Cell Reports Medicine, Volume 5

Supplemental information

PD-L1-expressing tumor-associated macrophages

are immunostimulatory and associate with good

clinical outcome in human breast cancer

Lei Wang, Weihua Guo, Zhikun Guo, Jiangnan Yu, Jiayi Tan, Diana L. Simons, Ke Hu, Xinyu Liu, Qian Zhou, Yizi Zheng, Egelston A. Colt, John Yim, James Waisman, and Peter P. Lee

Figure S1. Single-cell analysis with blended expression analysis of PD-L1 and SIGLEC15 identified the PD-L1^{+/hi} **and PD-L1**^{-/lo} **monocytes/macrophages, related to Figure 1.** (A) 10 major cell types were identified and annotated in TME. (B) 12 clusters were identified in myeloid cells with the optimal clustering resolution (r = 0.5). (C) Monocytes/macrophages were identified and annotated in TME. (D) Average expression heatmap of the top 5 markers of each cluster. (E) Violin plot of the expression of key myeloid cell markers crossing all the myeloid cell clusters. (F) Blend expression of *PD-L1* and *SIGLEC15* on monocytes/macrophages.

Figure S2. PD-L1^{+/hi} and PD-L1^{-/lo} TAMs dichotomy confirmed by flow cytometry, related to Figure 1. (A) Representative flow plots showing the gating of TAMs from human breast tumor. (B) Expression levels of M1- or M2-associated genes in PD-L1⁺ and PD-L1⁻ TAMs. (C) All significantly enriched pathways from gene-set enrichment analysis of PD-L1⁺ and PD-L1⁻ TAMs based on the differential expressed genes (DEGs) identified by scRNA-seq (FDR q-value<0.1). (D) Enrichment plot of representative enriched pathways for PD-L1⁺ and PD-L1⁻TAMs.

Normalized expression

Figure S3. Single-cell analysis identified the PD-L1^{+/hi} **and PD-L1**^{-/lo} **monocytes/macrophages** (**Azizi et al.,** *Cell* **2018**), **related to Figure 1.** (**A**) 8 major cell types were identified and annotated in TME. (**B**)15 clusters were identified in myeloid cells with the optimal clustering resolution (r = 0.6). (**C**) Monocytes/macrophages were identified and annotated in TME. (**D**) Average expression heatmap of the top 5 markers of each cluster. (**E**) Violin plot of the expression of key myeloid cell markers crossing all the myeloid cell clusters.

• Upregulated in PD-L1-//o TAMs • Upregulated in PD-L1+//ni TAMs

Ε

Figure S4. Expression profile differences between PD-L1⁺ and PD-L1⁻ TAMs validated in public scRNA-seq data (Azizi et al., *Cell* **2018), related to Figure 1. (A) UMAP of TAMs (***CD14⁺CD68⁺HLA-DR⁺***, n=3,130 cells) from the public scRNA-seq data. (B) Blend expression of** *PD-L1* **and** *SIGLEC15***. (C) The dichotomization of the TAM clusters into** *PD-L1⁺/SIGLEC15⁻* **and** *PD-L1⁻/SIGLEC15⁺* **subpopulations. (D) Volcano plot showing differentially expressed genes (DEGs) between the subpopulation of PD-L1⁺ or PD-L1⁻ TAMs. (E) Expression distribution of selected genes involved in maturation, pro-inflammatory or transcriptional activator and antiinflammatory, pro-tumor, fatty acid metabolic or extracellular matrix between PD-L1^{+/hi} and PD-L1^{-/Io} TAMs.**

Figure S5. Single-cell analysis identified the PD-L1^{+/hi} and PD-L1^{-/lo} monocytes/macrophages (Pal et al., *EMBO* 2021), related to Figure 2. (A) 10 major cell types were identified and annotated in TME. (B) 15 clusters were identified in myeloid cells with the optimal clustering resolution (r = 0.8). (C) Monocytes/macrophages were identified and annotated in TME. (D) Average expression heatmap of the top 5 markers of each cluster. (E) Violin plot of the expression of key myeloid cell markers crossing all the myeloid cell clusters. (F) Blend expression of *PD-L1* and *SIGLEC15* on monocytes/macrophages.

Normalized expression

Figure S6. Single-cell analysis identified the PD-L1^{+/hi} **and PD-L1**^{-/lo} **monocytes/macrophages** (**Bassez et al.**, *Nat Med* **2021**), **related to Figure 2.** (**A**) 8 major cell types were identified and annotated in TME. (**B**) 15 clusters were identified in myeloid cells with the optimal clustering resolution (r = 0.8). (**C**) Monocytes/macrophages were identified and annotated in TME. (**D**) Average expression heatmap of the top 5 markers of each cluster. (**E**) Mutually exclusive expression of *PD-L1* and *SIGLEC15* in myeloid cells. (**F**) Violin plot of the expression of key myeloid cell markers crossing all the myeloid cell clusters. (**G**) Blend expression of *PD-L1* and *SIGLEC15* on monocytes/macrophages.

Pal et al., EMBO 2021

Bassez et al., Nat Med 2021

Figure S7. Venn diagram analysis of the overlap genes between PD-L1^{+/hi} or PD-L1^{-/lo} DEGs with M1 or M2 marker genes using in-house and public scRNA-seq data, related to Figure 3.

Figure S8. Analysis of PD-L1⁺ and PD-L1⁻ TAMs gene signature in public bulk-tumor transcriptomic datasets, related to Figure 3. (A) Kaplan-Meier relapse-free survival (RFS) curves and log-rank test generated for the gene signature of PD-L1^{+/hi} TAMs⁻ in the TNBC cohort of METABRIC (n=269) dataset. (B-C) Kaplan-Meier RFS curves and log-rank test generated for the gene expression of CD68 in the luminal BC cohorts of METABRIC (n=1098) (B) and TCGA (n=789) (C) datasets. (D-E) The association between CD8A expression and PD- $L1^+$ or PD- $L1^-$ TAMs gene signature in METABRIC (**D**) and TCGA (**E**) datasets. Correlation coefficient test. (F) Gene signatures of T cell activation, T cell cytotoxicity or interferon were compared between patients with high vs. low gene signature ratio of PD-L1⁺/PD-L1⁻ TAMs in the luminal BC cohort of METABRIC (n=1098). (G) Cell composition differences determined by CIBERSORT deconvolution method between tumors with high- and low-expressing gene signature of PD-L1^{+/hi} TAMs. Patients were divided into high- and low-expressing groups based on a 25% cut-off of the gene signature or CD68 expression. ****p<0.0001. (H) Kaplan-Meier overall survival (OS) curves and log-rank test generated for above or below median density ratio of PD-L1⁺/PD-L1⁻ TAMs in cohort #2 (n=93). (I) The density of PD-L1⁺ TAMs in BC patients with luminal, HER2 or TN subtype (n=129). (J) The density of PD-L1⁺ TAMs in combined cohort #1 and 2 (n=142) with various tumor grade, T status and N status. *p<0.05.

Figure S9. PD-L1 is upregulated during the monocyte-macrophage differentiation, related to Figure 5. (A) Representative multiple immunofluorescence staining of breast tumor tissue section for PD-L1⁺ TAMs (CD68⁺PD-L1⁺), PD-L1⁻ TAMs (CD68⁺PD-L1⁻), CD8⁺ T cells (CD8⁺), CD4+ T cells (CD3⁺CD8⁻) and cancer cells (CK⁺). (B) Representative flow plots showing the gating strategy of peripheral blood monocytes from patients with BC. (C) Schematic and the representative flow plot of PD-L1 expression after in vitro macrophage differentiation. (D) Representative flow plots showing the gating strategy of peripheral monocytes in phosflow cytometry.

Figure S10. Protein expression profiles of PD-L1⁺ and PD-L1⁻ monocytes, related to Figure

5. (**A-F**) Representative flow plots showing the expression of surface proteins of maturation (**A**), M1/M2 marker (**B**), co-stimulatory ligands (**C**), co-inhibitory ligands (**D**), Fcγ receptors (**E**) and chemokine receptors (**F**). (**G**) Representative flow plots showing the levels of phosphorylated signal transduction proteins.

Figure S11. PD-L1⁺ TAMs are primed for IFNy stimulation, related to Figure 6. (A)The association between PD-L1⁺% and IFNy-induced STAT1 phosphorylation ($\Delta pSTAT1\%$) in peripheral monocytes from patients with BC (n=40). Pearson's correlation coefficient test. (B) Representative flow plots showing the levels of IFNγR1 in PD-L1⁺ and PD-L1⁻ monocytes. (C-D) IFNy-induced STAT1 phosphorylation were shown in representative flow plots (C) and were compared between flow sorted PD-L1^{+/hi} and PD-L1^{-/lo} peripheral monocytes (**D**). **p<0.01. Paired t test. (E) Representative flow plots showing the gating strategy of TAMs from breast tumors in phosflow cytometry. (F) Representative flow plots showing the levels of IFNyR1 in PD-L1⁺ and PD-L1⁻ TAMs. (G-H) CellTrace Violet dilution by CD4⁺ T cells determined after 4 days of TCR-stimulated coculture with autologous PD-L1⁺ or PD-L1⁻ monocytes/macrophages from patients with BC at a 1 to 1 ratio (n=6). (G) Representative flow plots showing percentage of proliferated $CD8^+$ T cells. (H) The proliferation stimulation activity was measured by the cell number ratio of (CD8/CD4+CD14)/(CD8/CD4) as the stimulatory index. (I) Representative flow plots showing the expression of PD1 on CD8⁺ and CD4⁺ T cells during the CellTrace proliferation assays.

M1	M2		
ECGP1A	MPC1		
CD40	CD162		
CD40	CD 200		
CD86	CD14		
	CD1A CD1P		
	CVCP1		
	CXCRI		
HLA DORI			
	IL4R EGE		
	EGF		
	CTSA		
	CTSC		
CCP7	CTSD		
TNG			
	VVINT7B		
	TASLO TNESE12		
ILIB	TNESE12		
	CD276		
	CD276		
1L12B	VICN1		
ILZ3A CYCLO	IVISRI ENI1		
CXCL9	FN1		
CXCL10	IKF4		
	VEGFA		
CXCLI3	VEGEC		
0025	VEGED		
	VLGFD TGER1		
	TGEDI		
	TGFB2		
	IGEDS MANDO		
	NANAD1A		
	1011011-19		
	114		
	IL10 II 12		
	CCL4		
	CCL13		
	LLLZ4		

Table S1. M1 vs. M2 gene signature, related to Figure 1 and 3.

	PD-L1 ⁺ TAM			PD-L1 ⁻ TAM	
Gene	Log ₂ FC	Related-function	Gene	Log ₂ FC	Related-function
IL1B	1.40	Pro-inflammatory	SPP1	-1.61	Pro-tumor
HLA-DQA1	1.12	Maturation	FABP5	-1.06	Metabolism
HLA-DPB1	1.10	Maturation	FN1	-0.75	ECM organization
CEBPD	1.06	Activation	IL1RN	-0.71	Anti-inflammatory
FCER1A	1.02	Pro-inflammatory	CSTB	-0.68	Anti-inflammatory
SEPP1	0.99	Anti-tumor	LDHA	-0.51	Metabolism
HLA-DQB1	0.94	Maturation			
FOSB	0.81	Activation			

Table S2. Gene signature of PD-L1^{+/-}TAMs generated from scRNA-seq, related to Figure 3.

Note: The METABRIC analysis used expression levels of the gene signature;

The TCGA analysis used expression levels of the gene signature normalized to CD68.

	Cohort #1 Whole-slide	Cohort #2 TMA
Characteristics	N=49 (%)	N=93 (%)
Age—yr		
Median	51	55
Range	27-93	29-87
Tumor stage— no.(%)		
DCIS	1 (2)	0 (0)
T1	20 (41)	34 (37)
T2	23 (47)	58 (62)
Т3	5 (10)	1 (1)
Grade— no.(%)		
G1	5 (10)	0 (0)
G2	28 (57)	68 (73)
G3	16 (33)	25 (27)
Nodal status— no.(%)		
NO	25 (51)	48 (52)
N1-3	22 (45)	45 (48)
Unknown	2 (4)	0 (0)

 Table S3. The characteristics of patients with luminal breast cancer, related to Figure 3.