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Supplementary Notes

Supplementary Note 1. The Timing and Trajectories of Retinal Diversification

In mouse development, neural epithelium arises as early as E9, giving rise to ciliary and pigment
epithelium as well as multipotent retinal progenitor cells (RPCs) by E10. Through the remainder of fetal
development and continuing postnatally, RPCs give rise to seven major types of retinal neurons in a
conserved order1. Here we sought to leverage the depth and temporal resolution of these data to more
precisely define the developmental intervals and rates at which retinal cell types emerge, proliferate
and diversify.

We re-embedded and re-annotated 160,834 cells with relevant preliminary annotations across all
timepoints (Extended Data Fig. 9a-c). We observe that eye field is already detectable in our earliest
embryo (early head fold stage; 0 somite embryo in E8.5 bin; Pax2+, n = 782 cells), diversifying towards
retinal progenitors (as early as E9.75) and retinal pigment epithelium (RPE) (as early as E10), as well
as a third branch that appears as early as E9.5, sharply downregulates Rax, and ceases proliferating
by E14.5, likely corresponding to the optic stalk (Extended Data Fig. 9d-e). This branch is
undetectable in later time points, but pathway analysis suggests this is due to terminal differentiation in
the context of a rapidly growing embryo, rather than apoptosis. Among retinal neurons, differentiation
towards retinal ganglion cells (RGCs) begins as early as E11.75, and towards cone photoreceptors as
early as E13. As development progresses, we observe a succession of retinal neuron types appearing
in the expected order (Extended Data Fig. 9f-h), except for Müller glia, which emerge postnatally2.
Among RPCs, the succession of sampled timepoints fills out a continuum of transcriptional states
associated with diversification towards most major retinal neuron types (Extended Data Fig. 9a, f)3. In
contrast, the ciliary marginal zone (CMZ), identified as early as E11.25, remains most similar to a
rapidly expanding pool of naive retinal progenitors. Strikingly, the CMZ appears to give rise to a second
wave of pigment epithelium in the perinatal period, entirely separated in terms of both its transcriptional
trajectory and timeframe from the branch leading to RPE, likely corresponding to the iris pigment
epithelium (IPE; Extended Data Fig. 9a, i-j).

Reanalyzing RGCs, we identify 15 clearly distinguishable subtypes, mainly diversifying in late
gestation and well-defined by specific combinations of TFs (Extended Data Fig. 9k-l). This extent of
detected RGC diversity is on par with expectation for P04, suggesting that the improved performance of
sci-RNA-seq3 has substantially improved its ability to discriminate neuronal subtypes.

Supplementary Note 2. The MNN approach used for graph construction is robust to
subsampling and the choice of k parameter

To evaluate whether our approach to reconstructing a cell type tree is robust to technical factors or
parameter choices, we took the following three approaches.

https://paperpile.com/c/fJdK8l/lRyNc
https://paperpile.com/c/fJdK8l/sK3f
https://paperpile.com/c/fJdK8l/HLs7
https://paperpile.com/c/fJdK8l/vUQpX


First, we examined whether the MNNs that we identified between different cell types were enriched
for cells from the same embryo. Since the data from pre-gastrulation and gastrulation were generated
from pooled samples, we only investigated this phenomenon for later stages, i.e. E8-P0 data generated
via sci-RNA-seq3. Overall, we found that only 16.4% of MNNs from different cell types were between
cells from the same embryo. However, we notably only profiled one embryo for most timepoints, which
may inflate this value relative to what it might have been if we had profiled multiple embryos per
timepoint. This is supported by the fact that when we look at windows with multiple embryos profiled per
timepoint (E8-E10 and E13-E13.75), the proportion of MNNs from different cell types that connect cells
from the same embryo was only 10.5% for E8-E10, and only 2.4% for E13-E13.75 (Extended Data
Fig.11a). Overall, the fact that MNNs spanning cell types overwhelmingly connect cells from different
embryos (and different timepoints) is reassuring.

Second, to assess the robustness of MNNs to cell sampling, we randomly subsampled 80% of cells
from each developmental system during organogenesis & fetal development (except for notochord,
which is a relatively rare cell type). We then repeated our MNN approach on the subsamples and
compared the resulting numbers of MNNs obtained for each edge to those obtained when using the full
dataset. This process was repeated 100 times for each developmental system. The resulting correlation
coefficients ranged from 0.92 to 0.99, with an average of 0.98 (Extended Data Fig.11b). This suggests
that the MNNs we identified are robust to cell sampling.

Third, we investigated the impact of our choice of k parameter in using kNNs to identify MNNs
between cell types. The original k value was selected based on the log2-transformed median number of
cells across cell types (k = 10 neighbors for pre-gastrulation and gastrulation subsystems, k = 15 for
organogenesis & fetal development subsystems). To determine the effect of k parameter choice on the
MNNs identified between cell types, we examined different k values (k = 5, 10, 20, 30, 40, 50) for kNN
to identify MNNs for each developmental system during organogenesis & fetal development. We then
compared the results to the original result, which was based on k = 15. The resulting Spearman
correlation coefficients ranged from 0.92 to 0.99, with an average of 0.98 (Extended Data Fig. 11c).
This suggests that the MNNs we identified are robust to the choice of k parameter.
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