and one exhausted CD4+ T cell (Figure 5G).

The high density of the CCIM numbers implied the important in-

fluence of CCIM in the suppressive CRC TME (Figure 5H). The

interaction between FOLR2+ macrophages and the other CCIM

cell populations was identified, showing the suppressive inter-

action effects from FOLR2+ macrophages on others (Figure 5I).

Significant associations of FOLR2+ macrophages with other

CCIM cell components were identified, showing the aggrega-

tion effects of CCIM (Figures 5J–5L).

The weighted gene co-expression network analysis (WGCNA)

method infers the co-expression network and related biological

mechanisms in high-throughput data. We therefore applied

WGCNA to CRC bulk transcriptome data to explore the potential
Figure 4. The subpopulations of T cells showed distinct gene express

(A) The t-SNE plot identifies five subclusters for CD4+ T cells (patients, n = 26).

(B) The t-SNE plot identifies five subclusters for CD8+ T cells (patients, n = 26).

(C) Heatmap showing gene expression in key pathways regulating T cell activities

high.

(D) Heatmap representation of the gene set variation analysis (GSVA) results base

the relative GSVA score from low to high.

(E) Trajectory inference by monocle2 method on five subclusters of CD8+ T cells

(F) Trajectory inferencewith thepseudotimescore for fivesubclustersofCD8+Tcells

(G) Trajectory inference with PDCD1 expression for five subclusters of CD8+ T ce

high.
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regulation roles underlying CCIM. A power of b = 3 was chosen as

the optimal soft threshold to ensure scale-free co-expression

(Figures S4A–S4C). The FOLR2+ macrophage score was calcu-

lated with the GSVA method for each patient. The unsupervised

clustering method was used for obtaining the clustered gene

modules. Eleven non-gray (meaningful) gene modules were iden-

tified, and the yellowmodule showed the most significant correla-

tion with the FOLR2+ macrophage GSVA score (Figure S4D).

Therefore, the genes involved in the yellowmodule were identified

as the key genes associated with the FOLR2+macrophage score.

A total of 1,052 genes were identified, which suggested a signifi-

cant association between the module membership score (the

central point score for each module calculated by the WCGNA

method) and gene significance (thePearson’s coefficient between

the target gene expression and the FOLR2+ macrophage score in

the cohort), indicating the importance of those genes in the

FOLR2+ macrophage regulating network (Figures S4E and S4F).

Using those genes as input for Kyoto Encyclopedia of Genes

and Genomes (KEGG) and GO analysis, we further found that

T cell-related pathways were altered, which confirmed the immu-

nosuppressive regulation potential of FOLR2+ macrophages

(Figures S4G and S4H). Briefly, we utilized the scRNA-seq tech-

nology to identify a CCIM cell module whose function was further

confirmed by bulk transcriptome analysis.

Lastly,wedevelopedaCCIMscoring system tostratifyCRCpa-

tients with a distinct prognosis. The integrated cohort (GSE39582,

GSE17536, GSE17537, GSE14333, GSE56699, GSE37892, and

GSE33113) was used as the training cohort. The top 20 featured

genes in eachCCIM cell component and the ligand-receptor pairs

between FOLR2+ macrophage and other CCIM cell components

(Figure 5I) were used as inputs for the least absolute shrinkage

and selection operator (LASSO) Cox regression model. A total of

17 features (genes) were selected by the regressionmodel to build

the CCIM scoring system (Figure S5A). With the coefficients

(Figure S5B) and the distinct expression pattern of the 17 features,

theCCIMscoreswere calculated for eachpatient. The results indi-

cated that patients with high CCIM scores exhibited poorer sur-

vival probability than patients with low CCIM scores (Figure 5M;

best-cutoff method for threshold of high and low score). Multivar-

iateCoxanalysissuggested that theCCIMscore isan independent

risk factor for patients with CRC in The Cancer Genome Atlas

(TCGA) colon adenocarcinoma (COAD) cohort (Figures S5C

and S5D). Furthermore, five independent cohorts (GSE28722,

GSE12945, GSE72970, GSE5851, and TCGA-CRC) validated

the robustness of the CCIM score in stratifying CRC patients

(Figures S5E–S5I). Pooled estimates revealed that a lower CCIM
ion patterns and pathway activation levels

. The color key from blue to red indicates relative expression levels from low to

d on immunologic signature C7. The color key from purple to yellow indicates

.

. Thecolor key fromblack togold indicates thepseudotimescore from low tohigh.

lls. The color key from blue to white indicates PDCD1 expression from low to
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score was significantly associated with improved survival proba-

bility (hazard ratio [HR] 2.04, 95% confidence interval [CI] 1.56–

2.67, p < 0.001; Figure S5J). In addition, the GSVA algorithm

showed significantly increased anti-PD1 resistance in patients

with greater CCIM scores by calculating the anti-PD1 resistance-

related gene set activities32 (Figure S5K). Through the integration

analysis of scRNA-seq and bulk RNA-seq, we identified a cell

pattern consistingof FOLR2+macrophages, Tregcells, exhausted

CD4+ T cells, tolerant CD8+ T cells, and exhausted CD8+ T cells.

We named this cell pattern the CCIMmodule, with its features de-

picted through mIHC and related image analysis.

The FOLR2+ macrophage-oriented CCIM module
contributes to AI-guided precision chemotherapy
Several studies have shown the capacity of AI-assisted analysis

of transcriptome data to predict therapy response, molecular

subtyping, and pathway activation. Nevertheless, the efficiency

and accuracy were unstable among different cohorts.33–35 We

next assessed the potential relationship between FOLR2+ mac-

rophages and the chemotherapy response. With the application

of a neural network, we built an FOLR2-RM model based on the

FOLR2+ macrophage signature to predict the chemotherapy

response in the training cohort and then assessed the prediction

efficiency of the FOLR2-RM model in an external cohort (Fig-

ure S6A). The confusionmatrix and receiver operating character-

istic (ROC) plot revealed an acceptable predictive efficiency of

the FOLR2-RM model with a relative high area under the curve

(AUC) value (AUC = 0.797), which also indicated potential impor-

tant roles of FOLR2+ macrophages in the response to chemo-

therapy in CRC patients (Figures S6B and S6C).

However, the AUC value of FOLR2-RM is not as great

enough to help with clinical decisions. We then assessed the

potential application of the CCIM module to precision chemo-

therapy. Deep learning technology enabled the extraction of

hidden information directly from image patterns and provided

potentially clinically useful information. We therefore tested

several advanced deep learning models for predicting the

response to systemic first-line chemotherapy by CCIM image

pattern. To further utilize the CCIM module and improve the

prediction efficiency, we built a diagram using the AI-guided
Figure 5. Construction of the CRC immune module (CCIM)

(A) The cell-cell interaction (CCI) network for all cell subpopulations in CRC. The c

the CCI numbers between cells.

(B) The number of interactions between monocytes/macrophages and CD4+ T c

(C) The number of interactions between monocytes/macrophages and CD8+ T c

(D) mIHC staining for FOLR2 (red), DKK3 (white), FOXP3 (yellow), PDCD1 (orange)

Scale bar, 50 mm. The dotted line indicates the margin between tumor tissue and

(E) The proportion of cells from CCIM and other cell types around FOLR2+ mac

FOLR2+ macrophages. Biological replicates, n = 5.

(F) Voronoi plot for the CCIM topological pattern. The green dot represents the c

(G) Depiction of the CCIM module. A CCIM module contains at least one FOLR2+

T cell.

(H) The density plot for the CCIM in CRC.

(I) Heatmap of cell-type-specific receptor-ligand interactions inferred by SingleCe

Treg cells, exhaustedCD4+ T cells, exhaustedCD4+ T cells, and tolerant CD8+ T ce

the mean expression of receptor and ligand genes for each pair.

(J–L) The association of exhausted T cells (p < 0.01) (J), tolerant T cells (p <0.01

calculated with Pearson’s coefficient, and p < 0.05 was considered to indicate s

(M) The CCIM score stratifies CRC patients with poor prognosis (patients, n = 1,
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CCIM imaging pattern (Figure 6A). We established two medical

center cohorts as training and validation cohorts (n = 181, 80%

for the training cohort and 20% for the validation cohort) and an

independent testing cohort (n = 45). The tumor tissues were ob-

tained by colonoscopy and subjected to mIHC staining depict-

ing the CCIM module before systemic chemotherapy. Then,

the patients were treated with systemic chemotherapy, and

the chemotherapy response was assessed according to the

Response Evaluation Criteria in Solid Tumors (RECIST) stan-

dard. Typical computed tomography (CT) scans before and

after chemotherapy and CCIM mIHC staining images are

shown in Figure 6B. The tumor areas in the mIHC slides

were aligned with the tumor areas in the corresponding HE

staining slides. Only the tumor areas were used for the subse-

quent analysis in the CCIM pipeline. The non-responders ex-

hibited greater enrichment of the CCIM per area than the re-

sponders among the total patients (Figure 6C). We trained 8

models (ResNet18, ResNet34, ResNet50, ResNet101, Xcep-

tion, DenseNet121, and ResNext50) in the training and valida-

tion cohorts. The predictive accuracy of each model was tested

in the independent testing cohort. The AUC value varied from

0.77 to 0.99 in the independent testing cohort (Figure 6D).

Finally, the ResNext50 model was selected as the CCIM-

Net. CCIM-Net showed the greatest AUC value (AUC = 0.99)

and highest accuracy rate (98%) by the confusion matrix

(Figures 6E and 6F). The detailed work flow of CCIM-Net con-

struction is depicted in Figure S6D, which shows the four

stages from input of the CCIM module to output of decision.

Thus, we confirmed that the CCIM-Net is a robust AI-guided

tool for clinical chemotherapy decision-making by integrating

two independent cohorts.

Disruption of the CCIM by targeting FOLR2+

macrophages improved the chemotherapy response
We next assessed the effect of the abundance of FOLR2+ mac-

rophages on chemotherapy outcomes by an in vivo model

(Figure 7A). We developed a FOLR2-EGFP (enhanced GFP)-

diphtheria toxin receptor (DTR) mouse strain to deplete the

FOLR2+ macrophages (Figure S7). The DTR-EGFP fusion

sequence was integrated into the region between the 6th exon
olor of edges indicates the type of ligand cell, and the size of edges represents

ells inferred from single-cell RNA sequencing (scRNA-seq).

ells.

, CD4 (green), CD8 (light blue), and DAPI (blue) reveals the CCIM image pattern.

para-tumor tissue.

rophages. The statistics were determined with the area of 800 pixels around

enter of each part.

macrophage, one tolerant CD8+ T cell, one Treg cell, and one exhausted CD4+

llSignalR. Shown are inferred interactions between FOLR2+ macrophages and

lls. Circle color indicates the inferred interaction score, and circle size indicates

) (K), and Treg cells (p<0.01) (L) with FOLR2+ macrophages. The p value was

ignificance.

405).



Figure 6. Artificial intelligence (AI)-guided pre-

cision chemotherapy based on CCIM imaging

pattern

(A) Schematic of the AI-guided precision chemo-

therapy process.

(B) Representative computed tomography (CT) scan

and CCIM mIHC pattern images for patients who

responded or did not respond to chemotherapy.

mIHC staining of FOLR2 (red), DKK3 (white), FOXP3

(yellow), PDCD1 (orange), CD4 (green), CD8 (light-

blue) and DAPI (blue) was applied to portray the

CCIM. Scale bar, 50 mm. The dotted line indicates

the margin between tumor tissue and para-tumor

tissue.

(C) Boxplot showing the CCIM numbers in the non-

responder group and responder group in the training

and validation cohorts. The significance was

calculated by a Wilcoxon test, with p < 0.05

considered significant.

(D) Comparison of eight deep learning models in the

independent testing cohort. The y axis indicates

the area under the curve (AUC) value of each model

in the independent testing cohort.

(E) The receiver operating characteristic (ROC)

analysis shows the sensitivity and specificity of the

CCIM-Net in the independent testing cohort.

(F) The confusion matrix for predicting the

chemotherapy response by the CCIM-Net in

the independent testing cohort. Columns indicate

the predicted response, while rows represent the

actual response.
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and the noncoding region of the FOLR2 gene in a homologous

recombination way after the genomic cutting from recombinant

Cas9 nucleases and designed guide RNAs. The FOLR2-DTR-

ApcMin mice were bred by crossing FOLR2-DTR-EGFP

mice with B6/JGpt-Apcem1Cin(Min)/Gpt mice. Four groups were

designated as control (Ctrl), 5-Fu treatment, diphtheria toxin

(DT) treatment, and 5-Fu + DT treatment, and the 5-Fu + DT

treatment group exhibited the lowest tumor burden (Figures 7B

and 7C). H&E staining and Ki-67 IHC staining were used to

assess the properties of the CRC tumor model (Figure 7D). Ki-

67 IHC staining suggested reduced proliferation in the 5-Fu +

DT treatment group compared with the other groups (Figure 7E).

Precise ablation of FOLR2+ (EGFP+) macrophages could be

observed after DT injection (Figure 7F). Taken together, these re-
Cell Repo
sults indicated that anti-FOLR2+ macro-

phage therapeutics led to disruption of the

immunosuppressive CCIM module and

enhanced chemotherapy response.

DISCUSSION

In this study, we comprehensively analyzed

the molecular and cellular signature of

CRC components through depiction of

the single-cell landscape and integration

of the bulk transcriptome and mIHC. Impor-

tantly, we determined the importance of

FOLR2+ macrophages, which showed
distinct properties comparedwith othermacrophage populations,

in the formation of the immunosuppressivemodule affecting prog-

nosis. A CCIM consisting of FOLR2+ macrophages, exhausted

CD4+ T cells, exhausted CD8+ T cells, tolerant CD8+ T cells, and

Treg cells was identified.We therefore developed a CCIM scoring

system to serve as a clinically tractable tool for survival prediction

and treatment guidance in patients with CRC. With the CCIM

spatial interaction map-based mIHC pattern, we developed an

AI-guided precision chemotherapy model, which showed robust

prediction efficiency for chemotherapy sensitivity. The in vivo

model further indicated that targeting FOLR2+ macrophages dis-

rupted the CCIM and improved the chemotherapy response;

thus, we considered that disruption of the FOLR2+ macrophage-

mediated CCIM could be a promising therapy for CRC.
rts Medicine 5, 101399, February 20, 2024 11
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Zhang et al.36 highlighted that myeloid populations and con-

ventional dendritic cell subsets are key mediators of cellular

crosstalk in the CRC TME.36 In our study, we observed

that the majority of DCs were type 2 conventional DCs

(cDC2s), as evidenced by high expression levels of CD1c and

CLEC10A. cDC2s were associated with Treg cell abundance

and promoted Treg cell-mediated immunosuppression in

hepatocellular carcinoma through a hypoxia-dependent mech-

anism.37 Regarding CRC, cDC2s were found to be heteroge-

neous and could be further subdivided into several subpopula-

tions.38 Specifically, C1QC+ cDC2s were associated with worse

overall survival in TCGA COAD and rectum adenocarcinoma

(READ) datasets.38 The functions and heterogeneity of cDC2s

in CRC warrant further exploration. TAMs are one of the main

populations in myeloid cells and have been a promising target

of immunotherapy. Macrophages in tumor tissues are tradition-

ally classified into two subsets, the M1 and M2 populations,

based on their distinguished molecular features and pathway

differences.39,40 M1 macrophages show proinflammatory prop-

erties and are considered an antitumor subset. In contrast, M2

macrophages, which feature anti-inflammatory and proangio-

genic properties, promote tumor progression in various solid

tumor types.41–43 Nevertheless, we consider that the M1 and

M2 classification may not be suitable in CRC considering the

heterogeneity of CRC immune populations. A variety of TAMs

in the TME confer both protection and vulnerability.44 Targeting

protumorigenic macrophages is a priority in cancer treatment,

but in most tumor types, it is still unclear which TAM subsets

have a protumorigenic role and when they should be targeted.

Identifying the protumorigenic TAM subsets and their biological

functions in CRC is thus crucial to develop new therapeutics

that employ TAM subset targeting. We therefore explored

the monocyte/macrophage populations in CRC by integrated

scRNA-seq. FCN1+ monocyte, HSPA6+ monocyte, OAS+

macrophage, OLR1+ macrophage, and FOLR2+ macrophage

populations with distinct gene expression signatures were

identified.

Macrophages are typically distributed throughout the villi of

the lamina propria.45 In our study, we obtained tumor tissues

that contained both the stromal area and intraepithelial layer.

The majority of macrophages we obtained were from the stro-

mal area, which explains the high abundance of macrophages

in our dataset. Resident macrophages within the stromal area

exhibit a persistent anti-inflammatory phenotype, even in in-

flammatory settings, which may be essential for mucosal heal-

ing.46,47 In agreement with this, depletion of resident macro-

phages has been shown to exacerbate experimental colitis.48

In our dataset, we also observed the low inflammatory proper-

ties of FOLR2+ macrophages. In tumor tissues, it is still not

clear what the exact functions of resident macrophages in

the TME are. One study showed that recruitment of macro-

phages in CCR2�/� mice to pancreatic ductal adenocarcinoma

tumors was reduced.49 Nevertheless, pancreatic ductal tumor

growth is not affected by a reduction in macrophages, implying

that pancreatic ductal tumor progression may be regulated by

a CCR2+ macrophage-independent mechanism. They then

found that resident macrophages are able to self-renew in tu-

mors with the aid of tumor-derived CSF-1 and that this process
12 Cell Reports Medicine 5, 101399, February 20, 2024
can promote tumor progression.49 Nalio Ramos et al.50 re-

vealed that FOLR2+ macrophages reside in a perivascular

niche in the tumor stroma of breast cancer. The density of

FOLR2+ macrophages positively correlate with T cell infiltration

and better prognosis. In our study, we found distinct TF,

pathway activation, and expression patterns of FOLR2+ macro-

phages compared with other macrophage populations. Active

lipid metabolism-related pathways were enriched in FOLR2+

macrophages. Given that M2-phenotype macrophages are

macrophages that have anti-inflammatory properties and sig-

nificant lipid metabolism activation, we considered that

FOLR2+ macrophages exhibited an M2-like resident phenotype

in CRC and were correlated with a poor prognosis of CRC.

Regarding the contradictory results between breast cancer

and CRC, we investigated our signature of FOLR2+ macro-

phages in breast cancer and found a positive association be-

tween FOLR2+ macrophages and prognosis. Several factors

may contribute to the observed inconsistencies between the

two cancers. First, in CRC, FOLR2+ macrophages exhibit

numerous cell communication pairs with Treg, exhausted T,

and tolerant T cells, which may act as immunosuppressive

factors. In contrast, FOLR2+ macrophages in breast cancer

demonstrate the functional ability to activate CD8+ T cells.

Additionally, the distinct pathological features of breast cancer

and CRC may influence the spatial distribution of FOLR2+ mac-

rophages and other immune cells. Specifically, FOLR2+ macro-

phages reside in a perivascular niche in the tumor stroma of

breast cancer, whereas the observed FOLR2+ macrophages

in this study predominantly originate from the stromal area.

Therefore, FOLR2+ macrophages from different organs may

have distinct effects on the TME and prognosis of tumors of

different origins.

In the next step, we detected abundant FOLR2+ macro-

phages, Treg cells, exhausted CD4+ T cells, exhausted

CD8+ T cells, and tolerant CD8+ T cells in CRC tissues, which

constitute a cell module named CCIM. Colocalization of

FOLR2+ macrophages, Treg cells, exhausted CD4+ T cells,

exhausted CD8+ T cells, and tolerant CD8+ T cells was

observed in tumor tissues, indicating the potential roles of

CCIM topology in reprogramming the suppressive TME in

CRC. Most previous studies infer interaction networks be-

tween cell populations based on the expression of receptor-

ligand pairs. However, the full spectrum of network relation-

ships cannot be captured by discrete cell clusters considering

the spatial distribution. Recently, imaging-based studies have

highlighted CCI networks based on the colocalization of

neighboring cell populations.51 The so-called TME hub (or

module) showed the capacity to regulate the suppressive im-

mune TME and predict the immunotherapy response. For

instance, Leader et al.52 revealed a cellular module consisting

of PDCD1+CXCL13+ activated T cells, immunoglobulin G

(IgG)+ plasma cells, and SPP1+ macrophages, referred to as

the lung cancer activation module (LCAM).52 High baseline

LCAM scores were correlated with enhanced immunotherapy

response even in patients with above-median tumor mutation

burden (TMB), suggesting that immune cell composition, while

correlated with TMB, may be a nonredundant biomarker of

the response to immunotherapy.52 Pelka et al.18 discovered



Figure 7. FOLR2+ macrophage depletion disrupts the immunosuppressive tumor microenvironment (TME)

(A) The workflow of the in vivo experiment.

(B) The tumor burden from mice of four groups was assessed (n = 5).

(C) The statistics for tumor burden in each group. Significance was evaluated by a Kruskal-Wallis test (n = 5).

(D) H&E and Ki-67 IHC staining for the tumor tissues from four groups of mice (biological replicates, n = 5). Scale bars, 100 mm (H&E) and 40 mm (IHC)

(E) The statistics for Ki-67-positive cells in each group. Significance was evaluated by a Kruskal-Wallis test (n = 5).

(F) Multiplex immunohistochemistry staining of F4/80 (green) and FOLR2 (red) on tumor tissues in the in vivo model.
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a myeloid cell-attracting hub at the tumor-luminal interface

associated with tissue damage. In contrast, a dMMR-enriched

immune hub within the tumor was identified, featuring acti-

vated T cells together with malignant and myeloid cells ex-

pressing T cell-attracting chemokines.18 Nevertheless, most

of the previous TME module research focused on depiction

of the image pattern.

In recent years, AI-guided risk stratification and precision

treatment for cancer have been promising methods for

personized medicine.4,6,53–56 Considering the special topolog-

ical pattern of CCIM shown by the Voronoi plot, we developed

a workflow for building an scRNA-seq-assisted and CCIM-

based precision chemotherapy model. We applied cutting-

edge deep learning technology to train 8 AI models and finally
built a CCIM-Net, which showed high prediction accuracy

in the testing cohort. Therefore, we demonstrate that the

CCIM-Net based on the seven-colour mIHC panel is a robust

tool for helping oncologists predict chemotherapy response.

The CCIM-Net did not rely on high-throughput data generated

from fresh tumor tissues and showed the properties of being

efficient, cost effective, and pathology friendly. The AI-assis-

ted tool may aid in the development of precise treatment stra-

tegies for CRC.

The anti-CSF1R antibody is a decent way to target TAMs

and lead to their depletion.57 Nevertheless, various solid tumors

showed limited response to the CSF1R antibody. Zhang et al.36

identified the persistence of the anti-inflammatory TAM popula-

tion, and the loss of proinflammatory TAM populations is
Cell Reports Medicine 5, 101399, February 20, 2024 13
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involved in resistance to anti-CSF1R therapy. FOLR2+ macro-

phages showed a hypoinflammatory property in CRC that was

not observed for other macrophage populations. Thus, targeting

the distinct FOLR2+ macrophage population may be more

advantageous to overcome the drawback of general TAM

blockade therapy. As expected, the depletion of the FOLR2+

macrophages in vivo also showed a considerable antitumor ef-

fect. Therefore, we considered that targeting FOLR2+ macro-

phages may be a promising method in combination with chemo-

therapy for CRC.

Taken together, our study reveals the CCIM topological

pattern and uncovers the importance of CCIM components

in reprogramming the suppressive CRC TME. The CCIM score

serves as a clinically tractable tool for survival prediction. The

CCIM-Net acts as a promising and effective opportunity for

therapeutic intervention and precision chemotherapy. Target-

ing FOLR2+ macrophages can alter the enrichment of the

CCIM and holds promise as a therapeutic strategy. Therefore,

we believe that the immune spatial interaction map of CCIM

can serve as a more direct measurement of the immunosup-

pressive TME and provide information for clinical decision-

making.

Limitations of the study
There are still some limitations to our study. First, background

differences caused by the biopsy methods and length of data

sequencing from the in-house cohort and the public cohort

may exist. Second, two in-house samples make a predominant

contribution to the myeloid and epithelial cell populations, which

may affect the generalizability of these findings, although we

applied large series ofmIHC sections for validation. Last, we pro-

posed that our AI-guided precision chemotherapy model con-

tained information for clinical decision-making and obtained

samples from our clinic to further validate this system. Multi-

center cohort validation and further clinical trials should be

considered.
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Antibodies

Rabbit monoclonal Anti-F4/80 Abcam Cat#ab300421; RRID:AB_2936298

Rabbit monoclonal Anti-Cathepsin D Abcam Cat#ab75852; RRID:AB_1523267

CD68 (D4B9C) XP� Rabbit mAb Cell Signaling Technology Cat#76437; RRID:AB_2799882

Rabbit monoclonal Anti-CD4 Abcam Cat#ab183685; RRID:AB_2686917

InVivoMAb anti-mouse CSF1R (CD115) Bioxcell Cat#BE0213; RRID:AB_2687699

CD4 (EP204) Rabbit mAb Cell Signaling Technology Cat#48274; RRID:AB_3076699

CD8a (D8A8Y) Rabbit mAb Cell Signaling Technology Cat#85336s; RRID:AB_2800052

Rabbit monoclonal Anti-CD8a Abcam Cat#ab217344; RRID:AB_2890649)

Mouse monoclonal Anti-FOLR2 Abcam Cat#ab103988; RRID:AB_10711133

Rabbit polyclonal Anti-FOLR2 Abcam Cat#ab228643

Rabbit monoclonal Anti-PTGS2 Abcam Cat#ab179800; RRID:AB_2894871

Rabbit monoclonal Anti-PD-1 Abcam Cat# ab214421; RRID:AB_294180

Mouse monoclonal Anti-PD-1 Abcam Cat#ab52587; RRID:AB_881954

Rabbit polyclonal Anti-DKK3 Invitrogen Cat#PA5-102626; RRID:AB_2852023

Rabbit monoclonal Anti-FOXP3 Invitrogen Cat#700914; RRID:AB_2532349

BD PharmingenTM Purified Mouse Anti-Ki-67 BD Biosciences Cat#550609; RRID:AB_393778

Chemicals, peptides, and recombinant proteins

Dextran sulfate (sodium salt) Cayman Chemical Cat#23250

RPMI 1640 Gibco Cat#11875–093

Fluorouracil MCE Cat#HY-90006

Protease inhibitor Solarbio Cat#P6730

Dispase II Sigma‒Aldrich Cat#42613-33-2

Type VIII Collagenase Sigma‒Aldrich Cat#C2139

DNase I NEB Cat#M0303S

Fetal bovine serum Gibco Cat#16000–044

PBS Solarbio Cat#P1020

Nylon cell strainer Falcon Cat#352340

Red blood cell lysis buffer Invitrogen Cat#00-4333-57

Bovine serum albumin Sigma‒Aldrich Cat#B2064

Dead Cell Removal Kit Miltenyi Biotec Cat#130-090-101

TBST Solarbio Cat#T1082

Opal Polymer HRP Ms+Rb AKOYA Biosciences Cat#NEL820001KT

Blocking solution Proteintech Cat#B900780

Diphtheria toxin MCE Cat#HY-108851

4% Paraformaldehyde Solarbio Cat#P1110

Modified Hematoxylin-Eosin (HE) Stain Kit Solarbio Cat#G1121

0.1% ammonia water Solarbio Cat#G1823

Parafin Solarbio Cat#YA0011

10% neutral buffered formalin (NBF) Solarbio Cat#G2161

Xylene Sinopharm Chemical

ReagentCo., Ltd

Cat#10023418

Alcohol Sinopharm Chemical

ReagentCo., Ltd

Cat#10009218

Epitope retrieval agent Solarbio Cat#C1032
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Anti-mouse/rabbit universal

immunohistochemical detection kit

Proteintech Cat#pk10006

Biological samples

B6/JGpt-Apcem1Cin(Min)/Gpt mice Gempharmatech Co., Ltd N/A

Critical commercial assays

Single-cell sequencing OE Biotech Co., Ltd N/A

Deposited data

Single-cell sequencing data This paper HRA003569

TCGA-COAD cohort RNA sequencing data TCGA database N/A

TCGA-READ cohort RNA sequencing data TCGA database N/A

GEO cohorts GEO GSE56699, GSE14333, GSE39582, GSE17536,

GSE17537, GSE33113, GSE37892, GSE146771,

GSE72970, GSE19860

Software and algorithms

R software (version 4.0.4) R Core https://www.r-project.org/

Seurat (version 3.1.1)58 Stuart T. et al., 201858 https://satijalab.org/seurat/

Cell Ranger software (version 3.1.0) 103 genomics https://support.10xgenomics.com/single-cell-gene-

expression/software/overview/welcome

sva R package (version 3.44.0)59 Leek, J.T. et al.59 https://bioconductor.org/packages/

release/bioc/html/sva.html

ConsensusClusterPlus (version 3.16)60 Matt, W., Peter, W.60 https://git.bioconductor.org/packages/

ConsensusClusterPlus

CMScaller R package61 Peter, W.E. et al.61 https://github.com/peterawe/CMScaller

SingleCellSignalR R package31 Simon, C.A. et al.31 https://git.bioconductor.org/

packages/SingleCellSignalR

Monocle2 package (v2.8.0)62 Trapnell, C. et al.62

WGCNA R package63 Peter, L. et al.63 https://github.com/cran/WGCNA

ClusterProfiler R package (version 4.5.2)64 Yu, G. et al.64 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

GSVA R package (version 1.45.5)65 Hänzelmann, S. et al.65 https://bioconductor.org/packages/

release/bioc/html/GSVA.html

Image-Pro Plus software (version 6.0) Media Cybernetics https://www.mediacy.com/78-products/

image-pro-plus

ImageJ software (version 4.0) NIH https://imagej.nih.gov/ij/

Countess Thermo N/A
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Peng Zhao

(zhaop@zju.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The RNA sequencing data were deposited at Gene Expression Omnibus (GEO) (GSE56699, GSE14333, GSE39582, GSE17536,

GSE17537, GSE33113, GSE37892, GSE146771, GSE72970, and GSE19860) and The Cancer Genome Atlas (TCGA), which are pub-

licly available. All raw data generated by this study have been deposited in the Chinese national genomics data center (https://ngdc.

cncb.ac.cn), under accession number HRA003569. The software and algorithms for data analyses used in this study are published

and referenced throughout the STAR Methods section. Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal objects
B6/JGpt-Apcem1Cin(Min)/Gpt mice were purchased from the Gempharmatech Co., Ltd (China), and FOLR2-DTR mice were a kind gift

from Prof. Jianpeng Sheng. All mice were housed in the SPF facility of the First Affiliated Hospital, Zhejiang University School of Med-

icine, with approval from the Institutional Animal Care and Use Committee (IACUC2022-71) and Zhejiang Center of Laboratory

Animals, with approval from the Institutional Animal Care and Use Committee (ZJCLA-IACUC-20020173), respectively. The

FOLR2-DTR-ApcMin mice was bred by crossing the FOLR2-DTR-eGFP mice with the B6/JGpt-Apcem1Cin(Min)/Gpt mice. To establish

spontaneous CRC, 3% Dextran sulfate (sodium salt) (DSS) (Cayman Chemical, #23250, USA) was given in the drinking water for

1 week followed by ordinary drinking water. Mice were treated with diphtheria toxin (MCE, #HY-108851, USA) or 50 mg/kg 5-Fluo-

rouracil (5FU) (MCE, #HY-90006, USA) through intraperitoneal injection for 2 weeks before sacrificed, and the injections were per-

formed every 3 days. On day 42, all mice were sacrificed, and tumors were collected for H&E, IHC, and mIHC staining.

Human subjects
The bulk transcriptome data and clinical information were obtained from the Gene Expression Omnibus (GEO) repository (https://

www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas (TCGA) (colon cancer and rectal cancer, https://xenabrowser.net/

datapages/). GSE39582, GSE17536, GSE17537, GSE14333, GSE56699, GSE37892, and GSE33113 expression profile data were

integrated as an integrated cohort after removing batch effects using the sva R package.59 A total of 2081 patients were included

in the survival analysis. 1405 patients were used as the integrative training cohorts and 682 patients were included in the four inde-

pendent validation cohorts. The detailed clinical information is provided in Table S5. The transcriptome and the chemotherapy

response data from GSE72970 were used to build the FOLR2+ resident-phenotype macrophage (RM) model, and data from

GSE19860 were used to test the efficiency.

The scRNA-seq data for our in-house cohort and the GSE146771 cohort from the GEO repository were integrated. This study was

approved by the Ethics Committee of the First Affiliated Hospital, Zhejiang University School ofMedicine and the Ethics Committee of

the Affiliated Hospital of Southwest Medical University (IIT20220758A) and the Ethics Committee of the Affiliated Hospital of South-

west Medical University (KY2023312). Tumor tissues were obtained from biopsies of 8 patients diagnosed with CRC. All samples for

scRNA-seq were verified by pathological examinations as adenocarcinoma. Among the eight samples, three samples came from

right-side (ascending colon and transverse colon), three samples came from left-side (sigmoid colon and descending colon) and

two samples came from rectum. Each sample was cut into 5 mm3 size with a sterile scalpel to keep the consistency between

each sample and followed by dissociation. The detailed clinical information for scRNA-seq patient is provided in Table S6. The in-

clusion criteria for both the training cohort and validation cohort were as follows: patients who received first-line therapy, with the

first-line chemotherapy regimens being CAPOX (Capecitabine + Oxaliplatin) or FOLFOX (Leucovorin Calcium + Fluorouracil + Oxa-

liplatin). The age range of the patients was from 18 to 75 years, and they had an ECOG performance status ranging from 0 to 2, along

with adequate renal, hepatic, and bone marrow function. The major exclusion criteria included active inflammation, prior or concur-

rent malignant disease within the last 5 years, previous use of study drugs, and the presence of poorly controlled hypertension, dia-

betes, serious cardiovascular disease, or other chronic diseases, among others. Tumor response was regularly assessed every

2 months, following the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. A total of 226 patients were included,

with 181 in the training cohort and 45 in the testing cohort. More detailed clinical information can be found in Tables S7 and S8.

The tumor tissues contained both the stromal area and intraepithelial layer for the next step analysis.

METHOD DETAILS

scRNA-seq processing
RPMI 1640 (Gibco, #11875–093, USA) with 1 mM protease inhibitor (Solarbio, #P6730, China) was used to transport CRC tissues.

Tissues were digested with a dissociation enzyme cocktail prepared by dissolving 2 mg/mL Dispase II (Sigma‒Aldrich, #42613-
33-2, USA), 1 mg/mL Type VIII Collagenase (Sigma‒Aldrich, #C2139, USA), and 1 unit/mL DNase I (NEB, #M0303S, USA) in PBS

with 5% fetal bovine serum (FBS; Gibco, #16000–044, USA) for 40 min at 37�C. The cells were dissociated and collected every

20 min and then filtered using a 40 mm nylon cell strainer (Falcon, #352340, USA). Red blood cell lysis buffer (Invitrogen, #00-

4333-57, USA) with 1 unit/mL DNase I was used to remove red blood cells. Finally, the cells were washed in PBS (Solarbio,

#P1020, China) with 0.04% bovine serum albumin (BSA; Sigma‒Aldrich, #B2064, USA). The concentration of the single-cell suspen-

sion was computed with Countess (Thermo) and adjusted to 1000 cells/mL. After removing the dead cells by Dead Cell Removal Kit

(Miltenyi Biotec, #130-090-101, Germany), the cells were loaded according to the Chromium single-cell 30 kit standard protocol to

capture 5,000–10,000 cells/chip position (V2 chemistry). Library construction and all the other processes were performed according

to the standard manufacturer’s protocol.

Illumina HiSeq X Tenwas used to obtain single-cell libraries using 150 nt paired-end sequencing. The Cell Ranger software pipeline

(version 3.1.0) provided by 103Genomics was used to demultiplex cellular barcodes, map reads to the genome and transcriptome

using the STAR aligner, and down-sample reads as required to generate normalized aggregate data across samples, producing a

matrix of gene counts versus cells. We processed the unique molecular identifier (UMI) count matrix using the R package Seurat
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(version 3.1.1). To remove low-quality cells and likely multiplet captures, which is a major concern in microdroplet-based experi-

ments, a set of criteria were conducted: (1) removing cells with less than 500 UMIs; (2) removing high mitochondrial RNA UMIs

(more than four times of the median number of mitochondrial UMIs across cells); (3) filtering genes expressed in less than five cells.

Also, the doublets were excluded by the parameter: nFeature_RNA <6000 of subset function in Seurat package. Library size normal-

ization was performed with NormalizeData function in Seurat to obtain the normalized count. Specifically, the global-scaling normal-

ization method ‘‘LogNormalize’’ normalized the gene expression measurements for each cell by the total expression, multiplied by a

scaling factor (10,000 by default), and the results were log transformed. Subclusters were identified by principal component analysis

(PCA) and t-distributed stochastic neighbor embedding (t-SNE) using the Seurat R package and the Seurat FindVariableGenes func-

tion.66 The featured gene signature was constructed with the Seurat R package. Single-cell trajectories in CRC were constructed

using the Monocle2 package (v2.8.0) with the features of each populations as the input.67 The transcription factor (TF) analysis

was performed with dorothea package using the default parameters.68

Functional enrichment analysis
The GSVA R package was applied for single-sample GSEA (ssGSEA) for each sample.65 The gene sets obtained from scRNA-seq

and from Broad Institute (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp, C7 represents cell states and perturbations within

the immune system) were used for the enrichment analysis. The results were plotted with the ggplot2 R package and pheatmap

R package.69

Cell‒cell interaction (CCI) analysis using SingleCellSignalR
To systematically analyze CCIs, we adopted the SingleCellSignalR package to explore the ligand and target gene pairs.31 Gene

expression data of interacting cells were input into SingleCellSignalR and combinedwith a prior model that integrated existing knowl-

edge on ligand-to-target signaling paths. Then, the ligand‒receptor interactions that drive gene expression changes in the cells of

interest were predicted.

Weighted gene co-expression network analysis (WGCNA)
A gene co-expression network was built by the WGCNA model.63 Raising the co-expression similarity to a power b defined a

weighted network adjacency. By evaluating the correlations between the FOLR2+ macrophage abundance of patients from the in-

tegrated cohort and the module memberships, it was possible to identify highly correlated modules. The hub gene in the yellowmod-

ule was selected and subjected to further analysis. Gene ontology (GO) analysis was performed by the clusterProfiler R package,64

and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed by Proteomaps, a bionic visualization method of all

pathways (https://bionic-vis.biologie.uni-greifswald.de/).

Multiplex immunohistochemistry (mIHC) staining of tissue sections
Tumor tissues (4 mm) from CRC patients were fixed with 4% paraformaldehyde (Solarbio, #P1110, China), and then embedded in

paraffin (Solarbio, #YA0011, China). The specificity and optimal dilution of each antibody were individually determined using slides

from CRC tissues before being used in combination, following the SITC multiplex immunohistochemistry guidance.70 To overcome

the issue of signal-to-noise, a tyramide signal amplification (TSA) approach was applied. In summary, several key steps should be

followed before performing mIHC. The first step is to select the appropriate monoclonal antibody that matches the target protein in-

tended for labeling. Next, mIHC staining was performed. In brief, the prepared tissue sections (4 mm) were baked in an oven at 65�C
for 1 h to improve sample adhesion to the slide. Then, they were dewaxed with fresh xylene twice for 15min each and rehydrated with

graded alcohol (100%, 95%, 85%, 75%) for 5 min each, respectively. After rehydration, the sections were fixed in 10% neutral buff-

ered formalin (NBF) (Solarbio, #G2161, China) for 20 min at room temperature. Subsequently, the sections were transferred to an

appropriate antigen retrieval (AR) buffer and placed in a microwave for 1 min at 100% power, followed by an additional 15 min at

20% power. Then, the slides were blocked after cooling to room temperature and subsequently incubated with a primary antibody

at room temperature for 10 min. To remove any excess antibody, the slides were washed three times with TBST (Solarbio, #T1082,

China). Following this, the slides were incubated with Opal Polymer HRP Ms+Rb (AKOYA Biosciences, #NEL820001KT, USA) at

room temperature for 10 min. To remove any remaining wash buffer, the slides were rinsed three times with TBST before incubation

with Opal Signal Generation. The process of microwave treatment, blocking, primary antibody incubation, introduction of Opal Poly-

mer HRP, and signal amplification were repeated before each subsequent antibody incubation. Primary antibodies, including CD68

(1:100, #76437, Cell Signaling Technology), F4/80 (1:200, #ab300421, Abcam), FOLR2 (1:300, #ab103988, Abcam), FOLR2 (1:300,

#ab228643, Abcam), PTGS2 (1:100, #ab179800, Abcam), CD4 (1:200, #48274, Cell Signaling Technology), CD4 (1:100, #ab183685,

Abcam), CD8a (1:200, #85336s, Cell Signaling Technology), CD8a (1:100, #ab217344, Abcam), PD-1 (1:200, #ab214421, Abcam),

PD-1 (1:100, #ab52587, Abcam), DKK3 (1:100, #PA5-102626, Invitrogen), FOXP3 (1:100, #700914, Invitrogen), CTSD (1:100,

#ab75852, Abcam) were labeled. Next, the slides were incubated with DAPI working solution in the dark for 5 min at room temper-

ature. Afterward, the slides were washed with distilled water and TBST before mounting. Finally, a confocal microscope (Nikon,

Japan) or a Vectra Polaris Quantitative Pathology Imaging Systems was used to capture images of those tissue samples, and the

acquired images were analyzed using ImageJ (version 4.0).
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AI-guided chemotherapy model construction
The FOLR2+ macrophage gene signature was applied to build the neural network model for predicting the chemotherapy response

for CRC. Briefly, the transcriptome data and the chemotherapy response data fromGSE72970 were used as the input and output for

training the FOLR2-RM model. GSE19860 was applied as the testing cohort. And the traditional neural network was applied with 25

layers for construction.

The mIHC staining slide and paired HE staining slide were prepared for model construction. HE staining was scanned by 3D His-

tech and used for classifying tumor areas. The classifiers tab function of HALO digital pathology systemwas utilized to identify tumor

areas. Subsequently, the tumor areas in the mIHC slides were aligned with the tumor areas in the corresponding HE staining slides.

Only tumor areas were considered for the subsequent analysis in the CCIM pipeline (detailed pipeline shown in Figure S8). In the im-

age preprocessing stage, in order to preserve the original information of the image as much as possible, only local pixel resampling

and color normalization are adopted. Since the sensitivity of color features in the task of determining chemotherapeutic response

from multi-color fluorescence images, techniques for color enhancement other than color normalization are not used during prepro-

cessing or even during training. For CCIM-net, 8 models (ResNet18, ResNet34, ResNet50, ResNet101, InceptionV3, Xception,

DenseNet121, ResNext50) are pre-trained on ImageNet, which makes the model have better initialization parameters for deep

feature extraction. To help the model more effectively adapt to the initial learning rate, we use one round of warm-up prior to the

training phase. At 30, 50, and 80 epochs, the learning rate then declines using a multi-step method to 0.8 times its initial value.

The learning rate and batch size hyperparameters for these models were set at 0.001 and 4, respectively. After training each model

for 100 epochs, save the model parameters for the best-performing epoch. The ResNet several models introduced the conception of

residual network. For a block, let the function that can be fitted be FðxÞ and its expected latent mapping be HðxÞ. ResNet network

model learns the residual HðxÞ � x; namely FðxÞ : = HðxÞ � x, so that the rise path becomes FðxÞ+ x, and FðxÞ+ x is used to fit

H(x). In ResNet, the block formed by FðxÞ+ x is called Residual block. Multiple similar Residual blocks in series formed the

ResNet. The ResNet18, ResNet34, ResNet50 and ResNet101 are the different versions of ResNet. The main difference of each

version came from the composition of residual block and the number of convolution layers. The ResNet18 and ResNet34 were con-

structed with BasicBlock while ResNet50 and ResNet101 were constructed with Bottleneck. The ResNext model can improve the

accuracy in the case of not improving the parameter complexity and reducing the number of super parameters. For instance, the

algorithm of traditional fully connected layer is:

XD

i = 1

uixi

where x = x1; x2; x3;.;xD .

xD is a D-channel input vector to the neuron and ui is a filter’s weight for the i-th channel. The ResNext replaced the uixi to a more

common function as:

FðxÞ =
XC

i = 1

TiðxÞ

where TiðxÞ can be an arbitrary function. C is cardinality (the size of the set of transformations). Ti have the same topological pattern.

The ResNext50 was selected for building the CCIM-net for the highest accuracy in the testing cohort.

These models all adopt the cross-entropy loss function, which is frequently used to measure the difference between two proba-

bility distributions and aims to describe how difficult it is to express a probability distribution p by a probability distribution q.

Assuming that p and q are two probability distributions of the data x, the cross-entropy loss of N samples of p represented by q

can be calculated as follows:

L = �
XN

i = 1

pðxÞlog qðxÞ+ ð1 � pðxÞÞðlogð1 � qðxÞÞÞ

According to the formula, the closer the probability distributions p and q are, the smaller the cross-entropy loss. In the training pro-

cess, by constructing the loss constraint between the prediction result and the ground truth and multiple rounds of optimization it-

erations, the cross-entropy loss will converge, and the model has the ability to characterize the chemotherapy response results cor-

responding to the multi-color fluorescence images. Finally, the probability distribution output by the model on the test samples is

close to the probability distribution of the training samples, which makes the prediction results more accurate.

Haematoxylin and eosin (HE) staining
The tumor tissue sections (4mm) were deparaffinized using xylene (Sinopharm Chemical Reagent Co., Ltd, #10023418, China), fol-

lowed by rehydration with graded alcohol (Sinopharm Chemical Reagent Co., Ltd, #10009218, China). To stain the nuclei, the sec-

tions were subjected to hematoxylin staining at room temperature for 30 min, using hematoxylin (Solarbio, #G1121, China). After

staining, the sections were washed with PBS to remove any excess hematoxylin and prevent over-staining. Next, 0.1% ammonia

water (Solarbio, #G1823, China) was applied to the sections to change the color of the hematoxylin-stained nuclei from reddish to
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a distinct blue-purple hue. To prepare the sections for cytoplasm staining, they were rinsedwith 75%alcohol at room temperature for

2 min. Cytoplasm staining was performed using eosin (Solarbio, #G1121, China) at room temperature for 1 h. After eosin staining, the

sections were directly rinsed with graded alcohol to remove excess dye and prepare them for further analysis. Finally, the sections

were treated with xylene, which acted as an anhydrous alcohol, before beingmounted on slides. The sections were examined using a

light microscope (Leica), and the images were analyzed with Image-Pro Plus software (version 6.0).

Immunohistochemistry (IHC) staining
The sections were deparaffinized using xylene, a widely-used solvent known for its ability to effectively remove wax from tissue sec-

tions. Subsequently, the sections were rehydrated using graded alcohol to ensure optimal preparation for subsequent procedures.

Microwave heating was employed to enhance the detection of specific proteins and retrieve antigen epitopes. A specific epitope

retrieval agent (Solarbio, #C1032, China) was utilized to achieve this goal. By subjecting the sections tomicrowave heating alongside

the epitope retrieval agent, the antigens were effectively unmasked, resulting in improved efficiency of antibody binding. To prevent

non-specific binding, the sections were then treated with a blocking solution and allowed to incubate for 1 h at room temperature.

Following this, the primary antibody specific to Ki67 (1:200, #550609, BD Biosciences) was introduced and allowed to incubate over-

night at 4�C. The next day, the sections were thoroughly washed three times with PBS to eliminate any excess primary antibody and

unbound molecules. For immunostaining, a versatile anti-mouse/rabbit universal immunohistochemical detection kit (Proteintech,

#pk10006, China) was employed. The staining procedure was meticulously carried out according to the manufacturer’s instructions,

ensuring superior detection and visualization of the Ki67 protein. Subsequently, the mounted sections were meticulously examined

using a Leica microscope specifically calibrated for light microscopy. Finally, the obtained images were subjected to detailed anal-

ysis using Image-Pro Plus software (version 6.0).

Tandem mass tag (TMT)-based proteomic analysis
The tissues were dewaxed, rehydrated and then acidic hydrolysis with formic acid (FA) was performed. Proteins were denatured with

6 M urea (Sigma–Aldrich, Germany) and 2 M thiourea (Sigma–Aldrich, Germany) before being digested into peptides with trypsin

(1:20; Hualishi, Beijing, China) and Lys-C (1:80; Hualishi, Beijing, China) using pressure-cycling technology (PCT).71,72 TMTpro 16

plex (Thermo Fisher Scientific, San Jose, USA) was used to label peptides.73 In the TMT126 channel, each batch contained 15 exper-

imental samples and one pooled sample for normalization. The fractions (60 per batch) were separated using offline high-pH

reversed-phase fractionation with a Thermo Dionex Ultimate 3000 RSLC nano System and thenmerged to produce a total of 30 frac-

tions per batch. The fractionated samples were subsequently separated using a Thermo Dionex Ultimate 3000 RSLC nano System

before being examined with an HF mass spectrometer in data-dependent acquisition (DDA) mode (Thermo Fisher Scientific, San

Jose, USA). Using Proteome Discoverer (version 2.4, Thermo Fisher Scientific, Waltham, MA), all reviewed human entries from

UniProt (downloaded on 14 April 2020, containing 20,365 proteins) were searched. The detailed parameters were previously

described without modification.74,75

Construction of the CCIM scoring system
A CCIM scoring system was constructed with modifications from previous studies.76,77 A CCIM signature was built with the featured

genes in FOLR2+ macrophages, exhausted CD4+ T cells, Treg cells, exhausted CD8+ T cells, tolerance NK cells and the genes from

CCI ligand‒receptor pairs. The least absolute shrinkage and selection operator (LASSO) was applied to construct the CCIMmodel.78

The CCIM scoring system was built by including individual normalized gene expression values weighted by their LASSO Cox coef-

ficients as follows:
P

iCoefficientðmRNAiÞ 3 Normalized ExpressionðmRNAiÞ.

QUANTIFICATION AND STATISTICAL ANALYSIS

All experimental data were analyzed using R software (R version 4.0.4). Measurement data are expressed as the mean ± standard

error. A p value <0.05 was considered to indicate significance. Univariate and multivariate Cox analysis was performed to determine

whether a variable significantly affected disease-free survival (DFS).
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Fig. S1: The t-SNE plot coloured by CRC patients, related to Figure 1. A total of 24 patients were included for 
analysis. t-SNE: t-distributed stochastic neighbour embedding; CRC: colorectal cancer.  
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Fig. S2: The monocyte/macrophage subpopulations and their prognostic values, related to Figure 2. A.) The 
UMAP plot showing the expression level of the selected features in monocyte/macrophage subpopulations. B.) The 
association of DFS with the enrichment of each myeloid cell type. Gene signatures of myeloid cells were defined as 
the feature genes of each cell type and obtained from the scRNA-seq data (Pts n=1405). The cell abundance was 
calculated according to the gene signature for each cell type based on bulk transcriptome data using the GSVA method. 
UMAP: Uniform Manifold Approximation and Projection; DFS: disease-free survival; scRNA-Seq: single-cell RNA 
sequencing; GSVA: gene set variation analysis, Pts: patients.  
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Fig. S3: The CD4+ T-cell subpopulations in CRC, related to Figure 4. A.) Trajectory inference for 5 subclusters 
of CD4+ T cells. B.) Trajectory inference with the pseudotime score for 5 subclusters of CD4+ T cells. The colour key 
from black to gold indicates the pseudotime score from low to high. C.) Trajectory inference with PD-1 expression 
for 5 subclusters of CD4+ T cells. The colour key from blue to white indicates PD-1 expression from low to high. 
CRC: colorectal cancer.  
 
 
  



 
 

4 
 

 
Fig. S4: Optimal soft threshold selection and sample clustering in WGCNA, related to Figure 5. A.) A power of 
β = 3 was chosen as the optimal soft threshold to ensure scale-free coexpression. B.) A power of β = 3 represents low 
mean connectivity in the WGCNA model. C.) The clustering of gene modules in WGCNA. D.) The association 
between identified modules and FOLR2+ macrophage abundance calculated with the FOLR2+  macrophage gene 
signature on the bulk transcriptome. The colour key from green to red indicates the relative correlation level from low 
to high. E.) The correlation between gene significance for FOLR2+ macrophages and module membership in the 
yellow module. The black arrow indicates that FOLR2 is involved in the yellow module. Network clustering identified 
11 non-grey (meaningful) gene modules. F.) The gene network in the yellow module. G.) Gene ontology analysis 
based on the genes within the yellow module (FOLR2+ macrophage-related module) indicating the enriched biological 
process. H.) Proteomaps pathway analysis of genes within the yellow module (FOLR2+ macrophage-related module). 
Each small polygon corresponds to a single KEGG pathway, and the size correlates with the number of genes involved 
in the pathway. WGCNA: weighted gene coexpression network analysis, KEGG: Kyoto Encyclopedia of Genes and 
Genomes.  
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Fig. S5: Construction of the CCIM scoring system, related to Figure 5. A.) The LASSO Cox regression model 
was used to identify the most robust markers. B.) Distribution of LASSO coefficients of the gene signature. C.) 
Multivariate survival analysis of the CCIM score and other clinicopathological features in the TCGA-CRC cohort. D.) 
Multivariate survival analysis of the CCIM score and other significant clinicopathological features in the TCGA-CRC 
cohort. E.) The CCIM score stratified patients with poor prognosis in independent CRC cohort #1 (GSE28722) (Pts n 
= 125). F.) The CCIM score stratified patients with poor prognosis in independent CRC cohort #2 (GSE12945) (Pts n 
= 62). G.) The CCIM score stratified patients with a poor prognosis in independent CRC cohort #3 (GSE72970) (Pts 
n = 124). H.) The CCIM score stratified patients with a poor prognosis in independent CRC cohort #4 (GSE5851) (Pts 
n = 80). For Figure S5E-S5I best-cutoff method was applied for generating the CCIM high and low group. I.) The 
CCIM score stratified patients with a poor prognosis in independent CRC cohort #5 (TCGA-CRC) (Pts n = 274). J.) 
Meta-analysis for the training and testing cohorts. Immune-related pathway alterations in patients with distinct CCIM 
scores. K.) The pathway alterations were assessed with the GSVA method using their gene sets. CCIM: colorectal 
cancer immunosuppressive module; LASSO: least absolute shrinkage and selection operator, CRC: colorectal cancer; 
pts: patients.  
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Fig. S6: A FOLR2+ macrophage signature-based neural network model predicts the chemotherapy response, 
related to Figure 6. A.) Schematic illustration of FOLR2+ macrophage signature prediction model construction and 
validation. B.) The confusion matrix for predicting the chemotherapy response by the FOLR2-RM model in an 
external cohort. The column indicates the predicted response, while the row represents the actual response. C.) The 
ROC analysis indicates the high sensitivity and specificity of the FOLR2-RM model. D.) The construction process of 
CCIM-Net by Resnext50. ROC: receiver operating characteristic; FOLR2-RM model: FOLR2+ macrophage-based 
model. 
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Fig. S7: The genomic schematic of editing the FOLR2-DTR-eGFP mice and gating strategy, related to Figure 
7. The IRES-DTR-EGFP fusion gene was inserted into the 3’-UTR region of the FOLR2 gene locus.  
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Fig. S8: The pipeline for the CCIM analysis, related to Figure 6. A.) The workflow for the deep learning pipeline 
in our manuscript. B.) The HE staining showing the identified tumor tissues (red indicates tumor cells and green 
indicates stroma cells) and para-tumor tissues on slides.  
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Table S1. Feature genes of myeloid cells. Related to Figure 2. 
p_val avg_log2FC p_val_adj cluster gene 
0 2.703467872 0 FOLR2+ macrophage APOE 
0 2.569652735 0 FOLR2+ macrophage C1QC 
0 2.540618403 0 FOLR2+ macrophage C1QB 
0 2.520762997 0 FOLR2+ macrophage APOC1 
0 2.478060246 0 FOLR2+ macrophage C1QA 
0 2.156237286 0 FOLR2+ macrophage GPNMB 
0 2.114256761 0 FOLR2+ macrophage RNASE1 
0 1.806018055 0 FOLR2+ macrophage LGMN 
0 1.702743808 0 FOLR2+ macrophage TREM2 
0 1.63946639 0 FOLR2+ macrophage MSR1 
0 1.790280153 0 OAS+ macrophage IFI44L 
0 1.38366812 0 OAS+ macrophage OAS1 
0 1.367907875 0 OAS+ macrophage OAS3 
0 1.200912655 0 OAS+ macrophage CXCL10 
1.74E-304 1.251750284 3.47E-301 OAS+ macrophage OASL 
1.14E-280 1.740158953 2.28E-277 OAS+ macrophage TNFSF10 
5.00E-272 2.076296858 9.99E-269 OAS+ macrophage MX1 
1.48E-258 1.910414263 2.96E-255 OAS+ macrophage LY6E 
1.89E-228 1.618872411 3.77E-225 OAS+ macrophage MT2A 
1.87E-212 2.16275357 3.73E-209 OAS+ macrophage IFIT1 
0 4.326570465 0 Mast cell TPSAB1 
0 4.151640883 0 Mast cell TPSB2 
0 3.719794919 0 Mast cell CPA3 
0 3.528531605 0 Mast cell CLU 
0 3.179552215 0 Mast cell HPGDS 
0 3.08481101 0 Mast cell MS4A2 
0 2.956581136 0 Mast cell GATA2 
0 2.915095278 0 Mast cell LTC4S 
3.13E-298 2.22089356 6.27E-295 Mast cell CD9 
5.56E-288 2.600934127 1.11E-284 Mast cell VWA5A 
0 2.314578538 0 FCN1+ monocytes S100A12 
0 1.675024369 0 FCN1+ monocytes FCN1 
0 1.443611669 0 FCN1+ monocytes RBP7 
0 1.407530861 0 FCN1+ monocytes VCAN 
0 1.224845612 0 FCN1+ monocytes CSTA 
0 1.201167533 0 FCN1+ monocytes S100A8 
0 1.109381689 0 FCN1+ monocytes CLEC12A 
0 1.064708839 0 FCN1+ monocytes CFP 
0 1.047715341 0 FCN1+ monocytes S100A9 
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0 1.01710355 0 FCN1+ monocytes PLBD1 
0 1.806616701 0 OLR1+ macrophage CCL20 
0 1.371324968 0 OLR1+ macrophage CXCL3 
0 1.328000606 0 OLR1+ macrophage PLIN2 
0 1.313447691 0 OLR1+ macrophage G0S2 
0 1.229211049 0 OLR1+ macrophage NLRP3 
0 1.212277595 0 OLR1+ macrophage CXCL8 
0 1.168625057 0 OLR1+ macrophage UPP1 
0 1.150691165 0 OLR1+ macrophage EREG 
1.02E-292 1.432863049 2.04E-289 OLR1+ macrophage OLR1 
2.09E-275 1.019056865 4.17E-272 OLR1+ macrophage TIMP1 
0 1.631095239 0 DC cell HLA-DQA1 
0 1.390455704 0 DC cell HLA-DQB1 
0 1.364771189 0 DC cell HLA-DMB 
0 1.082507304 0 DC cell HLA-DPB1 
0 1.073994585 0 DC cell HLA-DPA1 
2.36E-275 1.452689755 4.72E-272 DC cell PPA1 
8.42E-202 1.153697115 1.68E-198 DC cell GPR183 
3.01E-191 1.060540832 6.01E-188 DC cell UCP2 
1.86E-188 1.774782864 3.72E-185 DC cell CLEC10A 
2.28E-170 1.211102005 4.55E-167 DC cell CPVL 
2.46E-124 0.801642856 4.93E-121 HSPA6+ monocytes PI3 
5.59E-69 0.751508145 1.12E-65 HSPA6+ monocytes SLPI 
1.04E-52 0.508773665 2.08E-49 HSPA6+ monocytes LRRC25 
1.15E-37 0.499143034 2.30E-34 HSPA6+ monocytes FOS 
7.02E-37 0.767185495 1.40E-33 HSPA6+ monocytes LRG1 
8.01E-33 0.457828519 1.60E-29 HSPA6+ monocytes S100A6 
4.74E-32 0.633038698 9.49E-29 HSPA6+ monocytes ZFAND2A 
3.00E-27 0.479852005 6.00E-24 HSPA6+ monocytes CXCR4 
2.10E-25 0.874316719 4.21E-22 HSPA6+ monocytes HSPA6 
7.76E-24 0.598128716 1.55E-20 HSPA6+ monocytes HCAR3 
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Table S2. Feature genes of CD4+ T cells. Related to Figure 4. 
p_val avg_log2FC p_val_adj cluster gene 
0 2.10186081 0 Treg IL2RA 
0 1.861650068 0 Treg FOXP3 
0 1.836449779 0 Treg TNFRSF18 
0 1.744619545 0 Treg TNFRSF4 
0 1.591211126 0 Treg BATF 
0 1.573961766 0 Treg LAIR2 
0 1.529423238 0 Treg TNFRSF9 
0 1.454852486 0 Treg DUSP4 
0 1.38027878 0 Treg TIGIT 
0 1.210566934 0 Treg CTLA4 
0 1.525099519 0 Naive CCR7 
7.99E-284 1.271369831 1.60E-280 Naive MAL 
1.40E-252 0.496372502 2.81E-249 Naive PABPC1 
6.67E-208 0.920624495 1.33E-204 Naive PLAC8 
3.22E-189 0.508841364 6.43E-186 Naive LDHB 
4.45E-178 0.702815017 8.90E-175 Naive YPEL5 
1.74E-168 0.912903959 3.49E-165 Naive AREG 
7.86E-151 0.624424222 1.57E-147 Naive GPR183 
2.12E-143 0.721272861 4.23E-140 Naive SLC2A3 
2.71E-139 0.620338115 5.42E-136 Naive FOS 
0 1.3892901 0 Th17 CCL5 
0 1.188210898 0 Th17 ANXA1 
0 0.931498989 0 Th17 GPR171 
1.79E-292 0.92752317 3.58E-289 Th17 KLRB1 
2.55E-285 0.72817835 5.10E-282 Th17 IL7R 
1.47E-284 0.940234127 2.94E-281 Th17 FKBP11 
1.66E-283 0.953685169 3.33E-280 Th17 ID2 
6.20E-280 1.011205571 1.24E-276 Th17 ANKRD28 
4.59E-244 0.954412521 9.18E-241 Th17 GPR65 
1.32E-234 0.970994223 2.63E-231 Th17 IL17A 
1.45E-149 1.288450419 2.90E-146 Exhaust PDCD1 
4.28E-146 0.937759753 8.55E-143 Exhaust TIGIT 
9.08E-146 1.444081009 1.82E-142 Exhaust TOX2 
9.98E-127 1.282741513 2.00E-123 Exhaust ICA1 
5.59E-115 0.767821251 1.12E-111 Exhaust LIMS1 
3.93E-107 0.888092037 7.86E-104 Exhaust TBC1D4 
8.71E-105 0.872393829 1.74E-101 Exhaust SH2D1A 
6.01E-100 0.763778656 1.20E-96 Exhaust MAF 
2.05E-90 0.622782937 4.09E-87 Exhaust ITM2A 
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5.32E-75 1.568188242 1.06E-71 Exhaust CXCL13 
4.84E-249 2.754926942 9.68E-246 Memory TMEM204 
5.75E-20 0.639291027 1.15E-16 Memory GIMAP7 
4.56E-17 0.49324668 9.11E-14 Memory RPS4Y1 
1.80E-16 0.59686813 3.61E-13 Memory GIMAP4 
1.82E-14 0.392548485 3.63E-11 Memory IL7R 
8.93E-14 0.691505443 1.79E-10 Memory PLAC8 
7.00E-13 0.27137293 1.40E-09 Memory LDHB 
1.75E-12 0.403172704 3.50E-09 Memory ANXA1 
2.72E-08 0.410434881 5.43E-05 Memory TRAT1 
1.42E-07 0.639850827 0.000284346 Memory CCR7 
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Table S3. Feature genes of CD8+ T cells. Related to Figure 4. 
p_val avg_log2FC p_val_adj cluster gene 
0 2.200701212 0 Effector memory GZMK 
0 1.30252866 0 Effector memory SH2D1A 
0 1.21816221 0 Effector memory ITGB2 
0 1.023573045 0 Effector memory CD27 
0 0.830763101 0 Effector memory CD74 
8.73E-271 0.867991915 1.75E-267 Effector memory HLA-DPB1 
7.68E-255 1.167004015 1.54E-251 Effector memory GZMH 
8.49E-215 0.782787791 1.70E-211 Effector memory GPR183 
2.64E-200 0.678554339 5.27E-197 Effector memory CCR7 
5.64E-177 0.864636785 1.13E-173 Effector memory HLA-DRA 
0 1.894683286 0 Exhaust TMIGD2 
0 1.85965092 0 Exhaust CD160 
0 1.459115224 0 Exhaust LDLRAD4 
0 1.317366481 0 Exhaust HOPX 
0 1.169102265 0 Exhaust KLRD1 
0 0.937885175 0 Exhaust CD7 
1.54E-291 1.66042112 3.09E-288 Exhaust SPRY1 
6.94E-291 1.146572869 1.39E-287 Exhaust GPR65 
9.10E-285 1.224418415 1.82E-281 Exhaust ITGA1 
3.62E-283 0.908541583 7.24E-280 Exhaust CD63 
3.02E-196 1.276163725 6.03E-193 Exhaust NKT HAVCR2 
2.89E-175 1.846789084 5.78E-172 Exhaust NKT CXCL13 
3.98E-171 1.839221638 7.96E-168 Exhaust NKT GNLY 
4.34E-170 1.093208479 8.67E-167 Exhaust NKT ENTPD1 
5.70E-156 1.101150394 1.14E-152 Exhaust NKT PHLDA1 
4.11E-154 1.284014249 8.23E-151 Exhaust NKT GZMB 
5.07E-136 0.995602299 1.01E-132 Exhaust NKT DUSP4 
5.73E-125 0.821779459 1.15E-121 Exhaust NKT CD70 
2.60E-119 0.766485572 5.19E-116 Exhaust NKT ACP5 
2.37E-89 0.776973157 4.74E-86 Exhaust NKT CD9 
0 2.405764276 0 Tissue resident ZNF683 
7.47E-49 0.509462029 1.49E-45 Tissue resident S100A4 
8.58E-39 0.54810102 1.72E-35 Tissue resident GZMB 
6.50E-33 0.583926417 1.30E-29 Tissue resident GZMH 
1.34E-31 0.530854143 2.68E-28 Tissue resident LGALS1 
2.51E-27 0.368744099 5.02E-24 Tissue resident CAPG 
3.64E-25 0.487994878 7.27E-22 Tissue resident HLA-DRA 
5.12E-25 0.346868476 1.02E-21 Tissue resident S100A6 
5.16E-24 0.416649564 1.03E-20 Tissue resident CLU 
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1.57E-23 0.375491203 3.15E-20 Tissue resident MT2A 
2.62E-165 2.310225713 5.24E-162 Tolerant DKK3 
3.50E-65 1.196683211 7.00E-62 Tolerant GZMK 
3.77E-30 0.758749457 7.53E-27 Tolerant SH2D1A 
2.53E-26 0.759367969 5.07E-23 Tolerant CD27 
9.11E-24 0.510185222 1.82E-20 Tolerant CST7 
3.34E-22 0.571940512 6.69E-19 Tolerant GPR183 
6.39E-19 0.58504908 1.28E-15 Tolerant ITGB2 
5.54E-18 0.529356191 1.11E-14 Tolerant TRAT1 
5.87E-17 0.414195428 1.17E-13 Tolerant DUSP2 
1.14E-15 0.66396579 2.27E-12 Tolerant CCR7 
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Table S4. Cell-cell interaction pairs. Related to Figure 5. 
Ligand Receptor Interaction.type LRscore Ligand_cell Receptor_cell 
CD86 CTLA4 paracrine 0.958  FOLR2+ macrophage Treg 
CXCL16 CXCR6 paracrine 0.946  FOLR2+ macrophage Treg 
MRC1 PTPRC paracrine 0.933  FOLR2+ macrophage Treg 
CD80 CTLA4 paracrine 0.933  FOLR2+ macrophage Treg 
SPP1 ITGA4 paracrine 0.915  FOLR2+ macrophage Treg 
CD14 ITGA4 paracrine 0.913  FOLR2+ macrophage Treg 
ICAM1 IL2RG paracrine 0.900  FOLR2+ macrophage Treg 
LGALS1 PTPRC paracrine 0.899  FOLR2+ macrophage Treg 
IL18 IL18R1 paracrine 0.894  FOLR2+ macrophage Treg 
CCL20 CCR6 paracrine 0.893  FOLR2+ macrophage Treg 
F13A1 ITGA4 paracrine 0.891  FOLR2+ macrophage Treg 
FN1 ITGA4 paracrine 0.890  FOLR2+ macrophage Treg 
IL1RN IL1R1 paracrine 0.881  FOLR2+ macrophage Treg 
IL1B IL1R1 paracrine 0.879  FOLR2+ macrophage Treg 
VCAN SELL paracrine 0.851  FOLR2+ macrophage Treg 
TGM2 ITGA4 paracrine 0.841  FOLR2+ macrophage Treg 
CALM2 SELL paracrine 0.832  FOLR2+ macrophage Treg 
VCAN ITGA4 paracrine 0.819  FOLR2+ macrophage Treg 
THBS1 ITGA4 paracrine 0.789  FOLR2+ macrophage Treg 
SPP1 S1PR1 paracrine 0.750  FOLR2+ macrophage Treg 
C3 IFITM1 paracrine 0.737  FOLR2+ macrophage Treg 
IL1A IL1R1 paracrine 0.697  FOLR2+ macrophage Treg 
MRC1 PTPRC paracrine 0.935  FOLR2+ macrophage Exhaust CD8+ T 
CXCL16 CXCR6 paracrine 0.922  FOLR2+ macrophage Exhaust CD8+ T 
LGALS1 CD69 paracrine 0.919  FOLR2+ macrophage Exhaust CD8+ T 
LGALS1 PTPRC paracrine 0.902  FOLR2+ macrophage Exhaust CD8+ T 
SPP1 ITGA4 paracrine 0.902  FOLR2+ macrophage Exhaust CD8+ T 
CD14 ITGA4 paracrine 0.899  FOLR2+ macrophage Exhaust CD8+ T 
ICAM1 IL2RG paracrine 0.883  FOLR2+ macrophage Exhaust CD8+ T 
IL18 CD48 paracrine 0.876  FOLR2+ macrophage Exhaust CD8+ T 
F13A1 ITGA4 paracrine 0.874  FOLR2+ macrophage Exhaust CD8+ T 
FN1 ITGA4 paracrine 0.872  FOLR2+ macrophage Exhaust CD8+ T 
IL18 IL18R1 paracrine 0.818  FOLR2+ macrophage Exhaust CD8+ T 
TGM2 ITGA4 paracrine 0.818  FOLR2+ macrophage Exhaust CD8+ T 
VCAN ITGA4 paracrine 0.794  FOLR2+ macrophage Exhaust CD8+ T 
THBS1 ITGA4 paracrine 0.760  FOLR2+ macrophage Exhaust CD8+ T 
C3 IFITM1 paracrine 0.724  FOLR2+ macrophage Exhaust CD8+ T 
CD86 CTLA4 paracrine 0.940  FOLR2+ macrophage Exhaust CD4+ T 
MRC1 PTPRC paracrine 0.937  FOLR2+ macrophage Exhaust CD4+ T 
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SPP1 ITGA4 paracrine 0.920  FOLR2+ macrophage Exhaust CD4+ T 
CD14 ITGA4 paracrine 0.918  FOLR2+ macrophage Exhaust CD4+ T 
CD80 CTLA4 paracrine 0.906  FOLR2+ macrophage Exhaust CD4+ T 
LGALS1 PTPRC paracrine 0.905  FOLR2+ macrophage Exhaust CD4+ T 
CXCL16 CXCR6 paracrine 0.902  FOLR2+ macrophage Exhaust CD4+ T 
F13A1 ITGA4 paracrine 0.897  FOLR2+ macrophage Exhaust CD4+ T 
FN1 ITGA4 paracrine 0.896  FOLR2+ macrophage Exhaust CD4+ T 
LGALS1 CD69 paracrine 0.886  FOLR2+ macrophage Exhaust CD4+ T 
ICAM1 IL2RG paracrine 0.885  FOLR2+ macrophage Exhaust CD4+ T 
TGM2 ITGA4 paracrine 0.850  FOLR2+ macrophage Exhaust CD4+ T 
VCAN ITGA4 paracrine 0.829  FOLR2+ macrophage Exhaust CD4+ T 
C3 IFITM1 paracrine 0.826  FOLR2+ macrophage Exhaust CD4+ T 
CCL20 CCR6 paracrine 0.824  FOLR2+ macrophage Exhaust CD4+ T 
IL18 CD48 paracrine 0.823  FOLR2+ macrophage Exhaust CD4+ T 
THBS1 ITGA4 paracrine 0.799  FOLR2+ macrophage Exhaust CD4+ T 
SPP1 S1PR1 paracrine 0.774  FOLR2+ macrophage Exhaust CD4+ T 
VCAN SELL paracrine 0.586  FOLR2+ macrophage Exhaust CD4+ T 
CALM2 SELL paracrine 0.550  FOLR2+ macrophage Exhaust CD4+ T 
MRC1 PTPRC paracrine 0.940  FOLR2+ macrophage Tolerant CD8+ T 
LGALS1 PTPRC paracrine 0.910  FOLR2+ macrophage Tolerant CD8+ T 
CXCL16 CXCR6 paracrine 0.908  FOLR2+ macrophage Tolerant CD8+ T 
SPP1 ITGA4 paracrine 0.902  FOLR2+ macrophage Tolerant CD8+ T 
CD14 ITGA4 paracrine 0.899  FOLR2+ macrophage Tolerant CD8+ T 
LGALS1 CD69 paracrine 0.897  FOLR2+ macrophage Tolerant CD8+ T 
IL18 CD48 paracrine 0.897  FOLR2+ macrophage Tolerant CD8+ T 
SPP1 S1PR1 paracrine 0.896  FOLR2+ macrophage Tolerant CD8+ T 
F13A1 ITGA4 paracrine 0.874  FOLR2+ macrophage Tolerant CD8+ T 
FN1 ITGA4 paracrine 0.872  FOLR2+ macrophage Tolerant CD8+ T 
ICAM1 IL2RG paracrine 0.852  FOLR2+ macrophage Tolerant CD8+ T 
TGM2 ITGA4 paracrine 0.818  FOLR2+ macrophage Tolerant CD8+ T 
VCAN ITGA4 paracrine 0.793  FOLR2+ macrophage Tolerant CD8+ T 
THBS1 ITGA4 paracrine 0.760  FOLR2+ macrophage Tolerant CD8+ T 
VCAN SELL paracrine 0.743  FOLR2+ macrophage Tolerant CD8+ T 
CALM2 SELL paracrine 0.714  FOLR2+ macrophage Tolerant CD8+ T 
CLEC2B KLRF1 paracrine 0.709  FOLR2+ macrophage Tolerant CD8+ T 
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Table S5. Clinical Characteristics of 1405 CRC Patients Involved in This Study. Related to Figure 5. 
Characteristics Number of patients (n =1405) 
Cohort  
GSE14333 290 (20.6%) 
GSE17536 177 (12.6%) 
GSE17537 55 (3.9%) 
GSE33113 96 (6.9%) 
GSE37892 130 (9.3%) 
GSE39582 585 (41.6%) 
GSE56699 72 (5.1%) 
Gender  
Male 719 (51.2%) 
Female 608 (43.3%) 
NA 78 (5.5%) 
Median age (years) 66.67 (22-97) 
Location  
Left 233 (16.6%) 
Right 82 (5.8%) 
NA 1090 (77.6%) 
Satge  
I 66 (4.7%) 
II 512 (36.4%) 
III 343 (24.4%) 
IV 116 (8.3%) 
NA 368 (26.2%) 
Grade  
I 17 (1.2%) 
II 153 (10.9%) 
III 34 (2.4%) 
NA 1201 (85.5%) 
T stage  
Tis 3  
T0 1  
T1 12 (0.8) 
T2 49 (3.5%) 
T3 379 (27%) 
T4 119 (8.5%) 
NA 842 (60%) 
N stage  
N0 314 (22.3%) 
N1 137 (9.8%) 
N2 100 (7.1%) 
N3 6 (0.4%) 
NA 848 (60.4%) 
M stage  
M0 499 (35.5%) 
M1 61 (4.3%) 
NA 845 (60.2%) 
MMR status  
dMMR 77 (5.5%) 
pMMR 459 (32.7%) 
NA 869 (61.8%) 
TP53 status  
Mutation 190 (13.5%) 
Wild 161 (11.5%) 
NA 1054 (75%) 
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KRAS status  
Mutation 217 (15.5%) 
Wild 328 (23.3%) 
NA 860 (61.2%) 
BRAF status  
Mutation 51 (3.6%) 
Wild 461 (32.8%) 
NA 893 (63.6%) 
Treatment  
Naive 497 (35.4%) 
Chemotherapy 358 (25.5%) 
NA 550 (39.1%) 
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Table S6. Clinical Characteristics of 26 CRC Patients Involved in This Study Related to Figure 1 

Characteristics Number of patients (n = 
26) 

Gender  

Male 11 (42.3%) 
Female 15 (57.7%) 
Median age (years) 69 (40-89) 
Maximum tumor size  

Small (<38 cm²) 19 (73.1%) 
Medium (38-69 cm²) 4 (15.4%) 
Large (>69 cm²) 4 (15.4%) 
Stage  

I 1 (3.81%) 
II 13 (50%) 
III 11 (42.3%) 
IV 1 (3.8%) 
Grade  

Low 3 (11.5%) 
Low or Moderate 4 (15.4%) 
Moderate 15 (57.7%) 
High 4 (15.4%) 
  
Data are median (IQR) or n (%).  
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Table S7. Clinical Characteristics of 181 CRC Patients Involved in This Study. Related to Figure 6. 
Characteristics Number of patients (n = 181) 
Gender  

Male 95 (52.5%) 
Female 86 (47.5%) 
Median age (years) 62 (21-82) 
Location  
L-CRC 116 (64.1%) 
R-CRC 65 (35.9%) 
KRAS Mutation 
Wild 

 
119 (65.7%) 

Mutation 62 (34.3%) 
Response 
Responder (CR+PR) 
Non-responder (SD+PD) 
 

 
118 (65.2%) 
63 (34.8%) 
 

Data are median (IQR) or n (%).  
R-CRC = right-sided colorectal cancer; L-CRC, left-sided colorectal cancer. 
CR = complete response; PR = partial response; PD = progressive disease; SD = stable disease. 
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Table S8. Clinical Characteristics of 45 CRC Patients Involved in This Study. Related to Figure 6. 
Characteristics Number of patients (n = 45) 
Gender  

Male 27 (60%) 
Female 18 (40%) 
Median age (years) 66 (25-78) 
Location  
LCRC 33 (73.3%) 
RCRC 12 (26.7%) 
KRAS Mutation 
Wild 

 
28 (62.2%) 

Mutation 17 (37.8%) 
Response 
Responder (CR+PR) 
Non-responder (SD+PD) 
 

 
34 (75.6%) 
11 (24.4%) 
 

Data are median (IQR) or n (%).  
R-CRC = right-sided colorectal cancer; L-CRC, left-sided colorectal cancer. 
CR = complete response; PR = partial response; PD = progressive disease; SD = stable disease. 
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