# Multi-omics analysis of disulfidptosis regulators and therapeutic potential reveals glycogen synthase 1 as a disulfidptosis triggering target for triplenegative breast cancer

Jindong Xie<sup>1, #</sup>, Xinpei Deng<sup>1, #</sup>, Yi Xie<sup>1, #</sup>, Hongbo Zhu<sup>2</sup>, Peng Liu<sup>1</sup>, Wei Deng<sup>1</sup>, Li Ning<sup>1</sup>, Yuhui Tang<sup>1</sup>, Yuying Sun<sup>1</sup>, Hailin Tang<sup>1</sup>, Manbo Cai<sup>2, \*</sup>, Xiaoming Xie<sup>1, \*</sup>, Yutian Zou<sup>1, \*</sup>

<sup>1</sup> State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.

<sup>2</sup> The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.

### \* Correspondence:

Yutian Zou (zouyt@sysucc.org.cn); Xiaoming Xie (xiexm@sysucc.org.cn): State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.

Manbo Cai (caimanbo@nhfyyy.com):

The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.

# These authors contributed equally to this work.

## **Supplementary Figure Legends**



Supplementary Figure S1. Circos plot showed interaction relationships among ten disulfidptosis regulators.









Supplementary Figure S2. The expression and distribution of each disulfidptosis regulator using TISCH database.



Supplementary Figure S3. Prognosis patterns of disulfidptosis regulators in the TCGA pan-cancer cohorts. Risky and protective genes are marked in purple and green, respectively (HR, hazard ratio; \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001, \*\*\*\* p < 0.0001).



Supplementary Figure S4. The heterozygous and homozygous copy number variation (CNV) profile of disulfidptosis regulators in each tumor type, including the percentage of amplification and deletion.



Supplementary Figure S5. Bubble plot of the correlations between CNV profiles and each disulfidptosis regulator expression in pan-cancer (FDR, false discovery rate).



Supplementary Figure S6. Violin plot showed the different disulfidptosis activity scores between pancreatic cancer cells adapted (n=6) or non-adapted (n=6) to nutrient deprivation.



Supplementary Figure S7. heatmap demonstrating the infiltration levels of multiple cells using different algorithms.



Supplementary Figure S8. Dissection of disulfidptosis activity score in multiple scRNA-seq cohorts. (A) UMAP plot visualization of each scRNA-seq cohort. Different colors refer to different cell types. (B) Violin plots of the distribution of the disulfidptosis activity score among different cell types in each scRNA-seq cohort. Different colors refer to different cell types. (C) Feature plots of the expression levels of the disulfidptosis activity score in each scRNA-seq cohort. Green indicates high expression, and white indicates low expression. (D) Cell-cell interactions between the malignant cells (activated and suppressive clusters) and other different cell types in each scRNA-seq cohort. (E) Venn plots of the common ligand-receptor pairs in activated and suppressive groups among scRNA cohorts. (F) Bubble plot of the common ligand-receptor pairs among scRNA cohorts. (G) t-SNE plot of single cells profiled in our previous study colored by major cell type and location (BM, brain metastasis; LM, liver metastasis). (H) Violin plots of the distribution of the disulfidptosis activity score between different locations in our previous study. \* p < 0.05, \*\*\*\* p < 0.0001.



Supplementary Figure S9. Western blot assays showing the efficacy of siRNAs targeting GYS1 in TNBC cell lines.



Supplementary Figure S10. Western blot assays showing the efficacy of shRNA targeting GYS1 in TNBC cell lines.

#### Table S1. Summary of TCGA and GTEx sample sizes of different tumor types in this study.

Abbreviations: ACC, Adrenocortical Cancer; BLCA, Bladder Cancer; BRCA, Breast Cancer; CESC, Cervical Cancer; CHOL, Bile Duct Cancer; COAD, Colon Adenocarcinoma; DLBC, Large B-cell Lymphoma; ESCA, Esophageal Cancer; GBM, Glioblastoma; HNSC, Head and Neck Squamous Cell Carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney Renal Clear Cell Carcinoma; KIRP, Kidney Renal Papillary Cell Carcinoma; LAML, Acute Myeloid Leukemia; LGG, Lower Grade Glioma; LIHC, Liver Hepatocellular Carcinoma; LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Cell Carcinoma; MESO, Mesothelioma; OV, Ovarian Cancer; PAAD, Pancreatic Cancer; PCPG, Pheochromocytoma & Paraganglioma; PRAD, Prostate Adenocarcinoma; READ, Rectum Adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach Adenocarcinoma; TGCT, Testicular Cancer; THCA, Thyroid Cancer; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; UCS, Uterine Carcinosarcoma; UVM, Ocular melanomas.

| Tumor type | TCGA (Tumor) | TCGA (Normal) | GTEx (Normal) |
|------------|--------------|---------------|---------------|
| ACC        | 79           | 0             | 258           |
| BLCA       | 406          | 19            | 21            |
| BRCA       | 1101         | 113           | 459           |
| CESC       | 306          | 3             | 19            |
| CHOL       | 35           | 9             | 0             |
| COAD       | 455          | 41            | 779           |
| DLBC       | 48           | 0             | 929           |
| ESCA       | 163          | 11            | 1445          |
| GBM        | 153          | 5             | 2642          |
| HNSC       | 504          | 44            | 0             |
| KICH       | 65           | 25            | 89            |
| KIRC       | 532          | 72            | 89            |
| KIRP       | 290          | 32            | 89            |
| LAML       | 150          | 0             | 0             |

| LGG  | 513 | 0  | 2642 |
|------|-----|----|------|
| LIHC | 371 | 50 | 226  |
| LUAD | 516 | 59 | 578  |
| LUSC | 501 | 49 | 578  |
| MESO | 87  | 0  | 0    |
| OV   | 376 | 0  | 180  |
| PAAD | 179 | 4  | 328  |
| PCPG | 181 | 3  | 0    |
| PRAD | 498 | 52 | 245  |
| READ | 165 | 10 | 779  |
| SARC | 260 | 2  | 0    |
| SKCM | 471 | 1  | 1809 |
| STAD | 375 | 32 | 359  |
| TGCT | 134 | 0  | 361  |
| THCA | 512 | 59 | 653  |
| ТНҮМ | 120 | 2  | 0    |
| UCEC | 545 | 35 | 142  |
| UCS  | 57  | 0  | 142  |
| UVM  | 80  | 0  | 0    |

Table S2. Datasets enrolled in this study.

| Dataset       | Tumor types | Sample sizes |
|---------------|-------------|--------------|
| TCGA+GTEx     | Pan-cancer  | 23261        |
| GSE62663      | NSCLC       | 8            |
| GSE121378     | BRCA        | 8            |
| GSE183127     | LIHC        | 6            |
| GSE194369     | PAAD        | 10           |
| GSE104462     | LIHC        | 6            |
| GSE32369      | COAD        | 11           |
| GSE206261     | PAAD        | 6            |
| GSE171167     | ESCC        | 8            |
| GSE144833     | PAAD        | 12           |
| CheckMat      | ccRCC       | 181          |
| IMvigor210    | BLCA        | 258          |
| GSE91061      | SKCM        | 28           |
| GSE78220      | SKCM        | 28           |
| GSE58812      | BRCA        | 107          |
| GSE96058      | BRCA        | 143          |
| METABRIC      | BRCA        | 298          |
| GSE21653      | BRCA        | 85           |
| GSE76250      | BRCA        | 66           |
| GSE117570     | NSCLC       | 4            |
| GSE160269     | ESCC        | 60           |
| EMTAB8107     | CRC         | 7            |
| GSE176078     | BRCA        | 9            |
| SYSUCC-Cohort | BRCA        | 6            |
| FUSCC-Cohort  | BRCA        | 66           |
| Zenodo-ST     | BRCA        | 1            |

## Table S3. siRNAs sequence.

| Non-targeting | siControl | 5'-UUCUCCGAACGUGUCACGUTT |
|---------------|-----------|--------------------------|
| GYS1          | siGYS1#1  | 5'-CCAACGACGCUGUCCUCUUTT |
|               | siGYS1#2  | 5'-CCAUCGAGGCACAGCACUUTT |

## Table S4. shRNAs sequence.

| Non-targeting | shControl | TTCTCCGAACGTGTCACGT |
|---------------|-----------|---------------------|
| GYS1          | shGYS1    | CCATCGAGGCACAGCACTT |

## Table S5. Primers for qRT-PCR detection.

| GYS1    | Forward | GCGCTCACGTCTTCACTACTG  |
|---------|---------|------------------------|
|         | Reverse | TCCAGATGCCCATAAAAATGGC |
| β-actin | Forward | CATGTACGTTGCTATCCAGGC  |
|         | Reverse | CTCCTTAATGTCACGCACGAT  |
|         |         |                        |