Supplementary Information for:

TBC1D23 mediates Golgi-specific LKB1 signaling

Yingfeng Tu^{1,7}, Qin Yang^{1,7}, Min Tang^{1,7}, Li Gao², Yuanhao Wang³, Jiuqiang Wang^{4,5}, Zhe Liu¹,

Xiaoyu Li¹, Lejiao Mao¹, Rui zhen Jia¹, Yuan Wang², Tie-shan Tang⁴, Pinglong Xu⁶, Yan Liu³,

Lunzhi Dai², Da Jia¹

Correspondence should be addressed to D.J. (e-mail: jiada@scu.edu.cn)

The PDF file includes: Supplementary Figures 1 to 7 Supplementary Table 1

Fig. S1 LKB1 is a novel TBC1D23 interactor that is required for AMPK activation upon energy stress. a and b, Analysis of TBC1D23-interacting proteins. Reactome gene sets (a) and canonical pathway (b) analysis of precipitated proteins by GST-TBC1D23. c, the weak interaction between TBC1D23 and MO25. HEK293T cells were transfected with GST-TBC1D23 and Myc-

MO25, co-transfection of GST-vector and Myc-MO25 as the negative control, followed by precipitation with GST beads and immunoblotting with antibodies against GST and Myc. d and e, TBC1D23 deficiency results in impaired AMPK activation. WT and TBC1D23 KO pool HepG2 cells were subjected to glucose starvation, CCCP treatment (d) or treated with 5 mM metformin for indicated time (e). Cells were collected and analyzed with immunoblotting. f and g, TBC1D23 deficiency results in attenuated AMPKa activation. WT and TBC1D23 KO pool HepG2 cells were starved with glucose (f) or EBSS (g) for 2 h, harvested and immunoblotted with pAMPK α , TBC1D23 and GAPDH. h, Cell cycle analysis of WT and TBC1D23 KO cells. WT and TBC1D23 KO HepG2 cells were collected and cell cycle profiles were determined by FACS. i, WT or TBC1D23 KO HepG2 cells were cultured for indicated time, and cell viability was assessed using the CCK8 assay and normalized to that of 0 h. j, CaMKK2-AMPK pathway remains intact in TBC1D23 deficient cells. WT and TBC1D23 KO HeLa cells were treated with or without 2 µM A23187 for 30 min, cells were then lysed and analyzed by indicated immunoblotting. Experiments c-i were performed in triplicate. Results are presented as mean \pm SD. P values were calculated by two-way ANOVA followed by Sidak's multiple comparisons test.

Fig. S2 Deletion of TBC1D23 specifically impairs Golgi-AMPK activation. Representative FRET image of Golgi-ABKAR and Mito-ABKAR. WT and TBC1D23 KO HepG2 cells transiently transfected with Golgi-ABKAR (**a**) or Mito-ABKAR (**b**) were incubated with or without glucose-free medium for 2 h and 4 h, respectively. And the FRET/CFP ratio was measured. Representative YFP images (upper); representative pseudocolor images of FRET/CFP ratio show the FRET response (lower). Scale bar, 10 μm.

Fig. S3 LKB1 is responsible for Golgi-AMPK activation upon energy stress. a and b, HeLa cells transiently transfected with Mito-ABKAR (a) or Golgi-ABKAR (b) were incubated with glucosefree medium for 2 h and 4 h, respectively. The FRET/CFP ratio was measured and shown relative to HeLa cells incubated with DMEM. (a), Con: n=23 cells; GS: n=23 cells. (b), Con: n=37 cells; GS: n=38 cells. n indicates pooling cells from one replicate. c, HeLa cells transiently transfected with vector or LKB1 were treated with 2 mM AICAR for 2 h, harvested, and immunoblotted with indicated antibodies. The graph shows the levels of pAMPK quantified by densitometry using Image

J software and normalized to GAPDH. Values of pAMPK to GAPDH were shown relative to the ratio of pAMPK to GAPDH in untreated HeLa cells transfected with vector. n=3 independent experiments. d, HeLa cells stably transfected with plvx-vector or plvx-LKB1-HA were treated with 2 mM AICAR for 2 h, harvested and subjected to Golgi extraction. Whole cell lysate and Golgi fractions were analyzed by immunoblotting with indicated antibodies (left). Golgin-97, Tom20 and LAMP1 were used as markers for the Golgi, mitochondria and lysosome, respectively. The graph shows the levels of pAMPK in Golgi fraction quantified by densitometry using Image J software and normalized to AMPK. Values of pAMPK to AMPK were shown relative to the ratio of pAMPK to AMPK in untreated HeLa cells stably transfected with plvx-vector (right). n=3 independent experiments. e, WT and TBC1D23 KO 3T3 cells were treated with metformin at concentrations indicated for 2 h. Cells were collected and analyzed by immunoblotting with indicated antibodies (upper). The graph shows the levels of pAMPK quantified by densitometry using Image J software and normalized to GAPDH. Values of pAMPK to GAPDH were shown relative to the ratio of pAMPK to GAPDH in untreated WT 3T3 cells (lower). n=3 independent experiments. Results are presented as mean \pm SD. P values were determined using an unpaired two-tailed t test (**a** and **b**) or two-way ANOVA followed by Sidak's multiple comparisons test (c,d and e).

b

LKB1/TBC1D23 interaction slimulated by AMPKa

LKB1	Condition	Enhanced TBC1D23 binding	AMPK activation
EI	Con	Yes	Yes
Γ.	GS	Yes	Yes
CDD	Con	NO	NO
	GS	Yes	Yes (by endogenous LKB1)

Fig. S4 The interaction between TBC1D23 and LKB1 is dynamically regulated upon energy

stress. a, GST-pull down assay showing the enhanced interaction between TBC1D23 and LKB1 upon glucose starvation. HEK293T cells transfected with GFP-LKB1 CRD were subjected to glucose starvation for indicated time before harvest. Cell lysates were incubated with GST-TBC1D23 PH immobilized on GST beads, and bound GFP-LKB1 CRD and purified GST-TBC1D23 PH were detected by immunoblotting. **b**, summary of effects of AMPKα on the interaction between TBC1D23 and LKB1 under physiological conditions and upon energy stress.

Fig. S5 Golgi-targeted expression of LKB1. a, Schematics of the LKB1-Giantin (LKB1-G) chimaera. The chimaera contains full length of LKB1, a linker region (GGSGGSGGS), and aa3,131-3,259 of GIANTIN. **b**, Confocal micrographs showing that the LKB1-G construct targets the Golgi in HeLa cells. Scale bar: 10 μ m. **c**, bar graph represents quantitation of Flag co-localization with ZFPL1 (Golgi marker). Each dot represents Pearson's correlation coefficients from one cell. n=34 cells. n indicates pooling cells from one replicate. Similar results were obtained in three independent experiments. Scale bar, 10 μ m.

Fig. S6 TBC1D23-mediated AMPK activation downregulates endosome-to-TGN trafficking. a, GST pull-down experiments showing the dynamic interaction between TBC1D23 and FAM21 upon glucose starvation. HEK293T cells were transfected with FAM21-GFP and GST-TBC1D23 PH. Control cells were co-transfected with GST-vector and FAM21-GFP. 24 h later, cells lysates

were subjected to glucose starvation for indicated time and precipitation with GST beads, followed by immunoblotting with indicated antibodies. b, Confocal imaging of HeLa cells transfected with GFP-LKB1 CRD or empty vector for 24 h. Cells were stained with antibodies against TGN46 and GM130. Pearson's correlation coefficients of TGN46 and GM130 were calculated using image J. c, Bar graph represents quantitation of TGN46 co-localization with GM130. Each dot represents Pearson's correlation coefficients from one cell. GFP-N1: n=27 cells; GFP-LKB1 CRD: n=42 cells. n indicates pooling cells from one replicate. Scale bar, 10 µm. d, Immunoblot analysis showing that glucose starvation and metformin induces AMPK activation. HepG2 cells treated with glucose starvation (upper) or metformin (lower) for indicated time before harvest and immunoblotted with indicated antibodies. e, HepG2 cells were treated with metformin (10 mM, 4 h) or medium deprived of glucose for 4 h, then fixed, and labeled with anti-TGN46 (red) and GM130 (green) antibodies. f, Quantitation of TGN46 co-localization with GM130 in cells as treated in e. Each dot represents Manders' coefficient 1 (GM130 overlapping with TGN46) from one cell. Con: n=72 cells; GS: n=84 cells; Met: n=86 cells. n indicates pooling cells from one replicate. Scale bar, 10 µm. g, HepG2 cells were treated with metformin (10 mM, 4 h) or medium deprived of glucose for 4 h, then fixed, and labeled with anti-CI-MPR (green) and ZFPL1 (red) antibodies. h, Quantitation of CI-MPR colocalization with ZFPL1 in cells as treated in g. Each dot represents Manders' coefficient 1 (CI-MPR overlapping with ZFPL1) from one cell. Con: n=69 cells; GS: n=63 cells; Met: n=66 cells. n indicates pooling cells from one replicate. Scale bar, 10 µm. Experiments a-h were performed in triplicate. Results are presented as mean \pm SD. P values were determined by an unpaired two-tailed t test (c) or one-way ANOVA followed by Dunnett's multiple comparisons test (f and h).

Fig. S7 LKB1 MO efficiently reduces the expression of LKB1 in zebrafish embryos. RT-PCR showing that injection of LKB1 MO (5 ng) effectively decreased the mRNA level of LKB1. All injections were performed at the one cell stage of zebrafish development. ACTIN was used as a loading control. p values were calculated by Kruskal-Wallis test.

			Fig. 1
	siNC	Con	1±0, n=3
Fig.1f		GS 2 h	1.75±0.35, n=3
		GS 4 h	1.48±0.25, n=3
		СССР	1.31±0.10, n=3
	SiTBC1D	Con	1.00±0.34, n=3; p >0.9999, compared to siNC con
	23	GS 2 h	0.91±0.23, n=3; p= 0.0010, compared to siNC GS 2 h
		GS 4 h	0.92±0.07, n=3; p= 0.0268, compared to siNC GS 4 h
		СССР	0.80±0.17, n=3; p= 0.0471, compared to siNC CCCP
Fig. 1g	WT	Con	1±0, n=3
0 0		GS 1 h	1.78±0.27, n=3
		GS 2 h	1.76±0.14, n=3
	КО	Con	0.87±0.13, n=3; p= 0.7178, compared to WT con
		GS 1 h	1.01±0.21, n=3; p= 0.0003, compared to WT GS 1 h
		GS 2 h	1.13±0.11, n=3; p= 0.0017, compared to WT GS 1 h
Fig. 1h	WT	Con	1±0, n=3
		GS 1 h	1.63±0.22, n=3
		GS 2 h	1.77±0.33, n=3
	КО	Con	0.90±0.19, n=3; p=0.9531, compared to WT con
		GS 1 h	1.00±0.25, n=3; p=0.0310, compared to WT GS 1 h
		GS 2 h	1.08±0.37, n=3; p=0.0186, compared to WT GS 2 h
Fig. 1k	WT	Con	1±0, n=3
		A23187	1.96±0.05, n=3; p= 0.0039, compared to WT Con
	KO	Con	1.04±0.44, n=3; p= 0.9811, compared to WT Con
		A23187	1.67±0.28, n=3; p= 0.0358, compared to KO Con; p=
			0.3735, compared to WT Met.
		48 h	1.82±0.11, n=3
		72 h	1.22±0.08, n=3
	WT	96 h	1.24±0.16, n=3
Fig. 1i		120 h	1.27±0.08, n=3
	KO	48 h	0.87±0.13, n=3; p <0.0001, compared to WT 48 h
		72 h	0.75±0.07, n=3; p =0.0002, compared to WT 72 h
		96 h	0.76±0.10, n=3; p=0.0001, compared to WT 96 h
		120 h	0.50±0.06, n=3; p <0.0001, compared to WT 120 h
Fig. 1j	WT		0.69±0.02, n=3
	КО		0.44 ± 0.09 , n=3; p = 0.0090, compared to WT
Fig. if, 1g, 1	h, 1k and 1i: 1	values cal	culated by two-way ANOVA, followed by Sidak's test;
Fig. 1j: p va	lues calculated	l by unpaire	ed two-tailed t test, t=4.740, df=4.
Normality T	est for 1f,1h,1	k,1i and 1j:	normal distribution determined by Shapiro-Wilk test.

Supplementary Table 1. Statistical data.

	1		Fig. 2
Fig. 2a	Con		$0.07 \pm 0.10, n = 79$
	GS		0.42±0.25, n= 115; p <0.0001, compared to Con
Fig. 2b	Con		0.72±0.22, n= 55
	GS		0.70±0.23, n= 73; p= 0.9055, compared to Con
Fig. 2d	WT	Con	$1.00\pm0.05, n=33$
		GS	1.27±0.12, n = 50; p <0.0001, compared to WT Con
	KO	Con	0.79±0.13, n = 40; p <0.0001, compared to WT Con
		GS	0.91 ± 0.15 , n = 41; p < 0.0001, compared to WT GS; p
			<0.0001, compared to KO Con
Fig. 2e	WT	Con	$1.00\pm0.17, n=37$
		GS	1.18±0.21, n = 58; p <0.0001, compared to WT Con
	KO	Con	1.03±0.18, n = 37; p =0.7394, compared to WT Con
		GS	1.13±0.19, n = 53; p =0.0345, compared to KO Con;
			p=0.2560, compared to WT GS
	WT	Con	1±0, n=3
		Met	1.49 ± 0.29 , n=3; p = 0.0121, compared to WT Con
Fig. 2f	KO	Con	1.00 ± 0.07 , n=3; p = 0.9998, compared to WT Con
		Met	1.37±0.14, n=3; p = 0.0452, compared to KO Con; p =
			0.6312, compared to WT Met
Fig. 2h	WT	Con	1.00±0.51, n=35
		GS	3.76±3.98, n=34; p<0.001, compared to WT Con
	KO	Con	1.17±0.59, n=48; p=1.000, compared to WT Con
		GS	3.11±2.18, n=43; p<0.001, compared to KO Con;
			p=1.000, compared to WT GS
Fig. 2a and 2	2b: data witho	out a normal	distribution, p values calculated by unpaired two-tailed
Mann Whitn	ey test;		
Fig. 2d, 2e a	nd 2f: p value	es calculated	l by two-way ANOVA, followed by Sidak's test;
Fig. 2h: data	without a no	rmal distrib	ution, p values calculated by Scheirer-Ray-Hare test;
Normality Te	est for 2d: not	rmal distrib	ation determined by Shapiro-Wilk test.
Normality T	est for 2e: not	rmal distribu	ation determined by D'Agostino & Pearson test.
			Fig. 3
Fig. 3d	WT		Fig. 3 1±0, n=3
Fig. 3d	WT KO		Fig. 3 1±0, n=3 0.57±0.10, n=3; p=0.0016, compared to WT
Fig. 3d Fig. 3e	WT KO WT		Fig. 3 1±0, n=3 0.57±0.10, n=3; p=0.0016, compared to WT 1±0, n=3
Fig. 3d Fig. 3e	WT KO WT KO		Fig. 3 1±0, n=3 0.57±0.10, n=3; p=0.0016, compared to WT 1±0, n=3 1.14±0.11, n=3; p=0.0948, compared to WT
Fig. 3d Fig. 3e Fig. 3f	WT KO WT KO WT	Con	Fig. 3 1±0, n=3 0.57±0.10, n=3; p=0.0016, compared to WT 1±0, n=3 1.14±0.11, n=3; p=0.0948, compared to WT 1.00±0, n=3
Fig. 3d Fig. 3e Fig. 3f	WT KO WT KO WT	Con GS 1 h	Fig. 3 1±0, n=3 0.57±0.10, n=3; p=0.0016, compared to WT 1±0, n=3 1.14±0.11, n=3; p=0.0948, compared to WT 1.00±0, n=3 0.97±0.10, n=3
Fig. 3d Fig. 3e Fig. 3f	WT KO WT KO WT	Con GS 1 h GS 2 h	Fig. 3 1±0, n=3 0.57±0.10, n=3; p=0.0016, compared to WT 1±0, n=3 1.14±0.11, n=3; p=0.0948, compared to WT 1.00±0, n=3 0.97±0.10, n=3 1.34±0.21, n=3
Fig. 3d Fig. 3e Fig. 3f	WT KO WT KO WT	Con GS 1 h GS 2 h Con	Fig. 3 1±0, n=3 0.57±0.10, n=3; p=0.0016, compared to WT 1±0, n=3 1.14±0.11, n=3; p=0.0948, compared to WT 1.00±0, n=3 0.97±0.10, n=3 1.34±0.21, n=3 0.88±0.05, n=3; p=0.4563, compared to WT Con

	1		
		GS 2 h	1.07±0.06, n=3; p=0.0205, compared to WT GS 2 h
Fig. 3h (left)	WT	Con	1.41±0.78, n=129
		Met	4.07±1.92, n=116; p <0.001, compared to WT Con
	KO	Con	1.44 ± 0.84 , n=120; p = 1.000, compared to WT Con
		Met	1.95±1.10, n=103; p=0.006, compared to KO Con; p
			<0.001, compared to WT Met
Fig. 3h	WT	Con	0.36±0.32, n=129
(right)		Met	0.95±0.60, n=116; p <0.001, compared to WT Con
	KO	Con	0.27±0.16, n=120; p=0.201, compared to WT Con
		Met	0.41±0.33, n=103; p= 0.003, compared to KO Con; p
			<0.001, compared to WT Met
Fig. 3d: p va	lues calculate	ed by unpair	red two-tailed t test, t=7.589, df=4.
Fig. 3e: p va	lues calculate	ed by unpair	ed two-tailed t test, t=2.180, df=4.
Fig. 3f: p va	lues calculate	d by two-wa	ay ANOVA, followed by Sidak's test;
Fig. 3h: data	without a no	rmal distrib	ution, p values calculated by Scheirer-Ray-Hare test.
Normality T	est for 3d,3e	and 3f: norn	nal distribution determined by Shapiro-Wilk test.
			Fig. 4
	TBC1D23	FL	1±0, n=3
Fig.4b	△TBC		1.14±0.11, n=3; p=0.0766, compared to TBC1D23 FL
	△Rho		1.11±0.07, n=3; p=0.1636, compared to TBC1D23 FL
	TBC+ Rho		0.10±0.02, n=3; p<0.0001, compared to TBC1D23 FL
	514-684		1.09±0.06, n=3; p=0.3380, compared to TBC1D23 FL
Fig. 4c	514-684		1±0, n=3
	РН		0.94±0.12, n=3; p=0.4060, compared to 514-684
Fig. 4d	WT		1±0, n=3
	3K		0.24±0.16, n=3; p=0.0011, compared to WT
Fig. 4f	LKB1 FL		1±0, n=3
	\triangle CRD		0.09±0.07, n=3; p<0.0001, compared to LKB1 FL
	△NRD		0.91±0.12, n=3; p=0.4129, compared to LKB1 FL
	KD		0.08±0.06, n=3; p<0.0001, compared to LKB1 FL
Fig. 4h	LKB1-CR	D WT	1±0, n=3
	LKB1-CR	D∆LFa	0.21±0.09, n=3; p=0.0001, compared to LKB1-CRD WT
	LKB1-CR	D 4K	0.33±0.14, n=3; p=0.0003, compared to LKB1-CRD WT
Fig. 4b,4f ar	nd 4h: p value	es calculated	by one-way ANOVA, followed by Dunnett's test;
Fig. 4c: p va	lues calculate	ed by unpair	ed two-tailed t test, t=0.9279, df=4;
Fig. 4d: p va	lues calculate	ed by unpair	red two-tailed t test, t=8.442, df=4.
Normality T	est for 4b, 4c	,4d,4f and 4	h: normal distribution determined by Shapiro-Wilk test.
-			
			Fig. 5
	Con		1±0, n=3

	GS 1 h		2.52±0.61, n=3; p= 0.0196, compared to Con
	GS 2 h		2.44±0.77, n=3; p= 0.0265, compared to Con
	GS 4 h		1.38±0.48, n=3; p= 0.7991, compared to Con
Fig. 5b	Con		1±0, n=3
	GS 0.5 h		1.95±0.42, n=3; p= 0.0135, compared to Con
	GS 1 h		1.93±0.35, n=3; p= 0.0155, compared to Con
	GS 2 h		2.35±0.42, n=3; p= 0.0013, compared to Con
	GS 4 h		1.38±0.15, n=3; p= 0.4275, compared to Con
Fig. 5c	TBC1D23/LKB1		1±0, n=3
(Con)	TBC1D23/LKB1		1.77±0.12, n=3; p=0.0004, compared to
	ΑΜΡΚα		TBC1D23/LKB1
Fig. 5d	TBC1D23/I	LKB1	1±0, n=3
(GS)	TBC1D23/I	LKB1	1.97±0.35, n=3; p=0.0090, compared to
	ΑΜΡΚα		TBC1D23/LKB1
Fig. 5e	TBC1D23/I	LKB1	1±0, n=3
(Con)	CRD		
	TBC1D23/I	LKB1	0.96±0.02, n=3; p=0.0646, compared to
	CRD AMPI	Κα	TBC1D23/LKB1 CRD
	TBC1D23/LKB1		1±0, n=3
Fig. 5f	CRD		
(GS)	iS)		
	TBC1D23/I	LKB1	2.22±0.23, n=3; p=0.0007, compared to
	CRD AMPI	Κα	TBC1D23/LKB1 CRD
Fig. 5a and 5b: p values calculated by one-way ANOVA, followed by Dunnett's test;			
Fig. 5c: p values calculated by unpaire			ed two-tailed t test, t=11.23, df=4;
Fig. 5d: p values calculated by unpaired			ed two-tailed t test, t=4.749, df=4;
Fig. 5e: p values calculated by unpaire			ed two-tailed t test, t=2.531, df=4;
Fig.5f: p values calculated by unpaired two-tailed t test, t=9.322, df=4.			d two-tailed t test, t=9.322, df=4.
Normality Test for 5a-5f: normal distribution determined by Shapiro-Wilk test.			
			Fig. 6
	WT	Con	0.08 ± 0.13 , n=81
Fig.6a		GS	0.36±0.25, n=92; p <0.001, compared to WT Con;
	KO	Con	0.06±0.09, n=116; p=1.000, compared to WT Con
		GS	0.15±0.18, n=98; p <0.001, compared to WT GS; p
			<0.001, compared to KO Con
Fig.6b	Vector		1±0, n=3
	WT		1.68±0.34, n=3; p=0.0228, compared to Vector
	3K		1.03±0.23, n=3; p=0.9869, compared to Vector
	WT		1±0, n=3
	KO+Vector		0.70±0.01, n=3; p=0.9503, compared to WT

Fig. 6c	KO+LKB1	1.39±0.22, n=3; p=0.5732, compared to KO+Vector		
	KO+LKB1-G WT	3.24±1.34, n=3; p=0.0037, compared to KO+Vector;		
		p=0.0260, compared to KO+LKB1		
	KO+LKB1-G D194A	1. 90±0.73, n=3; p=0.1691, compared to KO+Vector		
Fig. 6e	WT	5.11±2.64, n=142		
(upper)	KO+Vector	2.81±1.52, n=165; p<0.0001, compared to WT		
	KO+LKB1	3.82±2.09, n=88; p= 0.0067, compared to KO+Vector		
	KO+LKB1-G WT	10.30±4.12, n=79; p<0.0001, compared to KO+LKB1		
	KO+LKB1-G D194A	4.33±2.91, n=85; p <0.0001, compared to KO+LKB1-G		
		WT		
Fig. 6e	WT	0.69±0.40, n=142		
(lower)	KO+Vector	0.37±0.30, n=165; p<0.0001, compared to WT		
	KO+LKB1	0.41±0.38, n=88; p >0.9999, compared to KO+Vector		
	KO+LKB1-G WT	1.15±0.55, n=79; p<0.0001, compared to KO+LKB1		
	KO+LKB1-G D194A	0.56±0.41, n=85; p<0.0001, compared to KO+LKB1-G		
		WT		
Fig. 6a: data	without a normal distribu	ition, p values calculated by Scheirer-Ray-Hare test;		
Fig. 6b and 6	c: p values calculated by	one-way ANOVA, followed by Dunnett's test;		
Fig. 6e: data	without a normal distribution	ution, p values calculated Kruskal-Wallis test.		
Normality Te	est for 6b and 6c: normal	distribution determined by Shapiro-Wilk test.		
		Fig. 7		
	1	Γ		
	Control	142.40±5.16, n=10		
Fig.7b	TBC1D23 MO	93.08±14.57, n=11; p<0.0001, compared to Control		
	MO+TBC1D23	127.55±8.56, n=8; p<0.0001, compared to TBC1D23 MO		
	MO+LKB1	100.01±15.04, n=12; p=0.4877, compared to TBC1D23		
		MO		
	MO+LKB1-G WT	117.70±9.00, n=11; p<0.0001, compared to TBC1D23		
		MO		
	MO+LKB1-G	98.72±12.73, n=8; p=0.7559, compared to TBC1D23		
	D194A	MO		
Fig. 7d	Control	10175.43±1176.97, n=14		
	TBC1D23 MO	4057.78±950.51, n=13; p<0.0001, compared to Control		
	MO+ TBC1D23	8463.90 ± 1404.23 , n=12; p<0.0001, compared to		
		TBC1D23 MO		
	MO+LKB1	4339.54 ± 1248.08 , n=15; p=0.9541, compared to		
		ТВС1D23 МО		
	MO+LKB1-G WT	6423.06 ± 1200.18 , n=11; p<0.0001, compared to		
		TBC1D23 MO		
	MO+LKB1-G	3860.55 ± 1072.40 , n=15; p=0.9900, compared to		
	D194A	ТВС1D23 МО		
Fig. 7b and 7	Fig. 7b and 7d: p values calculated by one-way ANOVA, followed by Dunnett's test.			

			Fig. 8
	WT		$1+0 \ n=3$
Fig.8a	F254I		0.82 ± 0.08 n=2; n= 0.0278 compared to WT
115.04	F354L		0.85 ± 0.08 , n=5; p= 0.0278, compared to w 1
	F354A		0.75 ± 0.07 , n=3; p= 0.0047, compared to W1
Fig. 8e	Control		143.20±7.82, n=11
	LKB1 MO		125.15 ± 4.98 , n=/; p=0.0069, compared to Control
	MO+LKB	51 W I	n=0.0374 compared to LKB1 MO
	MO+LKF	1 F354L	119.01+10.04 n=6: n=0.0031 compared to MO+LKB1
		1155 IL	WT
	MO+LKB	81 F354A	114.27±21.30, n=7; p=0.0001, compared to MO+LKB1
	MO+TBC1D23		WT
			118.53±9.69, n=6; p=0.0024, compared to MO+LKB1
			WT
Fig. 8g	Control		10435.59±1423.04, n=14
	LKB1 MC)	5214.89±2749.37, n=18; p<0.0001, compared to Control
	MO+LKB	81 WT	8285.97±2493.18, n=21; p=0.2997 compared to Control;
			p=0.0094, compared to LKB1 MO
	MO+LKB	81 F354L	3780.29 ± 2294.72 , n=10; p=0.0004, compared to
		01 E254A	MO+LKBI W I 4202.28+2002.01 n=2; n=0.0116 compared to
	MOTLKD	01 F334A	4202.58 ± 5092.01 , n=8, p=0.0110, compared to MO+LKB1 WT
MO+ TBC1D23		C1D23	3712.82 ± 2697.75 , n=8; p=0.0026, compared to
			MO+LKB1 WT
Fig. 8a, 8e:	p values calc	ulated by or	ne-way ANOVA, followed by Dunnett's test.
Fig. 8g: dat	a without a no	ormal distri	bution, p values calculated by Kruskal-Wallis test.
	Fest for 8a: no	ormal distrib	oution determined by Shapiro-Wilk test;
Normality 7		ormal distrib	oution determined by Kolmogorov-Smirnov test:
Normality 7 Normality 7	Test for 8e: no		· · · · · · · · · · · · · · · · · · ·
Normality 7 Normality 7	Test for 8e: no		
Normality 7 Normality 7	Test for 8e: no		
Normality 7 Normality 7	Test for 8e: no		Fig S1
Normality 7 Normality 7	Test for 8e: no		Fig. S1
Normality 7	Test for 8e: no	G1	Fig. S1 64.37±2.02, n=3
Normality 7	WT	G1 S	Fig. S1 64.37±2.02, n=3 11.22±0.33, n=3
Normality 7	WT	G1 S G2/M	Fig. S1 64.37±2.02, n=3 11.22±0.33, n=3 24.04±2.31, n=3
Normality 7 Normality 7	WT	G1 S G2/M G1	Fig. S1 64.37±2.02, n=3 11.22±0.33, n=3 24.04±2.31, n=3 65.80±0.95, n=3; p= 0.5863, compared to WT G1
Normality 7 Normality 7 Fig. S1h	WT KO	G1 S G2/M G1 S	Fig. S1 64.37±2.02, n=3 11.22±0.33, n=3 24.04±2.31, n=3 65.80±0.95, n=3; p= 0.5863, compared to WT G1 11.15±1.45, n=3; p>0.9999, compared to WT S

Fig. S1i	WT	48 h	2.51±0.07, n=3	
		72 h	4.32±0.20, n=3	
	KO	48 h	2.63±0.03, n=3; p= 0.5591, compared to WT 48 h	
		72 h	4.26±0.17, n=3; p= 0.8482, compared to WT 72 h	
Fig. S1h and 1i: p values calculated by two-way ANOVA, followed by Sidak's test.				
Normality Te	est for S1h an	d S1i: norm	al distribution determined by Shapiro-Wilk test.	
			Fig. S3	
Fig. S3a	Con		1.00±0.17, n=23	
	GS		1.00±0.14, n=23; p >0.9999, compared to Con	
Fig. S3b	Con		1.00±0.13, n=37	
	GS		1.00±0.10, n=38; p= 0.8658, compared to Con	
Fig. S3c	Vector	Con	1±0, n=3	
		AICAR	1.23±0.15, n=3	
	LKB1	Con	1.42±0.08, n=3; p= 0.0139, compared to Vector	
			Con	
		AICAR	1.69±0.23, n=3; p= 0.0093, compared to Vector AICAR	
Fig. S3d	Vector	Con	1±0, n=3	
		AICAR	0.93±0.04, n=3	
	LKB1	Con	1.32±0.18, n=3; p= 0.0129, compared to Vector	
			Con	
		AICAR	1.56±0.11, n=3; p= 0.0002, compared to Vector	
			AICAR	
Fig. S3e	WT	Con	1±0, n=3	
		0.5 mM	1.38±0.16, n=3	
		Met		
		1 mM	1.35±0.10, n=3	
		Met		
	KO	Con	1.14±0.16, n=3; p= 0.7618, compared to WT Con	
		0.5 mM	1.34 ± 0.18 , n=3; p= 0.9875, compared to WT 0.5 mM	
		Met	Met	
		1 mM	1.46 ± 0.35 , n=3; p= 0.8664, compared to WT 1 mM Met	
		Met		
Fig. S3a: p v	alues calculat	ed by unpai	red two-tailed t test, t=9.444e-008, df=44;	
Fig. S3b: p v	alues calcula	ted by unpai	ired two-tailed t test, t=0.1696, df=73;	
Fig. S3c, S3d and S3e: p values calculated by two-way ANOVA, followed by Sidak's test.				
Normality Test for S3a: normal distribution determined by Kolmogorov-Smirnov test;				
Normality Test for S3b, S3c, S3d and S3e: normal distribution determined by Shapiro-Wilk test.				

Fig. S6c	GFP-N1	0.71±0.05, n=27
	GFP-CRD	0.62±0.08, n=42; p <0.0001, compared to GFP-N1
	Con	0.75±0.09, n=72
Fig. S6f	GS	0.69±0.11, n=84; p =0.0018, compared to Con
	Met	0.62±0.12, n=86; p <0.0001, compared to Con
Fig. S6h	Con	0.34±0.12, n=69
	GS	0.19±0.10, n=63; p <0.0001, compared to Con
	Met	0.15±0.10, n=66; p <0.0001, compared to Con

Fig. S6c: p values calculated by unpaired two-tailed t test, t=5.317, df=67; Fig. S6f and S6h: p values calculated by one-way ANOVA, followed by Dunnett's test. Normality Test for S6c: normal distribution determined by Shapiro-Wilk test;

Normality Test for S6f and S6h: normal distribution determined by Kolmogorov-Smirnov test.

Fig. S7				
	WT	1.00±0.03, n=3		
Fig. S7	LKB1 MO 2 ng	0.28±0.04, n=3; p=0.9245, compared to WT		
	LKB1 MO 5 ng	0.09±0.002, n=3; p=0.0067, compared to WT		
	LKB1 MO 7 ng	0.11±0.01, n=3; p=0.1246, compared to WT		
data without a normal distribution (LKB1 MO 7 ng group failed to pass normality test), p values				
calculated by Kruskal-Wallis test.				