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Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors have generated the most comprehensive set of single nuclear data on the developing 

mouse to date and subjected these data to a number of insightful analyzes. I particularly enjoyed 

the clarity of the writing and the authors pointing out limits to the data or conclusions throughout. 

The care in the attention to staging collections, the significant efforts to reduce batch variability in 

the indexing approach and the decent depth of gene reads/nucleus will make this a lasting 

resource for the community. I expect that “domain” experts will rapidly enhance the analyzes here 

and I have erred away from nit-picking in favor of encouraging a timely publication. My only 

significant comment relates to community accessibility and a pet-peeve that not enough is done 

beyond making data accessible to enable viewing of the data. Given the computational expertise 

and resources of the authors, it is a reasonable expectation for the authors to enable accessible 

date viewing portals that would greatly facilitate rapid querying these powerful datasets. Shinny 

apps have been a simple way several groups have democratized data to those without “r” 

expertise. 

A few specific minor comments readily addressable: 

1) The authors note their analysis suggest Brachyury is within posterior gut cells. Indeed, Schifferi 

at al (2021) Development Figure 1C” shows this nicely. 

2) The statement here is a little confusing: “specification of these posterior and anterior 

trajectories in late gastrulation is initiated by interactions between Gdnf and Ret”. Gdnf and Ret 

demarcate different populations but there is no evidence this signaling axis specifies cell types? 

3) The authors write “Of note, we observe “convergence” of the posterior and anterior trajectories 

in collecting duct intercalated cells (cluster 4 in Fig. 3a-b). More detailed investigation suggests 

that the posterior intermediate mesoderm may also contribute to the collecting duct, although 

lineage analysis would be necessary to confirm this (Fig. 3d-e; Supplementary Fig. 7f)”. Ransick et 

al., (2019) Dev Cell demonstrated with lineage tracing the dual origin of intercalated cell types 

from the distal nephron and ureteric lineages – data visible at Kidney Cell Explorer 

(https://cello.shinyapps.io/kidneycellexplorer/). 

4) The authors write “We can also distinguish two subsets of LPM-derivatives mapping to the 

kidney, one to the inside and the other to the surface, which may correspond to renal stroma and 

the renal pericytes and mesangial cells, respectively (Fig. 3g)”. It is likely that the Foxd1 

population (cluster 4 labelled renal stroma) contains much of the stromal cell diversity. Fate 

mapping studies (Kobayashi et al 2014 Stem Cell Reports) indicate that that Foxd1+ cells give rise 

to the renal pericytes and mesangial cells. May be good to clarify that the observation should not 

be interpreted as two different origins. Parenthetically, I am surprised that cluster 14 separates so 

clearly from cluster 4. Perhaps there is an alternative ID for these cells? 

5) The authors write “The apparent bifurcation of the proximal tubule corresponds to major 



differences in the transcriptional state of cells from embryos obtained before birth (E18.75 or 

earlier) vs. after birth (P0) (cluster 9 in Fig. 3a-b; Supplementary Fig. 7d). We return to this 

observation in the final section of the manuscript.” However, there is not much more presented in 

the later discussion. If the authors are to single out proximal tubule cells, I suggest adding the 

differential gene expression data to the relevant supplementary tables so the data can be viewed. 

Referee #2 (Remarks to the Author): 

The paper by Qiu, Martin, Welch et al is presenting a remarkable new dataset including 11.4M QC 

positive single cell profiles acquired from 74 mouse embryo sampled carefully over the entire 

developmental time axis starting at E8 and post birth. This is a dream dataset, representing the 

culmination of a remarkable effort of technology development from the Shendure lab and their 

collaborators. This data is collected, controlled and processed in a standardized and well 

documented fashion, and is now providing an unprecedentedly deep and precise basis for 

understanding mammalian embryonic development. 

The procedures for embryo staging and selection, single cell profiling and QC are at a very high 

standard. The authors are doing an excellent job in describing how the new resource was 

constructed. In that respect, the expert staging and selection, and then the quantification of 

overall embryo size and growth rate is very important. It is understandable that the bulk of the 

results presented in the text are highlighting specific lineages and stages, rather than aiming at a 

hopeless attempt for comprehensive detailed description of the process. The authors are also 

refraining from unneeded overly theoretical statements or arguments on principles, and I 

commend them on avoiding this and focusing on the data and how to use it. I would advise 

against requests for more validation experiments on the data discussed in Figure 2-7 – and while I 

have some practical analysis/bias concerns below, it is clear that all can be addressed with textual 

changes, simple additional analysis, or, in the worst case, omission of some panels for which 

evidence is not conclusive. This resource can change the way by which we approach embryonic 

development of specific lineages and tissues given a much-needed global context. This is possible 

even given the present form of the data, and will be intensified after much more analysis, tools, 

integration with spatial data and epigenomics profiles will be added on top of it by the authors (in 

future studies) and the community. 

Points for consideration: 

1) Batch effects 1: disassociation stress and more. The authors are well aware of potential biases 

in their study design, including both batch effects due to differences in sampling times, protocol or 

physical constraints (e.g. embryo size), and effects related to the their highly multiplexed 

protocols. There are some experiments aiming to control for these effects, for example resampling 

of 8-21 somite embryos (Fig S5) or usage of extra (kind of spiked-in controls) nulcei (Fig S3b). 

But these controls are used to support a conclusion or prove there is no significant batch effect, 

rather than just quantifying the effect and examine the impact of data interpretation. The most 

troublesome example I noticed is the analysis in Fig 2 (for example fig 2m). Here, some of the 

most problematic transcripts that are known to be volatile to stress, acquisition variance and 

handling are shown as the major markers of early vs late MMP. Genes such as HSP90aa, NPM1 

(and in many cases a specific subset of ribosomal genes) can be observed at increased level 

following single cell disassociation, with variable induction intensity due to the protocol, time on ice 

etc. These genes are looking irrelevant (or at least not directly relevant) to the biology of the MMP 

differentiation process, and are not really associated with the interesting and most likely valid 

transition from caudal (Cdx1), toward Hoxa10 regulation. 

I would suggest an open approach to this problem. These effects can be normalized or mitigated 

using a variety of techniques (including those used by the authors), as long as users of the data 



are aware of them. I would like to see the Npm1 gene cluster/module defined (e.g. by co-variance 

analysis of the count matrix) such that an Npm1 signature (total expression from the genes in the 

cluster) can be computed for each cell. Then, the distribution of this signature across embryos, 

batches (and if needed stratified over broad cell types) can be assessed and shown in a simple 

boxplot. If indeed it turns out this signature is highly batch-prone, it will be advisable to try and 

eliminate the relevant genes from the analysis – for example in Fig 2. Then additional gene 

clusters that are strongly correlated or anticorrelated with the Npm1 signature can also be 

characterized and excluded. If the authors want to argue a signature such as Nmp1 is regulated 

during the developmental process (in MMPs or other lineages), a great way to support this is to 

show how the signature is changing in single embryo resolution over time, demonstrating the 

batch “boundaries” are not introducing a “gap” in the signature observed activity. 

2) Batch effects 2: background noise. It is exciting to see that the overall quality and depth of the 

authors multiplexing approach improved substantially compared to previous versions. It will be 

however very helpful to add details on the possibility of batch effects resulting from potential 

mixing of transcripts across cells in the same experiment. I don’t suggest the authors should be 

required to normalized such effects completely – but reporting on them will be really helpful. There 

is vast literature on ambient noise characterization in droplet-based technologies, and while the 

technology here is inherently different, the basic principle of detecting such bias can be used. The 

simplest metric is typically the levels (possible almost 0) or highly type-specific genes with very 

high expression (e.g. Hbb-y, Hba-x, some collagens) in cell types that are not supposed to express 

these genes and can be observed in at least two batches. Adding a supplementary figures and 

either clearing this point or raising awareness to this potential bias will be important. 

3) Embryo sampling variation. There is much interest, both technical and biological, in the 

universality of the cell type composition across embryos over time. The authors can easily add this 

information and discuss it briefly. How technically robust is whole-embryo sampling? Are there 

specific lineages/types that can be more prone to under-sampling given tissue handling variation? 

The authors are showing embryos projected in PC space, but much more informative will be the 

cell type distribution, color-coded (and possibly, shown for both clusters and select subclusters). In 

the discussion, some comments on inter-individual differences should be added. I think it is 

acceptable that this cannot become an analysis goal as so much can be done in this front, but the 

distinction between universal developmental process and individualized differences is something 

the authors should mention. Regarding sex-linked differences – I also believe it is acceptable not 

to analyze this in this paper. But the authors should add a comment in the discussion prompting 

others to take such effect into account when using the new data. 

Referee #3 (Remarks to the Author): 

Qiu et al., A single-cell transcriptional timelapse of mouse embryonic development, from gastrula 

to pup 

In this study, the authors focus on using single-nuclei RNA-sequencing to profile mouse 

development from early organogenesis through to early postpartum. The study represents a rich 

dataset that will no doubt be of high use to the wider scientific community – albeit, at present, this 

use is hindered by the lack of a high-quality website that allows the data to be easily accessible. 

Overall, the paper is well written and easy to follow. The biological insights are relatively high level 

and consistent with prior expectations – as the authors state, their aim was to provide a snapshot 

of different aspects of the data. Nevertheless, the lack of depth in some sections or an attempt to 

validate, more comprehensively, some of the novel findings (e.g., around the cell type lineage) 

using external data is a little disappointing. Additionally, for such a data rich paper, the 

computational methods employed were often highly heuristic, with a lack of robust quantification 



of results – several statements / insights (e.g., trajectories / comment 15 below) really do require 

some statistical quantification. Similarly, I was disappointed at the terseness of the Methods 

section – much more information about how specific analyses were performed is needed. I 

strongly feel the authors need to do a more rigorous and careful job on this front. Similarly, it was 

extremely disappointing that, although a link to the code was provided, for half of the paper (from 

Figure 4 onwards) the GitHub repository simply states ‘TBD’. 

Despite these concerns, I am certain that this dataset will be of value to the community but would, 

in particular, strongly urge the authors to put the computational analyses on a firmer footing 

during the revision process. 

1. Limits of profiling nuclei vs whole cells? Is this a particular challenge for neuronal tissues? 

2. For the postpartum samples, could some of the changes be driven by the environment? If you 

alter the environment, do the results differ? 

3. Variability between embryos within a stage? Only profiling a single embryo could lead to 

additional noise? How were the 75 selected embryos chosen? 

4. One embryo failed entirely? 

5. SF3 – label for panel b should be red and green – or better, change the green to blue in the plot 

for colour-blind readers. Also, why do you see a rather different profile in the LH and RH plots in 

SF3b? Was the quality in run 22 lower than in run 19? 

6. Is the harvesting of the postpartum pups potentially a traumatic event that could influence the 

environment / change the transcriptome? Can this be controlled for? The number of replicates is 

relatively small for this crucial window (if I understand the methods correctly) – does this give any 

cause for concern? 

7. The third doublet removal strategy is interesting, albeit rather heuristic. Moreover, it filters out 

a large fraction of cells (up to 13.2% in some experiments). I have several questions about this 

approach: i) were cell cycle genes removed prior to performing the analysis?; ii) in step 10, how 

were ‘subclusters showing low expression of the differentially expressed genes identified in step 5’ 

identified? Was this analysis performed in the normalized count space? Iii) For clusters of cells that 

fall along a developmental trajectory, does this approach remove intermediate cells? Depending 

upon the granularity of the clustering, I could imagine this being a severe problem for continuous 

cell trajectories. More generally, I would like to see more information about this approach and 

more detail on the type of cells excluded. 

8. When the data were pooled computationally (pp33-34) was any batch correction strategy 

applied? From the text, it read as if samples were merged without any additional correction. I do 

not find the analysis presented in Fig 1d compelling evidence for the lack of a batch effect: I would 

prefer to see full plots of the embedding for samples processed from adjacent time points in 

different experiments. Additionally, it would be illustrative to consider the data that were 

processed in multiple runs. 

9. Methods p34: you mean ’12 timepoints at 1 day increments’ not ‘1 hour increments’ I think. 

10. The resolution of clusters in SF4 is relatively low given the number of cells. While I understand 

the argument of the authors that this will be refined further moving forward, I think a somewhat 

deeper clustering and annotation would have been helpful for the community and would 

substantially increase the utility of the dataset. 

11. Were the authors able to explore the intercalation of cells (e.g., work from Kat Hadjantonakis 

and others) from the extra-embryonic endoderm when forming the gut-tube (Figure 2)? Some 

such cells must contribute to the posterior portion of the gut tube. 

12. The result in Fig 2l does not seem especially surprising – AP patterning is expected to be 

conserved across different developmental trajectories, so I am not sure why the authors find this 

‘striking’. I would suggest toning down the language in the text both here and when referring to 

Fig 2m. This reuse of regulatory programs is well known – it is a nice demonstration but not 

especially surprising and should be rephrased accordingly. 

13. Are the manually inferred relationships shown In Figure 3c consistent with those obtained from 

application of computational approaches? 

14. Some experimental validation of the tangram inferred location of cell types (Figure 3g) would 



be important – this is a relatively straightforward experiment, given the marker genes that are 

available and would support the computational inference. For example, can you validate the 

expression of markers associated with the two LPM-subsets mapping to the inside and outside of 

the kidney? 

15. How were the solid black lines drawn in Fig 4c? The legend talks about inference, but this feels 

like a very manual connection, which is challenging given such a complex series of cell states. Can 

the authors put these relationships on a more quantitative footing? 

16. Fig 5c: the authors state that the ‘extensive heterogeneity of the patterned neuroectoderm 

progressively diminishes as differentiating neurons become more similar with respect to their 

transcriptional states’ – this is hard to observe from the figure – can the authors quantify this 

observation? 

17. The description of the cell type tree felt like it belonged as a more detailed supplementary 

note, with more discussion being warranted around a number of factors in the heuristic algorithm. 

For example, are the MNNs between cell types enriched for cells that are collected from the same 

embryo? If so, this might suggest a technical factor could be driving a particular edge. More 

generally, a discussion on parameter choices and robustness of the approach would be welcome; 

also a discussion around known complex transitions would provide confidence in the result; in 

particular, in cases where there is cell type intercalation (gut tube) is this observed in the 

mapping? It would provide confidence in the results. 

18. As an alternative to the cell type analysis presented in Fig 7b, perhaps the authors could 

consider connecting neighbourhoods of cells? Could the annotation of cell types across this interval 

be more challenging than across other parts of the developmental trajectory? 

19. The lack of a user-friendly interface for exploring the data is a major hindrance and will 

substantially limit its utility. This needs to be resolved. 

20. The GitHub repository is incomplete (e.g., TBD for Fig 4 etc) – this needs to be resolved. 



Response to Reviewers

We thank the three reviewers for their constructive feedback on the submitted version of the
manuscript. A point-by-point response, which includes summaries of changes made in response to
these comments, is provided below. The original reviewer comments are replicated in full in blue text,
while our responses are in black text.

Response to Referee #1: pages 1-7
Response to Referee #2: pages 7-14
Response to Referee #3: pages 15-35

Referee #1 (Remarks to the Author):

The authors have generated the most comprehensive set of single nuclear data on the developing
mouse to date and subjected these data to a number of insightful analyzes. I particularly enjoyed the
clarity of the writing and the authors pointing out limits to the data or conclusions throughout. The care
in the attention to staging collections, the significant efforts to reduce batch variability in the indexing
approach and the decent depth of gene reads/nucleus will make this a lasting resource for the
community. I expect that “domain” experts will rapidly enhance the analyzes here and I have erred
away from nit-picking in favor of encouraging a timely publication.

We thank the reviewer for these positive comments on both the work and the writing, as well as for their
advocacy of its timely publication.

My only significant comment relates to community accessibility and a pet-peeve that not enough is
done beyond making data accessible to enable viewing of the data. Given the computational expertise
and resources of the authors, it is a reasonable expectation for the authors to enable accessible date
viewing portals that would greatly facilitate rapid querying these powerful datasets. Shinny apps have
been a simple way several groups have democratized data to those without “r” expertise.

We agree in full, and apologize for not hitting the mark in terms of accessibility. In the course of our
revisions, we have overhauled the website. Please take a look at the links below:

https://atlas.gs.washington.edu/jax/
https://atlas.gs.washington.edu/jax/public/index.html

In particular, we now provide interactive 3D visualizations not only for the whole dataset, but also for
various subsets (e.g. major cell clusters, the specific subsets that are presented in main figures, etc.).
The side-by-side views are synchronized in terms of the viewpoint on the 3D UMAP, and each of the
two views can be labeled by cell type, timepoint, or the raw or normalized expression level of any gene
of interest. Of note, random downsampling was used for any subset with more than 100,000 cells, in
order to facilitate fast response times for the interactive aspect of the portal. However, each full subset
(and/or its metadata) can be easily downloaded for focused analyses by users via links at the bottom of
the page that are updated as different subsets are selected.
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We plan to continue improving this interactive website, and welcome any suggestions. We are also in
discussions with CZ about how to make these data available at the CZ “CELL by GENE” data portal.

A few specific minor comments readily addressable:

1) The authors note their analysis suggest Brachyury is within posterior gut cells. Indeed, Schifferi at al
(2021) Development Figure 1C” shows this nicely.

Thank you for pointing this out these beautiful images in the Shifferl et al. (2021) paper, which we were
not aware of. We have revised the text and have added a reference to the suggested paper.

Original text: “As T expression is classically associated with the notochord and posterior mesoderm in the
mouse literature, we were initially surprised to see strong T expression in the inferred posterior hindgut,
coincident with the expression of posterior Hox genes. However, this expression pattern is consistent with
the ancestral role of T in the closing of the blastopore and hindgut defects in Drosophila brachyenteron
and Caenorhabditis elegans mab-9 mutants.”

Revised text: “As T expression is classically associated with the notochord and posterior mesoderm in the
mouse literature, we were initially surprised to see strong T expression in the inferred posterior hindgut,
coincident with the expression of posterior Hox genes. To our knowledge, this expression pattern was
only recently documented (Schifferl et al. 2021), and is consistent with the ancestral role of T in the
closing of the blastopore as well as hindgut defects in Drosophila brachyenteron and Caenorhabditis
elegans mab-9 mutants.”

2) The statement here is a little confusing: “specification of these posterior and anterior trajectories in
late gastrulation is initiated by interactions between Gdnf and Ret”. Gdnf and Ret demarcate different
populations but there is no evidence this signaling axis specifies cell types?

We apologize for any confusion. The statement in question was mainly based on previous literature
(Majumdar et al. 2003), rather than our own data. In that paper, the authors propose that: “Wnt11 and
Ret/Gdnf cooperate in a positive autoregulatory feedback loop to coordinate ureteric branching by
maintaining an appropriate balance of Wnt11-expressing ureteric epithelium and Gdnf-expressing
mesenchyme”. On further review of the literature, what is presented in this paper appears to be a model
rather than textbook knowledge. However, the importance of these genes for kidney development is
well established via genetics (i.e. they are not merely markers). We have updated the text accordingly.

Original text: “The specification of these posterior and anterior trajectories in late gastrulation is initiated
by interactions between Gdnf and Ret (Majumdar et al. 2003), followed by their progression to
metanephric mesenchyme and the ureteric bud, respectively, around E10.25, and then to specific
functional components of the nephron.”

Revised text: “The posterior and anterior trajectories in late gastrulation are marked by Gdnf and Ret
expression, respectively, critical genes for normal kidney development (Costantini and Shakya 2006;
Majumdar et al. 2003). These trajectories then progress to the metanephric mesenchyme and ureteric
bud, respectively, around E10.25, and then to specific functional components of the nephron.”

3) The authors write “Of note, we observe “convergence” of the posterior and anterior trajectories in
collecting duct intercalated cells (cluster 4 in Fig. 3a-b). More detailed investigation suggests that the
posterior intermediate mesoderm may also contribute to the collecting duct, although lineage analysis
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would be necessary to confirm this (Fig. 3d-e; Supplementary Fig. 7f)”. Ransick et al., (2019) Dev Cell
demonstrated with lineage tracing the dual origin of intercalated cell types from the distal nephron and
ureteric lineages – data visible at Kidney Cell Explorer (https://cello.shinyapps.io/kidneycellexplorer/).

Thank you for bringing this to our attention. We have revised the text and added the reference.

Original text: “More detailed investigation suggests that the posterior intermediate mesoderm may also
contribute to the collecting duct, although lineage analysis would be necessary to confirm this.”

Revised text: “More detailed investigation suggests that the posterior intermediate mesoderm may also
contribute to the collecting duct, consistent with lineage tracing experiments demonstrating the dual origin
of intercalated cell types from the distal nephron and ureteric lineages (Ransick et al. 2019).”

4) The authors write “We can also distinguish two subsets of LPM-derivatives mapping to the kidney,
one to the inside and the other to the surface, which may correspond to renal stroma and the renal
pericytes and mesangial cells, respectively (Fig. 3g)”. It is likely that the Foxd1 population (cluster 4
labelled renal stroma) contains much of the stromal cell diversity. Fate mapping studies (Kobayashi et
al 2014 Stem Cell Reports) indicate that that Foxd1+ cells give rise to the renal pericytes and
mesangial cells. May be good to clarify that the observation should not be interpreted as two different
origins. Parenthetically, I am surprised that cluster 14 separates so clearly from cluster 4. Perhaps there
is an alternative ID for these cells?

Thank you for these insightful suggestions. In retrospect, we worried that we relied too heavily on
spatial mapping to annotate these two LPM-derived subsets, and your comment led us to revisit the
data using more specific marker genes.

First, as shown in the figure below (co-embedding of cells annotated as renal stroma or renal pericytes
& mesangial cells), we found that the subset of cells that we annotated as renal pericytes & mesangial
cells (Fig. R1a) express classic kidney marker genes, Eya1 and Pax2 (Fig. R1b), while spatial
transcriptomics data shows these genes are expressed cortically in the nephrogenic zone (Fig. R1b).
These genes are not expressed in the cluster that we annotated as renal stromal cells.

Second, we found that Lrriq1 and Cfh genes are specifically expressed in the cells that we annotated
as renal stromal cells (Fig. R1a), while spatial transcriptomics map the expression of these genes to
the medulla of the kidney (Fig. R1b). These genes are not expressed in the cluster that we annotated
as renal pericytes & mesangial cells.

Foxd1 gene expression has a distinct pattern, expressed in subsets of both the renal stromal and renal
pericytes & mesangial cell clusters. This is despite the fact that like Eya1 and Pax2, it maps to cortically
in spatial transcriptomics data (see third row of panels, which for Foxd1 include both virtual and real
ISH images, in Fig. R1b). This incongruence is not easily explained by temporal factors, as Foxd1
appears to be expressed in renal stromal cells at E14.5, which is when these MOSTA data were
collected (Fig. R1d).

It is interesting to note that while Cfh appears uniformly expressed in renal stromal cells, Lrriq1 and
Foxd1 exhibit anticorrelated expression patterns (lower three rows of Fig. R1b). Once again, these
patterns do not appear correlated with time (lower panel of Fig. R1a; Fig R1d). Turning to the in situ
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images, Foxd1 appears cortical, Lrriq1 appears medullary, and Cfh1 more diffuse (lower three rows of
Fig. R1b). Thus, a simple explanation may be spatial heterogeneity within renal stromal cells, with
cortical renal stromal cells expressing Foxd1 (coincident with renal pericytes & mesangial cells, also
cortically located), medullary renal stromal cells expressing Lrriq1, and all renal stromal cells
expressing Cfh. After forming this hypothesis, we examined the spatial expression patterns of several
other genes that were heterogeneously expressed in renal stromal cells. The results of these analyses
were consistent with our hypothesis, as genes whose expression patterns matched Foxd1 within renal
stromal cells (e.g. Ntn1, Zbtb7c, Sema3d) appeared cortical in the in situs, while genes whose
expression patterns matched Lrriq1 within renal stromal cells (e.g. Zeb2, Plcb1) appeared medullary in
the in situs (Fig. R2).

Returning to the potential origin(s) of these cell populations, we supplemented the co-embedding with
intermediate mesoderm, metanephric mesenchyme and splanchnic mesoderm (Fig. R1c). We observe
subsets of renal pericytes & mesangial cells whose transcriptional profiles form a continuum with
posterior intermediate mesoderm, metanephric mesenchyme, and splanchnic mesoderm, suggesting
multiple origins. Of note, not all of these subsets persist until P0.

Renal stromal cells, on the other hand, do not appear to be closely associated with the intermediate
mesoderm or metanephric mesenchyme (consistent with their lack of expression of Eya1 or Pax2), and
instead appear transcriptionally continuous with the splanchnic mesoderm (Fig. R1c).

Based on these observations, although subsets of both express Foxd1, we hypothesize that renal
pericytes & mesangial cells and renal stromal cells have different origins. Lineage tracing is necessary
to definitively test this hypothesis, but would be beyond the scope of the current manuscript. Therefore,
we have decided to leave this question open for future research.

We have revised the text as follows (but welcome any suggestions for modifying how we are framing
our observations):

Original text: “We can also distinguish two subsets of LPM-derivatives mapping to the kidney, one to the
cortex and the other more heterogeneously, which may correspond to renal stroma and the renal
pericytes and mesangial cells, respectively (Fig. 3g).”

Revised text: “We can also distinguish two subpopulations of LPM-derivatives mapping to the kidney, one
to the cortex and the other more heterogeneously distributed within the renal mesenchyme, which we
believe correspond to renal pericytes & mesangial cells and renal stromal cells, respectively. Although
both subpopulations express Foxd1, supporting their assignment to the kidney, focused analyses are
consistent with their having distinct origins (Supplementary Fig. 13). However, lineage tracing
experiments would be necessary to test this hypothesis. Of note, renal stromal cells exhibited gene
expression heterogeneity along what may be the cortical-medullary spatial axis, of genes including Foxd1
(cortical), Netrin-1 (cortical) and Zeb2 (medullary) (Supplementary Fig. 14).”
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Reviewer Figure 1 (Supplementary Figure 13 in the revised manuscript). Assessing the potential origins
of LPM subsets annotated as renal pericytes & mesangial cells and renal stromal cells. a, Re-embedded
2D UMAP of 39,468 cells from renal pericytes & mesangial cells and renal stromal cells. Cells are colored by
either annotation (top) or timepoint (bottom, after downsampling to a uniform number of cells per time window). b,
Left: The same UMAP as in panel a, colored by gene expression of marker genes which appear specific to renal
pericytes & mesangial cells (Pax2+, Eya1+) or renal stromal cells (Lrriq1+, Cfh+). Foxd1 is expressed in a subset
of both cell types. Middle: Virtual in situ hybridization (ISH) images of individual genes from one selected section
(E1S1) from E14.5 of the Mosta data (https://db.cngb.org/stomics/mosta/). Right: In situ hybridization (ISH)
images of individual genes were obtained from the Jackson Laboratory Mouse Genome Informatics (MGI) website
(https://www.informatics.jax.org/). The original reference for these images is (Diez-Roux et al. 2011). c,
Re-embedded 2D UMAP of 206,908 cells from renal pericytes & mesangial cells, renal stromal cells, anterior
intermediate mesoderm, posterior intermediate mesoderm, metanephric mesenchyme, and splanchnic
mesoderm. Cells are colored by either their initial annotations (top) or timepoint (bottom, after downsampling to a
uniform number of cells per time window). d, The average normalized expression of Foxd1 over time is shown for
renal pericytes & mesangial cells (top) and renal stromal cells (bottom). Gene expression was normalized by the
size factor estimated by Monocle/3.
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Reviewer Figure 2 (Supplementary Figure 14 in the revised manuscript). Spatial heterogeneity within the
renal stromal cells. Left: The same UMAP as in Fig. R1a, colored by gene expression of marker genes which
appear specific to two subsets of renal stromal cells: medullary renal stromal cells (Zeb2+, Plcb1+) and cortical
renal stromal cells (Ntn1+, Zbtb7c+, Sema3d+), respectively. Middle: Virtual in situ hybridization (ISH) images of
individual genes from one selected section (E1S1) from E14.5 of the Mosta data
(https://db.cngb.org/stomics/mosta/). Right: In situ hybridization (ISH) images of individual genes were obtained
from the Jackson Laboratory Mouse Genome Informatics (MGI) website (https://www.informatics.jax.org/). The
original reference for these images is (Diez-Roux et al. 2011).
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5) The authors write “The apparent bifurcation of the proximal tubule corresponds to major differences
in the transcriptional state of cells from embryos obtained before birth (E18.75 or earlier) vs. after birth
(P0) (cluster 9 in Fig. 3a-b; Supplementary Fig. 7d). We return to this observation in the final section of
the manuscript.” However, there is not much more presented in the later discussion. If the authors are
to single out proximal tubule cells, I suggest adding the differential gene expression data to the relevant
supplementary tables so the data can be viewed.

We do mention the proximal tubule cells in introducing final section:

“In the course of our analyses of this time-lapse, we anecdotally noted that for certain cell types, cells
derived from P0 pups appeared very well separated from their fetal pseudoancestors, in sharp contrast
with other cell types across the same temporal interval as well as with even these same cell types at all
prior temporal intervals. The proximal tubule is one example of this phenomenon, discussed briefly above
(cluster 9 in Fig. 3a-b; Supplementary Fig. 10d). However, a similar pattern was also noted for
hepatocytes, adipocytes, and various cell types of the lungs and airways (Fig. 7a).”

However, as noted, we do not provide any details. We have addressed this as suggested, by adding a
new table (Supplementary Table 28) that provides the differential expressed genes between E18.75
and P0 for each of the top 20 cell types listed in Fig. 7b, which are ranked by the degree of
transcriptional disjunction between stages immediately before vs. after birth. Proximal tubule cells are
one of these 20 most highly ranked cell types. A new sentence referencing this table, which is part of
the Fig. 7b legend, reads as follows:

New sentence: “Differentially expressed genes for the 20 most highly ranked cell types in this analysis are
shown in Supplementary Table 28.”

Referee #2 (Remarks to the Author):

The paper by Qiu, Martin, Welch et al is presenting a remarkable new dataset including 11.4M QC
positive single cell profiles acquired from 74 mouse embryo sampled carefully over the entire
developmental time axis starting at E8 and post birth. This is a dream dataset, representing the
culmination of a remarkable effort of technology development from the Shendure lab and their
collaborators. This data is collected, controlled and processed in a standardized and well documented
fashion, and is now providing an unprecedentedly deep and precise basis for understanding
mammalian embryonic development.

The procedures for embryo staging and selection, single cell profiling and QC are at a very high
standard. The authors are doing an excellent job in describing how the new resource was constructed.
In that respect, the expert staging and selection, and then the quantification of overall embryo size and
growth rate is very important. It is understandable that the bulk of the results presented in the text are
highlighting specific lineages and stages, rather than aiming at a hopeless attempt for comprehensive
detailed description of the process. The authors are also refraining from unneeded overly theoretical
statements or arguments on principles, and I commend them on avoiding this and focusing on the data
and how to use it. I would advise against requests for more validation experiments on the data
discussed in Figure 2-7 – and while I have some practical analysis/bias concerns below, it is clear that
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all can be addressed with textual changes, simple additional analysis, or, in the worst case, omission of
some panels for which evidence is not conclusive. This resource can change the way by which we
approach embryonic development of specific lineages and tissues given a much-needed global context.
This is possible even given the present form of the data, and will be intensified after much more
analysis, tools, integration with spatial data and epigenomics profiles will be added on top of it by the
authors (in future studies) and the community.

We are grateful to the reviewer for these positive comments on the experimental design, the data itself,
and our conservative approach to its presentation. We also appreciate their advocacy of its timely
publication.

Points for consideration:

1) Batch effects 1: disassociation stress and more. The authors are well aware of potential biases in
their study design, including both batch effects due to differences in sampling times, protocol or
physical constraints (e.g. embryo size), and effects related to the their highly multiplexed protocols.
There are some experiments aiming to control for these effects, for example resampling of 8-21 somite
embryos (Fig S5) or usage of extra (kind of spiked-in controls) nulcei (Fig S3b). But these controls are
used to support a conclusion or prove there is no significant batch effect, rather than just quantifying the
effect and examine the impact of data interpretation. The most troublesome example I noticed is the
analysis in Fig 2 (for example fig 2m). Here, some of the most problematic transcripts that are known to
be volatile to stress, acquisition variance and handling are shown as the major markers of early vs late
MMP. Genes such as HSP90aa, NPM1 (and in many cases a specific subset of ribosomal genes) can
be observed at increased level following single cell disassociation, with variable induction intensity due
to the protocol, time on ice etc. These genes are looking irrelevant (or at least not directly relevant) to
the biology of the MMP differentiation process, and are not really associated with the interesting and
most likely valid transition from caudal (Cdx1), toward Hoxa10 regulation.

I would suggest an open approach to this problem. These effects can be normalized or mitigated using
a variety of techniques (including those used by the authors), as long as users of the data are aware of
them. I would like to see the Npm1 gene cluster/module defined (e.g. by co-variance analysis of the
count matrix) such that an Npm1 signature (total expression from the genes in the cluster) can be
computed for each cell. Then, the distribution of this signature across embryos, batches (and if needed
stratified over broad cell types) can be assessed and shown in a simple boxplot. If indeed it turns out
this signature is highly batch-prone, it will be advisable to try and eliminate the relevant genes from the
analysis – for example in Fig 2. Then additional gene clusters that are strongly correlated or
anticorrelated with the Npm1 signature can also be characterized and excluded. If the authors want to
argue a signature such as Nmp1 is regulated during the developmental process (in MMPs or other
lineages), a great way to support this is to show how the signature is changing in single embryo
resolution over time, demonstrating the batch “boundaries” are not introducing a “gap” in the signature
observed activity.

We thank the reviewer for advocating that we push harder to identify, as well as to make more
transparent to the reader, potential technical artifacts related to embryo preservation and handling that
might be bleeding into the results. Please note we are NOT dissociating cells in the typical manner
required by other protocols such as that of the 10X Genomics kit. Thus, some of the cited technical
variables (e.g. time on ice) are not relevant. Rather, embryos were flash-frozen immediately after being

8



harvested and photographed. They were subsequently shipped to Seattle, where subsets were
selected for lysis without dissociation (which is a major benefit of analyzing nuclei rather than cells).
Even during powdering and lysis, they were kept frozen, until they were in the lysis buffer.

However, given that the cited genes are not obviously related to the underlying biology, and that there
may be technical artifacts associated with our procedures to which we are blind, we proceeded with the
recommended analysis as follows: 1) We downsampled the dataset to ~1M cells using geosketch (Hie
et al. 2019), and then performed k-means clustering to ensure that each cluster contained roughly 500
cells. 2) We aggregated UMI counts for cells within each cluster to generate 2,289 meta-cells, and then
normalized the UMI counts for each meta-cell followed by log2-transformation. 3) We performed
Pearson correlation between Npm1 and each protein-coding gene. We selected the genes with
correlation coefficients > 0.6 (738 genes, ~3% of the total protein coding genes; Hsp90aa1 was one of
the genes passing this threshold with a correlation coefficient of 0.75). A brief gene set enrichment
analysis suggests that the module is associated with RNP complexes (corrected p-value = 1.4e-105),
cytoplasmic translation (corrected p-value = 2.8e-90), and ribosomal proteins (corrected p-value =
7.4e-71). 4) We summed the normalized UMI counts for these genes to calculate a Npm1 signature for
individual cells. The distribution of Npm1 signatures are shown below for different sci-RNA-seq3
experiments, embryo harvest dates, litters of embryos, and shipment batches (Fig. R3a).

The results are notable for a decrease in this signature over developmental time. The pattern is
consistent across cell types, albeit more pronounced for some cell types than others (e.g. mesoderm >
neuronal; Fig. R3b). Although there are differences in the usage of this module with different harvest
dates, litters or shipment batches, there is no consistent trend, and the variation is likely simply due to
the fact that different biological stages are represented in different batches. In summary, the usage of
the Npm1-defined module declines with biological age in the overall dataset. This is consistent with the
analyses represented in Fig. 2m, where we show that the expression of Npm1 and transcripts encoding
Hsp90 isoforms decline between early and late somite stages.

If the reviewer would like to check the early vs. late stage variable against the batch information shown
in Fig. R3, early NMPs derived from embryos harvested on 2/8/21 and were processed in run 4, while
late NMPs derived from embryos harvested on on multiple dates (1/13/21, 1/14/21, 10/29/21, 11/11/21,
11/3/20, 3/16/21, 3/3/21, 8/17/21, and 9/30/21) and were processed in runs 15 and 17. Both early and
late NMPs were derived from shipment batch 2.

The text has been revised as follows to reflect the new analysis:

Original text: “Genes reproducibly associated with early somite counts in both NMPs and the gut were
strongly enriched for Myc targets, and also included Lin28a, a deeply conserved regulator of
developmental timing, and multiple isoforms of Hsp90 (Fig. 2m; Supplementary Table 11), possibly
reflecting greater proliferation.”

Revised text: “Genes reproducibly associated with early somite counts in both NMPs and the gut were
strongly enriched for Myc targets, and also included Lin28a, a deeply conserved regulator of
developmental timing (Fig. 2m; Supplementary Table 11). Other genes such as Npm1 and Hsp90
isoforms are plausibly associated with batch effects. However, analysis of a module of genes correlated
with Npm1 found it to be declining with developmental time across the entire time series, rather than
correlated with batch variables (Supplementary Fig 9).”
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Reviewer Figure 3 (Supplementary Figure 9 in the revised manuscript). Checking the consistency of
Npm1 signatures across different batches. a, First, we downsampled the dataset to ~1M cells using geosketch
(Hie et al. 2019) and performed k-means clustering to ensure that each cluster contained roughly 500 cells.
Second, we aggregated UMI counts for cells within each cluster to generate 2,289 meta-cells, and normalized the
UMI counts for each meta-cell followed by log2-transformation. Third, we performed Pearson correlation between
each protein-coding gene and Npm1, and selected genes with correlation coefficients > 0.6 (738 genes, ~3% of
the total protein coding genes). A gene set enrichment analysis suggests that the module is associated with RNP
complexes (corrected p-value = 1.4e-105), cytoplasmic translation (corrected p-value = 2.8e-90), and ribosomal
proteins (corrected p-value = 7.4e-71). Finally, we summed the normalized UMI counts of these genes to
calculate a Npm1 signature for individual cells. The resulting Npm1 signatures are subsetted in four plots, from left
to right: by sci-RNA-seq3 experiment, embryo harvest date, litter of embryos, or shipment batch. b, Same as
panel a, but further stratified by the top 10 abundant major cell clusters.
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2) Batch effects 2: background noise. It is exciting to see that the overall quality and depth of the
authors multiplexing approach improved substantially compared to previous versions. It will be however
very helpful to add details on the possibility of batch effects resulting from potential mixing of transcripts
across cells in the same experiment. I don’t suggest the authors should be required to normalized such
effects completely – but reporting on them will be really helpful. There is vast literature on ambient
noise characterization in droplet-based technologies, and while the technology here is inherently
different, the basic principle of detecting such bias can be used. The simplest metric is typically the
levels (possible almost 0) or highly type-specific genes with very high expression (e.g. Hbb-y, Hba-x,
some collagens) in cell types that are not supposed to express these genes and can be observed in at
least two batches. Adding a supplementary figures and either clearing this point or raising awareness to
this potential bias will be important.

This is a great point and we thank the reviewer for advocating that we make this issue transparent to
the reader. To address this comment, we examined the expression of four hemoglobin genes (Hbb-y,
Hba-x, Hbb-bt, and Hbb-bs) and 2 collagen genes (Col1a1 and Col2a1) across 26 major cell clusters.
These genes are specific and highly expressed in primitive erythroid cells (Hbb-y, Hba-x), definitive
erythroid cells (Hbb-bt, Hbb-bs), pre-osteoblasts (Col1a1) or early chondrocytes (Col2a1). As shown in
Fig. R4, we do observe some ambient noise, as an appreciable fraction of “other cell type” cells exhibit
a handful of read counts for these genes. We have added the following text (and included this figure in
the supplement) to raise awareness of this issue:

New text: “We also checked for ambient noise (e.g. as might be due to transcript leakage) by examining
highly abundant, highly cell-type-specific genes such as hemoglobins and collagens, and found it present
at low levels, e.g. the mean number of UMIs for Hbb-bs was 10.8 in definitive erythroid cells and 0.26 in
all other cells, and for Col1a1 was 186 in pre-osteoblasts vs. 1.23 in all other cells (Supplementary Fig.
5).”
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Reviewer Figure 4 (Supplementary Figure 5 in the revised manuscript). Ambient noise (e.g. as might be
due to transcript leakage) was assessed by examining hemoglobin and collagen transcripts. The
distribution of the number of reads mapping to each selected hemoglobin or collagen gene across cells, for the
cell type that is expected to express that gene at high levels (red) vs. all other cell types (blue). The mean UMI
counts of cells in each group are also reported.

3) Embryo sampling variation. There is much interest, both technical and biological, in the universality
of the cell type composition across embryos over time. The authors can easily add this information and
discuss it briefly. How technically robust is whole-embryo sampling? Are there specific lineages/types
that can be more prone to under-sampling given tissue handling variation? The authors are showing
embryos projected in PC space, but much more informative will be the cell type distribution,
color-coded (and possibly, shown for both clusters and select subclusters). In the discussion, some
comments on inter-individual differences should be added. I think it is acceptable that this cannot
become an analysis goal as so much can be done in this front, but the distinction between universal
developmental process and individualized differences is something the authors should mention.
Regarding sex-linked differences – I also believe it is acceptable not to analyze this in this paper. But
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the authors should add a comment in the discussion prompting others to take such effect into account
when using the new data.

Thank you for this insightful comment. Please note that we do present the proportion of cells from
individual major cell clusters across timepoints in Fig. 1e, but the y-axis is scaled to the estimated
number of cells in the whole mouse embryo at that timepoint. For selected developmental trajectories,
we also present the estimated absolute number of cells over time (these are in scattered
supplementary figures, but we have collated them to Fig. R5 below).

A few additional points of relevance:

First, unfortunately, our sampling strategy does not really allow us to systematically investigate this
question, because we only sampled one embryo for most timepoints. That being said, there are some
intriguing observations of relevance. For example, the individual embryo staged as E12.25 lacked
multiple different types of renal cells (see Fig. R5a below, with a blue downward facing arrow at the top
to draw your attention to it). We believe that this particular individual may have had aberrant renal
development, although we cannot be absolutely certain.

Second, in a recent preprint (currently in revisions), we applied sci-RNA-seq3 to profile 101 embryos of
26 genotypes at embryonic stage E13.5 (Huang et al. 2022). The 26 genotypes include multiple mouse
mutants of varying severities as well as wildtype controls, and each genotype was represented by 4
E13.5 embryos. We used several analytical frameworks to detect differences in cell composition across
52 cell types that were identified from the dataset. We also performed a statistical power analysis based
on simulation data to determine the number of embryos required for each group to detect a difference in
cell composition. That study (and that data) are likely a better place to assess interindividual variation
because we have multiple individuals sampled per genotype at the same developmental stage.

Third, we acknowledge that we have not performed any sex-linked analysis, although we tried to profile
embryos from both sexes by alternating wherever possible (Fig. 1d). The main reason for this is that
we do not want to extend the paper to an unwieldy length, so we decided to leave it open (particularly
as many sex-differences will first manifest postnatally, which we hope to sample next).

We have added the following paragraph to the Discussion to reflect these points:

New text: “A limitation of our sampling strategy is that we only profiled a single embryo for most
timepoints, such that we are unable to conduct a systematic analysis of interindividual variation at any
given timepoint. We do observe hints of such variation, e.g. multiple different types of renal cells were not
detected at E12.25, which may reflect aberrant renal development in that individual embryo
(Supplementary Fig. 10b). However, such analyses may be better pursued through other datasets, e.g.
our profiling of 101 embryos (of 26 genotypes) staged at E13.5, also by sci-RNA-seq3 (Huang et al.
2022). On a related point, although both sexes are represented in the dataset (as we alternated between
adjacent timepoints), we have not yet delved into sex differences, and this remains one of many avenues
of investigation for which we hope researchers in the field will find these data useful.”
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Reviewer Figure 5. Transcriptional heterogeneity in renal, mesodermal, and retinal development. a,
Reproduced from Supplementary Fig. 10b. The predicted absolute number (log2 scale) of cells of each renal cell
type at each timepoint. The predicted absolute number was calculated by the product of its sampling fraction in
the overall embryo and the predicted total number of cells in the whole embryo at the corresponding timepoint
(Fig. 1e). For each row, the first timepoint with at least 10 cells assigned that cell type annotation is labeled, and
all observations prior to that timepoint are discarded. Blue arrows highlight an individual embryo staged as E12.25
lacked multiple different types of renal cells. b, Reproduced from Supplementary Fig. 15a. The predicted
absolute number (log2 scale) of cells of each mesoderm cell type at each somite count. The predicted absolute
number was calculated by the product of its sampling fraction in the overall embryo and the predicted total
number of cells in the whole embryo at the corresponding timepoint. Because cell numbers were only predicted
for the broader bins (Fig. 1e), rather than individual somite counts, these were used for roughly corresponding
sets (0-12 somite stage: E8.5; 14-15 somite stage: E8.75; 16-18 somite stage: E9.0; 20-23 somite stage: E9.25;
24-26 somite stage: E9.5; 27-31 somite stage: E9.75; 32-34 somite stage: E10.0). For each row, the first somite
count with at least 10 cells assigned that cell type annotation is labeled, and all observations prior to that somite
count are discarded. c, Reproduced from Supplementary Fig. 16e. The predicted absolute number (log2 scale)
of cells of each retinal cell type at each timepoint. The predicted absolute number was calculated by the product
of its sampling fraction in the overall embryo and the predicted total number of cells in the whole embryo at the
corresponding timepoint (Fig. 1e). For each row, the first timepoint with at least 10 cells assigned that cell type
annotation is labeled, and all observations prior to that timepoint are discarded.
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Referee #3 (Remarks to the Author):

Qiu et al., A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup

In this study, the authors focus on using single-nuclei RNA-sequencing to profile mouse development
from early organogenesis through to early postpartum. The study represents a rich dataset that will no
doubt be of high use to the wider scientific community – albeit, at present, this use is hindered by the
lack of a high-quality website that allows the data to be easily accessible. Overall, the paper is well
written and easy to follow. The biological insights are relatively high level and consistent with prior
expectations – as the authors state, their aim was to provide a snapshot of different aspects of the data.
Nevertheless, the lack of depth in some sections or an attempt to validate, more comprehensively,
some of the novel findings (e.g., around the cell type lineage) using external data is a little
disappointing. Additionally, for such a data rich paper, the computational methods employed were often
highly heuristic, with a lack of robust quantification of results – several statements / insights (e.g.,
trajectories / comment 15 below) really do require some statistical quantification. Similarly, I was
disappointed at the terseness of the Methods section – much more information about how specific
analyses were performed is needed. I strongly feel the authors need to do a more rigorous and careful
job on this front. Similarly, it was extremely disappointing that, although a link to the code was provided,
for half of the paper (from Figure 4 onwards) the GitHub repository simply states ‘TBD’.

Despite these concerns, I am certain that this dataset will be of value to the community but would, in
particular, strongly urge the authors to put the computational analyses on a firmer footing during the
revision process.

Thank you for your feedback on our manuscript. We sincerely apologize that the Methods were terse on
analytical details and the GitHub repository incomplete. In the course of our revisions, we have
expanded the Methods, completed the GitHub repository, and created a new website for data
visualization.

1. Limits of profiling nuclei vs whole cells? Is this a particular challenge for neuronal tissues?

We use nuclei instead of cells because, to our knowledge, there is no protocol to dissociate whole,
post-gastrulation embryos at the cellular level without resulting in serious biases. Although this can be
overcome to some extent at pre-gastrulation stages (e.g. as was done in Pijuan-Sala et al. 2019), that
work also required immediate processing of freshly harvested embryos through dissociation and
onwards to single cell profiling, with no stopping point.

In contrast, in our experience, nuclear isolation protocols can be performed on flash-frozen whole
embryos from later stages (or even postnatal stages) without resulting in overt biases. The
flash-freezing was critical, because it allowed us to preserve embryos immediately after harvesting and
photographing them, to ship them to a separate site, and to process them through nuclear isolation and
single cell profiling in a limited number of batches. We are essentially freezing them in time, which
enables precise staging, and conducting nuclear isolation on these frozen samples is a much simpler
process than dissociation of fresh tissue into whole cells, especially for neurons, whose long axons
make whole-cell isolation more difficult.
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The downside is of course that we lose cytoplasmic transcripts, but sci-RNA-seq3 has been greatly
improved for nuclear profiling since the original protocol, and now consistently yields thousands of UMIs
per nucleus from diverse tissues (Martin et al. 2022). We could have obtained more UMIs by
sequencing more deeply (the average PCR duplicate rate across all the 15 sci-RNA-seq3 experiments
is 50.65%, Supplementary Table 2), but we did not feel that this factor was limiting for our analyses.

To the second question, in the present data, we did not observe an appreciable difference in UMI
counts for neuronal vs. non-neuronal tissues. In fact, the UMI counts for neuronal cells (e.g. CNS
neurons, intermediate neuronal progenitors, and neural crest-PNS neurons) were higher (median
3,259; mean 4,183) than the UMI counts for non-neuronal cells (median 2,547; mean 3,181).

2. For the postpartum samples, could some of the changes be driven by the environment? If you alter
the environment, do the results differ?

We agree that it seems likely that the transition from the uterine to extrauterine environment is driving
these changes through various physiological triggers. For example, in hepatocytes, genes involved in
gluconeogenesis are sharply upregulated after birth, including Ppargc1a, which encodes Pgc-1α, a
master regulator of hepatic gluconeogenesis in the liver (Liang and Ward 2006), which is plausibly
driven by changes in blood glucose levels after the newborn is cut off from maternal circulation. In
brown adipocytes, Irf4 and Ppargc1a are upregulated. Irf4 is a cold-induced master regulator of
thermogenesis, while Pgc-1α partners with Irf4 to drive the expression of Ucp1 and uncoupled
respiration (Kong et al. 2014). These changes are plausibly driven by the sharp drop in temperature
upon birth (Rowland et al. 2015).

Of note, one major environmental difference between the original series vs. replicate birth-series
experiment, is that in the birth-series experiment, all newborns (both naturally and C-section delivered)
mice did not nurse. In contrast, we presume that the original P0s had nursed given that the mother had
completed delivery and had settled down with her litter. However, the dramatic changes were still
observed in certain cell types, meaning that we can rule out nursing as driving those changes. Stepping
back, we imagine that changes in metabolite and hormone levels, oxygen levels, temperature, and
possibly other environmental differences between the uterine and extrauterine environment (and most
likely, some combination of these factors) are driving the rapid changes that we observe. Although we
plan to systematically investigate this in the future in greater depth, we argue that this is a major
undertaking and beyond the scope of the current manuscript.

3. Variability between embryos within a stage? Only profiling a single embryo could lead to additional
noise? How were the 75 selected embryos chosen?

The embryos were selected to maximize our temporal resolution, i.e. generally one embryo per
timepoint, alternating between males and females wherever possible. This is discussed in more detail
in the Methods section (“Generating data using an optimized version of sci-RNA-seq3”) of the paper.
The question about interindividual variability and noise is a good one, although not systematically
addressable through this dataset. Please see our response to Comment #3 from Reviewer #2, on
pages 12-13 of this document.

4. One embryo failed entirely?
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Correct, one E14.5 sample was excluded from our downstream analysis. During initial quality checking,
we found that this sample was almost entirely missing neuronal samples, when co-embedded with five
samples from E14.0 to E14.75 (Fig. R6). We suspect that this particular sample had been divided
during pulverization, and that the anterior-most portion of the frozen embryo was somehow lost during
processing. Therefore, we excluded it from all downstream analyses.

Reviewer Figure 6. E14.5 had a grossly reduced proportion of neuronal cells. Re-embedded 3D UMAP of
1,195,179 cells from five different timepoints of embryos (E14.0 to E14.75). All of the samples were profiled in the
same sci-RNA-seq3 experiment. The cells were plotted in five separate panels, with each panel containing only
cells from a single timepoint. The circled region in the E14.5 plot corresponds to neuronal cells, which are grossly
depleted in that sample relative to other timepoints.

The reviewer might be wondering why we did not also exclude the E12.25 embryo referenced in our
response to Comment #3 from Reviewer #2, in which we noticed that multiple types of renal cells,
including proximal tubule cells and metanephric mesenchyme (Fig. R5a), were missing. The difference
is that in that case, the apparently absent cell types were only expected to be present in small numbers,
other related cell types were not missing, and the relevant tissue was nascent, internal and well
protected. In contrast, the massive underrepresentation of neurons in the E14.5 embryo was easily
explained by technical loss of a gross portion of the embryo during pulverization.

5. SF3 – label for panel b should be red and green – or better, change the green to blue in the plot for
colour-blind readers. Also, why do you see a rather different profile in the LH and RH plots in SF3b?
Was the quality in run 22 lower than in run 19?

Thank you for your suggestion. We have adjusted the plot to adjust the green to blue for color-blind
readers, as reproduced below (Fig. R7).

To remind the reviewer and as discussed in the figure legend, for a handful of timepoints, we profiled
extra nuclei in some sci-RNA-seq3 experiments to ensure sufficient coverage. Here we sought to
leverage those instances to check for potential batch effects across experiments. For this, on the
embedding learned from all of the data, we asked whether these cells’ profiles are more similar to cells
from the same experiment or, alternatively, cells from the same time window. The percentages of
individual cells' nearest neighboring cells from the two groups (cells from the time window vs. cells from
the same experiment) are presented in a histogram. For the left plot, the contrast was between E14.75
and E17-E17.75 (run 22), while for the right plot, the contrast was between E13.5 & E13.75 and
E10.5-E11.0 (run 19). The simplest explanation for the difference between the profiles is that although a

17



similar amount of absolute time (~2-3 days), the rate of change is much, much greater during early
development, such that greater differences are expected between cells of different absolute ages. In
other words, the contrast between an E10.5 and E13.5 cell of the same type is expected to be much
greater than the contrast between an E14.75 and E17.75 cell of the same time.

Reviewer Figure 7. A knn-based analysis of sci-RNA-seq3 data suggests that batch effects are relatively
minor. This is reproduced from Supplementary Fig. 3b. For two examples, we performed a k-nearest neighbors
(kNN, k = 10) approach in the global 3D UMAP to find the nearest neighboring cells either from the same
experiment (red) or the same time window but a different experiment (blue). The percentages of the nearest
neighboring cells from the two groups for individual cells are presented in the histogram. In both examples, we
observe that nearest neighbors are overwhelmingly cells from a different experiment (but the same time window),
rather than cells from the same experiment (but a different time window).

6. Is the harvesting of the postpartum pups potentially a traumatic event that could influence the
environment / change the transcriptome? Can this be controlled for? The number of replicates is
relatively small for this crucial window (if I understand the methods correctly) – does this give any cause
for concern?

The reviewer raises an excellent point regarding the potential for harvest-associated trauma related to
the periparturition samples. We were cognizant of this potential and sought to minimize handling and
undue stress to all pups during harvest. Naturally birthed pups were kept with the dam in the birthing
cage until harvest, when pups were removed and quickly euthanized by decapitation, and then
immediately snap-frozen in liquid nitrogen. We also made every effort to ensure that the process of
C-section harvest did not exceed the physical stresses pups typically experience via natural birth.
C-section pups for the time series were maintained on a warming plate, received gentle physical
stimulation to simulate maternal interaction, and were similarly euthanized and frozen as rapidly as
possible.

We have added the sentence below to be more transparent:

Original text: “It is plausible that rapid changes in transcriptional programs might be physiologically
necessary due to the profound differences between the placental and extrauterine environments.”

Revised text: “Although we cannot fully rule out technical variables associated with sacrificing pups, we
took care to minimize handling and stress prior to euthanasia and immediate snap-freezing, both for
naturally and C-section delivered pups. Moreover, it is plausible that rapid changes in transcriptional
programs might be physiologically necessary due to the profound differences between the placental and
extrauterine environments.”
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7. The third doublet removal strategy is interesting, albeit rather heuristic. Moreover, it filters out a large
fraction of cells (up to 13.2% in some experiments). I have several questions about this approach: i)
were cell cycle genes removed prior to performing the analysis?; ii) in step 10, how were ‘subclusters
showing low expression of the differentially expressed genes identified in step 5’ identified? Was this
analysis performed in the normalized count space? Iii) For clusters of cells that fall along a
developmental trajectory, does this approach remove intermediate cells? Depending upon the
granularity of the clustering, I could imagine this being a severe problem for continuous cell trajectories.
More generally, I would like to see more information about this approach and more detail on the type of
cells excluded.

We would like to clarify that the percentage of doublets detected by step 3 is actually lower than
suggested in the original submission, since we only reported the range of doublet percentages
(0.5-13.2%). The mean percentage of cells detected as doublets in all 16 sci-RNA-seq3 experiments
was 8.3% after the first two steps, and 3.4% after step 3 (Fig. R8a). However, one experiment (run_13)
had a much higher percentage of doublets detected after step 3 (13.2%). The mean percentage of
doublets for the other 15 experiments was only 2.5%.

To answer each of the reviewer’s questions in turn:

i) Throughout our manuscript, we did not remove cell cycle genes or regress cell cycle index out.
However, we carefully checked for any extra cell states that may be driven by specific cell cycle phases
each time we performed embedding.

ii) In step 10, subclusters that showed low expression of target cell-partition markers and enriched
expression of non-target cell-partition markers were identified as doublet-driven clusters. This was done
by manually visualizing gene expression in the UMAP, after the gene expression data was normalized
by size factor and log10 transformed.

iii) We agree with the reviewer and acknowledge the potential concern, and believe this is a general
concern by any doublets detection strategy based purely on transcriptional profiles, such as Scrublet.
Below, we highlight several aspects of our approach that we believe at least mitigate this concern:

First, except for three experiments that profiled embryos before E10, which are less heterogeneous, we
performed either subclustering or identified differentially expressed genes on each major cell partition,
rather than the cell clusters. Cell partitions were detected using the partitionCells function implemented
in Monocle/3-alpha, which applies algorithms that automatically partition cells to learn disjoint or parallel
trajectories based on ideas from "approximate graph abstraction" (Wolf et al. 2019). As shown in Fig.
R8b, cells from six selected experiments were visualized by UMAP before removing doublets by the
third strategy. The cells are colored by their partitions, and we can see that the partitions appear to be
disjointed in the UMAP embedding, suggesting that cells between the partitions are less likely to be
connected during development.

Second, the first two steps were largely automated, with global thresholds set to guide the process.
However, the third step required more manual intervention. We identified doublet-driven subclusters by
looking for subclusters that met the following two criteria: 1) low expression of target cell
partition-specific markers and enriched expression of non-target cell partition-specific markers; 2)
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relatively higher doublet scores. As an example, we looked at the sub-clustering result of partition 4 in
experiment run_16. We identified one subcluster that expressed high levels of the top 10 marker genes
of partition 3. This subcluster also had relatively higher doublet scores. Therefore, we nominated it as a
doublet-driven subcluster (Fig. R9a-c).

After repeating this approach for individual partitions, we identified doublet-driven subclusters. We then
highlighted these subclusters in the original UMAP plot (Fig. R9d). We can see that the doublets
detected by strategy 3 (5,440 cells, ~0.5% of the whole dataset) are distributed sparsely, rather than
enriched at any potential trajectories between partitions.

To provide more details on our approach to the reader, we have revised the Methods section regarding
the third strategy of detecting doublets by adding more details. We acknowledge that this strategy may
potentially exclude cells that are at an intermediate stage of cell state transitions. Additionally, we have
provided a script in step1_Removing_doublets.R on GitHub that shows the steps we took to detect
doublets. This will allow others to replicate and potentially improve on our approach. In the below quote
from the revised Methods section, new text is bolded:

Revised Methods: “This step consists of a series of ten substeps. 1) We reduced each cell’s expression
vector to retain only protein-coding genes, lincRNAs, and pseudogenes. 2) Genes expressed in fewer
than 10 cells and cells in which fewer than 100 genes were detected were further filtered out. 3) The
dimensionality of the data was reduced by PCA (50 components) first on the top 5,000 most highly
dispersed genes and then with UMAP (max_components = 2, n_neighbors = 50, min_dist = 0.1, metric =
'cosine') using Monocle/3-alpha. 4) Cell clusters were identified in UMAP 2D space using the Louvain
algorithm implemented in Monocle/3-alpha (resolution = 1e-06). Cell partitions were detected
using the partitionCells function implemented in Monocle/3-alpha. This function applies
algorithms that automatically partition cells to learn disjoint or parallel trajectories based on
concepts from "approximate graph abstraction" (Wolf et al. 2019). 5) We took the cell partitions
identified by Monocle/3-alpha (cell clusters were used instead for three experiments that profiled embryos
before E10), downsampled each partition to 2,500 cells, and computed differentially expressed genes
across cell partitions with the top_markers function of Monocle/3 (reference_cells=1000). 6) We selected
a gene set combining the top ten gene markers for each cell partition (filtering out genes with
fraction_expressing < 0.1 and then ordering by pseudo_R2). 7) Cells from each main cell partition were
subjected to dimensionality reduction by PCA (10 components) on the selected set of top partition-specific
gene markers. 8) Each cell partition was further reduced to 2D using UMAP (max_components = 2,
n_neighbors = 50, min_dist = 0.1, metric = 'cosine'). 9) The cells within each partition were further
subclustered using the Louvain algorithm implemented in Monocle/3-alpha (res = 1e-04 for most
clustering analysis). 10) Subclusters that expressed low levels of the genes that were found to be
differentially expressed in step 5, had high levels of markers specific to a different partition, and
had relatively high doublet scores, were labeled as doublet-derived subclusters and removed from
the analysis. On average, this procedure eliminated 3.4% of cells from each experiment (range
0.5-13.2%) of the cells in each experiment (Supplementary Figs. 24-25).”
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Reviewer Figure 8 (Supplementary Figure 24 in the revised manuscript). Three-step doublet detection
workflow for sci-RNA-seq3 experiments. a, We performed three steps to detect and remove potential doublets
from each single sci-RNA-seq3 experiment. First, we used Scrublet to calculate a doublet score for each cell.
Cells with a doublet score over 0.2 were annotated as detected doublets. Second, we clustered and subclustered
the entire dataset. Subclusters with a detected doublet ratio over 15% were annotated as doublet-derived
subclusters. Third, after removing doublets detected by the first two steps, we performed clustering again to
identify the major cell partitions (i.e. disjoint trajectories). Three experiments (runs 4, 15, and 17) that profiled
embryos before E10 used cell clusters instead of cell partitions. We then generated a union gene list by
combining the top 10 differentially expressed genes from each cell partition. This gene list was used to perform
subclustering on each cell partition. Subclusters that showed low expression of target cell partition-specific
markers and enriched expression of non-target cell cluster-partition markers were identified as doublet-driven
clusters. More details are provided in the Methods. The percentage of cells detected and removed as doublets by
each of the three steps in individual sci-RNA-seq3 experiments is shown. b, The labeled cell partitions for each of
six selected experiments are shown, after removing doublets from the first two steps.

21



Reviewer Figure 9 (Supplementary Figure 25 in the revised manuscript). Example of detection of
doublet-driven subclusters via step 3. a, Re-embedded 2D UMAP of 986,264 cells from experiment run_16,
after removing doublets detected in the first two steps. Cells were colored by each of the 12 partitions detected by
the partitionCells function implemented in Monocle/3-alpha. b, Re-embedded 2D UMAP of cells from partition 4,
with cells colored by subclusters. The same UMAP is shown below, with cells colored by doublet score calculated
by Scublet. c, The same UMAP as in panel b, colored by the normalized gene expression of the top 10
differentially expressed genes in either partition 3 (top) or partition 4 (bottom). d, The same UMAP as in panel a,
highlighted by doublets detected in step 3 (red).
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8. When the data were pooled computationally (pp33-34) was any batch correction strategy applied?
From the text, it read as if samples were merged without any additional correction. I do not find the
analysis presented in Fig 1d compelling evidence for the lack of a batch effect: I would prefer to see full
plots of the embedding for samples processed from adjacent time points in different experiments.
Additionally, it would be illustrative to consider the data that were processed in multiple runs.

We did not perform any batch correction in this project for three reasons. First and most importantly, we
used sci-RNA-seq3 technology instead of 10X Genomics technology. Sci-RNA-seq3 uses a split-pool
barcoding strategy, which means that cells from different samples are pooled together after the first
round of barcoding, which minimizes variation between samples within the same experiment.
Furthermore, in our experience to date, sci-RNA-seq3 is associated with markedly less batch effects
between experiments than data from 10X Genomics (assuming a consistent protocol, which was the
case here). Second, since we included samples from roughly adjacent timepoints in most sci-RNA-seq3
experiments, batch variations are confounded with temporal information. Given that we could not find
any evidence for batch effects, we erred on the side of preserving temporal information that might be
lost during batch correction. Third, we profiled extra nuclei in some sci-RNA-seq3 experiments at a
handful of timepoints to ensure sufficient coverage. We used these instances to perform a kNN based
analysis, checking for potential batch effects across experiments. In both examples shown in
Supplementary Fig. 3c, we observed that the nearest neighbors of the cells were overwhelmingly from
a different experiment (but the same time window), rather than from the same experiment (but a
different time window).

To further check for potential batch effects, as suggested by the reviewer, we generated “full plots of the
embedding for samples processed from adjacent timepoints in different experiments”, without any batch
correction (Fig. R10a). Consistent with our general experience with sci-RNA-seq3 data, we could not
discern any batch effects between experiments from these plots. The transcriptional separation of some
specific cell clusters was observed for cells from E18.75 vs. P0, as discussed in the paper.

To follow on the second suggestion about data processed in multiple runs, we compared cells from
run_23_A and run_23_B, which profiled the same sci-RNA-seq3 experiment but were sequenced on
different NovaSeq runs (i.e. different cells from the same experiment, sequenced on different runs; Fig.
R10b). Once again, we could not identify any potential batch effects based on the co-embedding.
In both cases (and again, consistent with our prior experience with sci-RNA-seq3), this sharply
contrasts with our experience with 10X Genomics, where batch effects are often immediately obvious
when such plots are generated without any correction procedures.

We have added the following text (and included these figures in the supplement):

Original text: “Further analyses suggested that batch effects were relatively minimal (Supplementary Fig.
3b). ”

Revised text: “We did not perform batch correction across experiments, as various analyses suggested
that batch effects were relatively minimal. In particular, cells from the same time window but profiled by
different experiments, or cells from adjacent timepoints but profiled by different experiments, were
well-integrated (Supplementary Fig. 3b; Supplementary Fig. 4).”
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Reviewer Figure 10 (Supplementary Figure 4 in the revised manuscript). Cells processed in different
experiments are well-integrated without batch correction. a, To further check for potential batch effects, we
generated co-embeddings of samples processed from adjacent timepoints in different experiments, without batch
correction. b, We also generated a co-embedding of cells from run_23_A (red) and run_23_B (green), which
derived from the same sci-RNA-seq3 experiment but were sequenced on different NovaSeq runs.
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9. Methods p34: you mean ’12 timepoints at 1 day increments’ not ‘1 hour increments’ I think.

Thank you for catching this typo. We fixed it in the revised manuscript.

10. The resolution of clusters in SF4 is relatively low given the number of cells. While I understand the
argument of the authors that this will be refined further moving forward, I think a somewhat deeper
clustering and annotation would have been helpful for the community and would substantially increase
the utility of the dataset.

The annotation of the full dataset took about one year. We agree that deeper clustering and annotation
would add more value, but at the cost of significantly more time and the greater likelihood of errors and
ambiguity as we go deeper. We also feel that we are at the point where further clustering and
annotation requires the identification and engagement of domain-specific experts for each physiological
system, which would constitute a major organizational effort to run centrally. Alternatively, this may
simply happen on its own as we get the data out there. This possibility is well-stated by Reviewer #2:
“This resource can change the way by which we approach embryonic development of specific lineages
and tissues given a much-needed global context. This is possible even given the present form of the
data, and will be intensified after much more analysis, tools, integration with spatial data and
epigenomics profiles will be added on top of it by the authors (in future studies) and the community.”

Our experience to date has been that each successive publication in this field (from us and others) both
adds new data/timepoints, while also refining and advancing annotations from past publications even
for earlier timepoints (e.g. this work builds on (Mittnenzweig et al. 2021) and (Qiu et al. 2022), which
built on (Pijuan-Sala et al. 2019) and (Cao et al. 2019). Continuing that pattern, we anticipate that
followup studies in which we go beyond P0 will also report progress in deepening, refining and
correcting prenatal timepoints.

11. Were the authors able to explore the intercalation of cells (e.g., work from Kat Hadjantonakis and
others) from the extra-embryonic endoderm when forming the gut-tube (Figure 2)? Some such cells
must contribute to the posterior portion of the gut tube.

Thank you for this comment. In a recent publication (Qiu et al. 2022), we re-analyzed several mouse
datasets from early embryogenesis, including that of (Pijuan-Sala et al. 2019), which profiled mice from
E6.5 to E8.5 with a temporal resolution of 6 hours. In this analysis, we split the cells from each time
point and annotated the cell clusters based on their original annotation as well as the expression of
specific marker genes. In the figure below, we highlight five cell types: extraembryonic visceral
endoderm (Ttr+), embryonic visceral endoderm (Hhex+ and also Ttr+, though to a lesser extent than
extraembryonic visceral endoderm), definitive endoderm (Cer1+), gut (Apela+), and notochord (Noto+),
in UMAPs of embeddings of data from E7.25 to E8.25 (Fig. R11a).
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Reviewer Figure 11. Temporal dynamics of visceral endoderm, definitive endoderm, and gut cell states. a,
In a recent publication (Qiu et al. 2022), we re-analyzed data from E6.5 to E8.5 embryos from (Pijuan-Sala et al.
2019), by splitting cells by timepoint and labeling according to the original annotations or expression of marker
genes for embryonic visceral endoderm (Hhex+), extraembryonic visceral endoderm (Ttr+), definitive endoderm
(Cer1+), gut (Apela+) or notochord (Noto+). b, The left panel is reproduced from Fig. 2j of the manuscript.
Re-embedded 2D UMAP of cells from cluster 3 in Fig. 2a. Cells are colored by either their initial annotations (top)
or somite counts (bottom). Different subpopulations of gut cells are highlighted by black circles. The same UMAP
is shown multiple times on the right, with cells colored by normalized expression of the same marker genes shown
in panel a. A subpopulation of early-somitogenesis cells with elevated Ttr expression is highlighted by a red circle.
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We tracked the changes in cell states over time and found that at E7.25, the visceral endoderm and
definitive endoderm were readily distinguishable. From E7.5 to E8.0, the embryonic visceral endoderm
and definitive endoderm converged, consistent with the findings of Hadjantonakis and colleagues. By
E8.25, the gut was again largely distinct from the (extraembryonic) visceral endoderm, although we did
identify Ttr gene expression in a subset of gut cells, which we infer likely correspond to the subset that
derive from the embryonic visceral endoderm. Overall, these results suggest that the principal window
in which intercalation occurs is between E7.5 and E8, with visceral endoderm-derived gut cells
potentially expressing higher levels of Ttr (Fig. R11a).

Turning to the data presented in this manuscript, in our focused analyses of the early gut (Fig. 2j), we
do observe an early-somitogenesis cell population that expresses elevated levels of Ttr relative to other
early-somitogenesis cells in this sub-analysis (red circle in Ttr sub-panel of Fig. R11b). We believe that
these cells may correspond to gut cells derived from the visceral endoderm.

12. The result in Fig 2l does not seem especially surprising – AP patterning is expected to be
conserved across different developmental trajectories, so I am not sure why the authors find this
‘striking’. I would suggest toning down the language in the text both here and when referring to Fig 2m.
This reuse of regulatory programs is well known – it is a nice demonstration but not especially
surprising and should be rephrased accordingly.

Thank you for this comment. We agree and have removed three instances “striking” from this section:

Revised text 1: “In comparing genes whose expression patterns are highly correlated with the inferred
A-P axis between notochord (PC1; n=591) and gut (PC1; n=502), we observe striking overlap and
directional concordance (198 overlapping genes, 86% of which are consistently associated with the
inferred anterior or posterior aspect of the notochord and gut; p<1e-28, χ2-test; Fig. 2l; Supplementary
Table 10).”

Revised text 2: “A second striking overlap between germ layers involves genes highly correlated with
early vs. late somite counts in NMPs (n=257) vs. the gut (PC2; n=502). Once again, we observe striking
overlap and directional concordance (82 overlapping genes, 70 (85%) of which are consistently
associated with early or late somite counts; p<1e-15, χ2-test) (Fig. 2m; Supplementary Table 11).”

13. Are the manually inferred relationships shown In Figure 3c consistent with those obtained from
application of computational approaches?

Below we show the results of two different methods for inferring cell relationships in the developing
kidney. The left image shows the results of manual inference (Fig. R12a), while the right image shows
the results of computational reconstruction using the mutual nearest neighbors (MNN) method (Fig.
R12b). The overall patterns between the two images are very similar, with three exceptions:

1. With the MNN-method, anterior intermediate mesoderm (AIM) contributes to posterior
intermediate mesoderm (PIM), which may reflect an anterior-posterior (A-P) elongation process
during mouse early organogenesis.

2. With the MNN-method, AIM contributes to nephron progenitors.
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3. With the MNN-method, the ureteric bud stalk has been split from the ureteric bud (we made
minor changes to some cell annotations while creating the developmental graph), and renal
pericytes and mesangial cells (which were originally included in the lateral late & intermediate
mesoderm cluster) have been added.

In summary, the overall patterns between the two methods are consistent. The minor differences
appear to correspond to subtleties that we did not take into account in our manual reconstruction (#1
above), a potentially incomplete understanding of some lineages (#2 above), or the consequences of
annotation changes made while constructing the developmental graph (#3 above).

Reviewer Figure 12. Inferred developmental trajectories between annotated renal cell types. a, This is
reproduced from Fig. 3c. Manually inferred relationships between annotated renal cell types. Dashed circle
highlights posterior & anterior intermediate mesoderm. Dashed line highlights the expected spatial ordering of
annotated cell types from proximal (left) to distal (right) aspect of nephron. b, A subview of the graph presented in
Fig. 6g, corresponding to the renal subsystem of mouse development, spanning E0 to P0 (yFiles Hiearchic layout
in Cytoscape/v3.9.1).

14. Some experimental validation of the tangram inferred location of cell types (Figure 3g) would be
important – this is a relatively straightforward experiment, given the marker genes that are available
and would support the computational inference. For example, can you validate the expression of
markers associated with the two LPM-subsets mapping to the inside and outside of the kidney?

Although we agree that this is a straightforward experiment to conduct anew, publicly available
databases of ISH images for mouse embryos contain overlaps with the genes that we would have
sought to examine with new experiments. ISH for these and other markers of various mesenchymal
subpopulations for which we inferred spatial distributions are available and reproduced below (Fig.
R13). The ISH images were obtained from www.informatics.jax.org, and the relevant references are
provided as part of this figure as well.
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Reviewer Figure 13 (Supplementary Figure 12 in the revised manuscript). Published in situ hybridization
(ISH) images support our annotations of lateral plate and intermediate mesoderm derivatives. In each
subpanel (defined by dotted rectangles), three rows are shown for one or two lateral plate and intermediate
mesoderm derivative cell types. Notably, each of these cell types was annotated based on spatial mapping
analysis, as shown in Fig. 3g. Top: The same UMAP as in Fig. 3f, colored by gene expression of marker genes
which appear specific to the given cell type. Middle: Virtual in situ hybridization (ISH) images of individual genes
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from one selected section (E1S1) from E14.5 of the Mosta data (https://db.cngb.org/stomics/mosta/). Bottom: In
situ hybridization (ISH) images of individual genes were obtained from the Jackson Laboratory Mouse Genome
Informatics (MGI) website (https://www.informatics.jax.org/). The original references for these images are listed in
the middle right of the overall figure.

For example, from our data, we claim that Pax2 and Cfh specify the subsets of organ-specific
mesenchyme located outside and inside the kidney, respectively, based on mapping our data to
MOSTA via Tangram. A more detailed explanation of this finding is provided in our response to
Comment #4 from Reviewer #1. These predictions are supported by published ISH images, as shown
above (bottom left of Fig. R13). Several additional examples of ISH-based validation of other subsets of
organ-specific mesenchyme are also shown. This figure has been added to the manuscript, and we
have revised the following text as follows:

Original text: “Through a combination of spatial inference and marker gene analysis, we were able to
assign annotations to 22 subtypes of the LPM & intermediate mesoderm major cell type (Fig. 3f-g;
Supplementary Fig. 8; Supplementary Table 12).”

Revised text: “Through a combination of spatial inference and marker gene analysis, we were able to
assign annotations to 22 subtypes of the LPM & intermediate mesoderm major cell type (Fig. 3f-g;
Supplementary Fig. 11; Supplementary Table 12). Many of these assignments were supported by
publicly available in situ hybridization images (Supplementary Fig. 12).”

15. How were the solid black lines drawn in Fig 4c? The legend talks about inference, but this feels like
a very manual connection, which is challenging given such a complex series of cell states. Can the
authors put these relationships on a more quantitative footing?

We apologize for the confusion. In this graph, connections were manually inferred, and are not
automated nor quantitative. It is only in a later section that we apply a more systematic approach to
generate the comprehensive developmental graph (which includes the eye). In the revision, we have
clarified this in the figure legend:

Original legend: “Fig. 4c, Schematic of retinal cell types emphasizing the timing at which they first appear
and their inferred developmental relationships from E8-P0. The gray lines indicate subsets of the eye field
and RPE subsequently annotated as the optic stalk (label 16) and iris pigment epithelium (label 17),
respectively. Cell types are positioned along the x-axis at the timepoint at which they are first observed
(Supplementary Fig. 10e).”

Revised legend: “Fig. 4c, Schematic of retinal cell types emphasizing the timing at which they first appear
and their inferred developmental relationships from E8-P0, based on manual review of the trajectories.
The gray lines indicate subsets of the eye field and RPE subsequently annotated as the optic stalk (label
16) and iris pigment epithelium (label 17), respectively. Cell types are positioned along the x-axis at the
timepoint at which they are first observed (Supplementary Fig. 16e).”

16. Fig 5c: the authors state that the ‘extensive heterogeneity of the patterned neuroectoderm
progressively diminishes as differentiating neurons become more similar with respect to their
transcriptional states’ – this is hard to observe from the figure – can the authors quantify this
observation?
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This is a good comment, especially as regardless of whether the claim is correct with respect to the
figure shown, distances in UMAP should be interpreted with caution (or not at all). We therefore
attempted to apply several different metrics to quantify this. Unfortunately, the results were inconsistent,
with some metrics suggesting that transcriptional heterogeneity was decreasing over time (e.g. angular
distance in PC space with 30 dimensions) but others suggesting that it was increasing (e.g. Euclidean
distance in PC space with 30 dimensions, or Jaccard similarity calculated from Euclidean distance in
PC space). As it is not clear to us which of these is the “correct” metric for this kind of a claim, we have
deleted this statement from the manuscript.

17. The description of the cell type tree felt like it belonged as a more detailed supplementary note, with
more discussion being warranted around a number of factors in the heuristic algorithm. For example,
are the MNNs between cell types enriched for cells that are collected from the same embryo? If so, this
might suggest a technical factor could be driving a particular edge. More generally, a discussion on
parameter choices and robustness of the approach would be welcome; also a discussion around known
complex transitions would provide confidence in the result; in particular, in cases where there is cell
type intercalation (gut tube) is this observed in the mapping? It would provide confidence in the results.

Thank you for the comments. To assess the robustness of our approach to technical factors and
parameter usage, we conducted the following analyses, which we have added as a supplementary note
(Supplementary Note 1) in the revised manuscript, reproduced below. Note that the similarity of
correlation coefficient ranges between the second and third approaches is a coincidence (i.e. we
double-checked that this was not an error).

Supplementary Note 1: “To evaluate whether our approach is robust to technical factors or parameter
choices, we took the following three approaches. First, we examined whether the MNNs that we identified
between different cell types were enriched for cells from the same embryo. Since the data from
pre-gastrulation and gastrulation were generated from pooled samples, we only investigated this
phenomenon for later stages, i.e. E8-P0 data generated via sci-RNA-seq3. Overall, we found that only
16.4% of MNNs from different cell types were between cells from the same embryo. However, we notably
only profiled one embryo for most timepoints, which may inflate this value relative to what it might have
been if we had profiled multiple embryos per timepoint. This is supported by the fact that when we look at
windows with multiple embryos profiled per timepoint (E8-E10 and E13-E13.75), the proportion of MNNs
from different cell types that connect cells from the same embryo was only 10.5% for E8-E10, and only
2.4% for E13-E13.75 (Supplementary Fig. 27a). Overall, the fact that MNNs spanning cell types
overwhelmingly connect cells from different embryos (and different timepoints) is reassuring.

Second, to assess the robustness of MNNs to cell sampling, we randomly subsampled 80% of cells from
each developmental system during organogenesis & fetal development (except for notochord, which is a
relatively rare cell type). We then repeated our MNN approach on the subsamples and compared the
resulting numbers of MNNs obtained for each edge to those obtained when using the full dataset. This
process was repeated 100 times for each developmental system. The resulting correlation coefficients
ranged from 0.92 to 0.99, with an average of 0.98 (Supplementary Fig. 27b). This suggests that the
MNNs we identified are robust to cell sampling.

Third, the k parameter is critical when using kNNs to identify MNNs between cell types. The original k
value was selected based on the log2-transformed median number of cells across cell types (k = 10
neighbors for pre-gastrulation and gastrulation subsystems, k = 15 for organogenesis & fetal development
subsystems). To determine the effect of k parameter choice on the MNNs identified between cell types,
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we examined different k values (k = 5, 10, 20, 30, 40, 50) for kNN to identify MNNs for each
developmental system during organogenesis & fetal development. We then compared the results to the
original result, which was based on k = 15. The resulting Spearman correlation coefficients ranged from
0.92 to 0.99, with an average of 0.98 (Supplementary Fig. 27c). This suggests that the MNNs we
identified are robust to the choice of k parameter.”

To answer the question about the gut tube, we indeed identified two edges that give rise to the gut in
our graph. One of these originates from the definitive endoderm and the other from the embryonic
visceral endoderm. Both are part of the gastrulation sub-graph, and were very well supported by the
MNN approach (see rows 18/19 and 56/57 of Supplementary Table 21). In fact, the edge going back
to the embryonic visceral endoderm edge was even more strongly supported than the edge going back
to the definitive endoderm. We hope that our automated detection of this complex transition reassures
the reviewer that the approach is reasonable.

Reviewer Figure 14 (Supplementary Figure 27 in the revised manuscript). The MNN approach used for
graph construction is robust to subsampling and choice of the k parameter. a, The percentage of MNNs
between different cell types, from the same embryo (blue) or from different embryos (red), is shown for each
developmental system during organogenesis & fetal development, for all cells (left), cells from E8.0 to E10.0
(middle), or cells from E13.0 to E13.75 (right). b, The Spearman correlation coefficients of the normalized number
of MNNs between cell types, comparing random subsampling of 80% of the cells to the full set of cells. The
subsampling was repeated 100 times. The number of MNNs between cell types were normalized by the total
number of possible MNNs between them. c, The Spearman correlation coefficients of the normalized number of
MNNs between cell types, comparing various choices for k parameter (k = 5, 10, 20, 30, 40, 50) and the choice of
k parameter (k = 15) when applying kNN to the developmental systems during organogenesis & fetal
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development. The number of MNNs between cell types were normalized by the total number of possible MNNs
between them.

18. As an alternative to the cell type analysis presented in Fig 7b, perhaps the authors could consider
connecting neighbourhoods of cells? Could the annotation of cell types across this interval be more
challenging than across other parts of the developmental trajectory?

Following this suggestion, we attempted an alternative strategy that built a neighborhood graph on cells
from each cell type, by connecting cells’ neighborhoods based on transcriptional similarity. This was
implemented with the scanpy.pp.neighbors function. After that, we took the subset of edges that
consisted of cells from a given timepoint, and then computed the ratio of those edges that connect cells
from the same timepoint or from different timepoints. In this framing, a low proportion of edges from
different timepoints corresponds to a relatively abrupt change in transcriptional state. The results for
each cell type (Fig. R15a) are highly comparable to previous Fig. 7b. Although this adds confidence,
we decided to stick with the original approach, as we believe that it is more straightforward.

To answer the second question, when we annotated cell types, we carefully checked if the cell state
heterogeneity was due to other factors, including (but not limited to) cell cycle phase, A high ratio of
reads mapping to the mitochondrial genome, sex, and enrichment of cells from a specific timepoint. For
example, the “extra” cell state identified in the kidney subanalysis is enriched with cells from only the P0
sample, but still very clearly expressed marker genes of proximal tubule cells, such as Lsc27a2 and
Lrp2 (Fig. R15b).
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Reviewer Figure 15. An alternative strategy to systematically identify which cell types exhibit abrupt
transcriptional changes before vs. after birth. a, As an alternative strategy to what was done for Fig. 7b, we
built a neighborhood graph on cells from each cell type, by connecting cells’ neighborhoods based on their
transcriptional similarities. This was implemented with the scanpy.pp.neighbors function. After that, we took the
subset of edges that consisted of cells from a given timepoint, and then computed the ratio of those edges that
connect cells from the same timepoint or from different timepoints. In this framing, a low proportion of edges from
different timepoints corresponds to a relatively abrupt change in transcriptional state. b, This is reproduced from
Supplementary Fig. 10c & d. Top: The same UMAP as Fig. 3a is shown three times, with colors highlighting
cells from before E18.75 (left), E18.75 (middle), or P0 (right). Dotted cycles highlight cells which appear to
correspond to the proximal tubule. Bottom: The same UMAP as in Fig. 3a, colored by expression of marker genes
which appear specific to proximal tubule cells (Slc27a2+, Lrp2+). References for marker genes are provided in
Supplementary Table 5.

19. The lack of a user-friendly interface for exploring the data is a major hindrance and will substantially
limit its utility. This needs to be resolved.

We apologize for our previous lack of care in making our data more accessible. We have taken this
feedback to generate a new version of our website that is more user-friendly and accessible to all.
Please take a look at the links below:

https://atlas.gs.washington.edu/jax/
https://atlas.gs.washington.edu/jax/public/index.html
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In brief, we have added interactive 3D visualizations to our website, not just for the entire dataset, but
also for various subsets (e.g. major cell clusters or the specific subsets that are presented in our main
figures). The side-by-side views are synchronized in terms of the viewpoint on the 3D UMAP. Each view
can be labeled by cell type, timepoint, or the raw or normalized expression level of any gene of interest.

For subsets with more than 100,000 cells, we used random downsampling to facilitate fast response
times for the interactive aspect of the portal. However, each full subset (and/or its metadata) can be
easily downloaded for focused analyses by users via links at the bottom of the page that are updated
as different subsets are selected.

We plan to continue improving this interactive website and welcome any suggestions. We are also in
discussions with CZ about how to make these data available at the CZ “CELL by GENE” data portal.

20. The GitHub repository is incomplete (e.g., TBD for Fig 4 etc) – this needs to be resolved.

Thank you for pointing this out, and we sincerely apologize for this oversight. We have completed the
GitHub repository in the course of our revisions. Please take a look at the link below, in which scripts
have been split up by section of the manuscript:

https://github.com/ChengxiangQiu/JAX_code

● Section_1_basic_analysis
● Section_2_posterior_embryo
● Section_3_kidney_mesenchyme
● Section_4_eye
● Section_5_neuroectoderm
● Section_6_development_tree
● Section_7_key_TFs
● Section_8_birth_series

For example, there is a script (“step1_Removing_doublets.R”) in the first section that describes how to
perform quality control and remove doublets.

On a related point, to address one of this reviewer’s general comments that was not explicitly listed
again as a specific comment, we have also expanded the Methods section, in particular adding
sections titled “Whole mouse embryo analysis”, “Spatial mapping with Tangram”, “Generating tree of
cell types for mouse development”, “Nominating key TFs and genes”, and “Identifying cell types with
abrupt transcriptional changes before vs. after birth”.
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Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors have made a good effort to improve the manuscript in many parts. However, the 

authors have not created the interactive viewer enabling gene-query searching of these data that 

one would have expected of this group. As one of the development foci of the paper, the authors 

have chosen the kidney. This is an excellent choice given robust ontologies and understanding of 

development and the example of other groups for the community benefit of creating gene query 

sites such as KidneyCellExplorer (https://cello.shinyapps.io/kidneycellexplorer/) and 

KidneyInteractiveTranscritomics (http://humphreyslab.com/SingleCell/). With the kidney focus, let 

me illustrate a question I would be driven to ask by the authors data and some problems in not 

following standards in the field for integrating findings here with other efforts. 

In the response to the reviewers, the authors highlighted an e12.25dpc sample missing a number 

of renal cell types (reviewer Figure 5). In looking harder at this data in panel a, I notice that 

podocytes and proximal tubule cells are both annotated from e10.5 despite the fact their first 

appearance in the metanephric kidney is not until e13.0-13.5 and the metanephric kidney is only 

coalescing at e10.0-10.25. Assuming the annotation is correct, the earlier podocytes and proximal 

tubule annotation may reflect mesonephric tubules, set to degenerate later in development. If so, 

these would co-express podocyte and proximal tubule markers along with Hox10 paralogs as the 

most “posterior” Hox genes, while metanephric counterparts may express similar sets of podocyte 

and proximal tubule gene markers (but likely only similar) together with more posterior Hox11 

paralogs. With the expected website addition, I could simply have searched relevant genes 

amongst the temporal kidney datasets and seen whether this simple explanation held? If the is 

data is to be maximally useful, and science is democratized so that data strives to be as 

reasonably as accessible as possible, this type of query should be resolved at a good web 

accessible site. 

The authors discuss Foxd1 lineage which is not as abstract as it need be given extensive lineage 

mapping studies (eg Kobayshi et al. 2014). GUDMAP (www.gudmap.org) has set the community 

bar for kidney annotation. I understand “mesangial” but terms “pericyte” and “renal stroma” are 

confusing. There are blood vessels throughout the kidney and stroma in some definitions is 

everything non-epithelial so wouldn’t pericytes be a subset of stroma. The Carroll lab have 

highlighted the complexity of what has been broadly described as interstitial cells or stroma, much 

of it descended from Foxd1 progenitor cells, though clearly not all, particularly the smooth muscle 

progenitor/smooth muscle regions in the deep medullary region, the focus of studies from the 

Kispert lab. The bottom line here is that the authors could do a much better job with the terms 

employed for cell clusters and with bringing in insight from the literature. 

One minor point in this sentence in “revised text” on page 9, and in several others, the authors 

use ‘it” instead of the relevant noun and its confusing and need not be: “However, analysis of 

genes correlated with Npm1 found it to be declining ….”. An “it” extraction throughout will help the 

reader. 

Referee #2 (Remarks to the Author): 



I have no further comments. 

Referee #3 (Remarks to the Author): 

I would like to thank the authors for the clear and comprehensive way that they have tackled my 

previous comments. I am satisfied by the responses and now feel that this paper justifies 

publication in Nature. 



Response to Reviewers

We thank Reviewer #1 for their constructive additional feedback on the revised manuscript and website.
Below, the original reviewer comments are replicated in full in blue text, while our responses are in
black text.

Reviewer #1:

The authors have made a good effort to improve the manuscript in many parts. However, the authors
have not created the interactive viewer enabling gene-query searching of these data that one would
have expected of this group. As one of the development foci of the paper, the authors have chosen the
kidney. This is an excellent choice given robust ontologies and understanding of development and the
example of other groups for the community benefit of creating gene query sites such as
KidneyCellExplorer (https://cello.shinyapps.io/kidneycellexplorer/) and KidneyInteractiveTranscritomics
(http://humphreyslab.com/SingleCell/). With the kidney focus, let me illustrate a question I would be
driven to ask by the authors data and some problems in not following standards in the field for
integrating findings here with other efforts.

We are grateful for this reviewer's positive comments on the revision as a whole, as well as for the
additional feedback on the website. In response, we have added additional functionalities to the website
(now at https://omg.gs.washington.edu/). In particular, the GeneExp tab allows one to query any gene
in any single cell type, and to then view bar-plots showing that gene’s expression over time (either as
log-scaled normalized expression or as % of cells in which the gene was detected), together with the #
of cells assigned that cell-type label over time (either as absolute # of cells profiled or estimated
proportion of the embryo). The user can also choose to utilize this functionality at 6 hour resolution for
the entire time-course (E8 to P0) or 2 hour resolution for late gastrulation (E8 to E10, based on somite
counts). As described in response to the next comment, we leverage this new functionality to address
the kidney-specific question raised by the reviewer.

We are also working with CZI to have these data deposited to CELLxGENE in such a manner that the
same subsets described in our paper and made accessible via our browser will also be explorable via
the CELLxGENE browser. Because of the size of the dataset, this is taking some time but they are
willing to take the data in this form. However, we anticipate that this will further serve to make the data
more accessible/usable by the community, above and beyond our own website.

In the response to the reviewers, the authors highlighted an e12.25dpc sample missing a number of
renal cell types (reviewer Figure 5). In looking harder at this data in panel a, I notice that podocytes and
proximal tubule cells are both annotated from e10.5 despite the fact their first appearance in the
metanephric kidney is not until e13.0-13.5 and the metanephric kidney is only coalescing at
e10.0-10.25. Assuming the annotation is correct, the earlier podocytes and proximal tubule annotation
may reflect mesonephric tubules, set to degenerate later in development. If so, these would co-express
podocyte and proximal tubule markers along with Hox10 paralogs as the most “posterior” Hox genes,
while metanephric counterparts may express similar sets of podocyte and proximal tubule gene
markers (but likely only similar) together with more posterior Hox11 paralogs. With the expected
website addition, I could simply have searched relevant genes amongst the temporal kidney datasets
and seen whether this simple explanation held? If the is data is to be maximally useful, and science is
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democratized so that data strives to be as reasonably as accessible as possible, this type of query
should be resolved at a good web accessible site.

Our understanding of your comment is that if your hypothesis is correct, one would expect to see:

* At E10-E11, the cells that we label as podocytes and proximal tubule cells express both their own
marker genes as well as Hox10 paralogs but not Hox11 paralogs.

* At E10-E11, the cells that we label as metanephric mesenchyme also express podocyte/proximal
tubule marker genes (albeit similar, not identical ones) but also both Hox10 and Hox11 paralogs.

Leveraging the new functionality of the website, we explored this as illustrated in the panels below, all
of which are essentially screenshots of views that we pulled up using the GeneExp tab described
above.

In Reviewer Figure 1a, we highlight the cells that we are focused on, showing the absolute numbers
detected and their estimated proportional contribution to the whole embryo over time, for podocytes,
proximal tubule, and metanephric mesenchyme.

In Reviewer Figure 1b, we show that the early cells assigned as proximal tubule cells express
appropriate markers, e.g. Lrp2 and Slc27a2. Interestingly, early podocyte-labeled cells do not express
Nphs1/2 highly, but do express Synpo and Wt1.

In Reviewer Figure 1c, we show that early cells assigned as metanephric mesenchyme express some
(e.g. Lrp2, Synpo, Wt1) but not all of these same markers, as do the late cells assigned as metanephric
mesenchyme.

In Reviewer Figure 1d, we show that the early cells assigned as proximal tubule cells express Hoxa10
but not Hoxa11. Hoxa paralogs are not detected in early cells assigned as podocytes, but again these
are much fewer in number (6 cells altogether) than the early cells assigned as proximal tubule cells
(see Reviewer Figure 1a). In contrast, later cells assigned as proximal tubule cells or podocytes
express both Hoxa10 and Hoxa11. In further contrast, both Hoxa10 and Hoxa11 are well detected in
both early and late subsets of cells assigned as metanephric mesenchyme.

We believe, but are not fully confident that this set of patterns matches the reviewer’s hypothesis. But
regardless of whether they do or not, we hope that it illustrates how the updated website can be used
by the community to explore these kinds of questions.
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Reviewer Figure 1. Gene expression profiles of proximal tubule cells, podocytes, and metanephric
mesenchyme. a, Log2-scaled cell numbers (top row) and estimated proportional contribution to the whole
embryo (bottom row) for podocytes (left), proximal tubule cells (middle), and metanephric mesenchyme (right) are
plotted for each 6-hour bin. b, Natural-log-scaled normalized expression of selected marker genes specifically
expressed in proximal tubule cells (Slc27a2, Lrp2) and podocytes (Nphs1, Nphs2, Synpo, Wt1) are plotted for
proximal tubule cells and podocytes, respectively. See titles of each subplot for which gene and cell type is
shown. The expression levels are categorized by a 6-hour bin. c, Natural-log-scaled normalized expression of the
same selected marker genes as shown in panel b are plotted for metanephric mesenchyme. See titles of each
subplot for which gene and cell type is shown. The expression levels are categorized by a 6-hour bin. d,
Natural-log-scaled normalized expression of two posterior Hox genes (Hoxa10 on top row, and Hoxa11 on bottom
row) are plotted for podocytes (left), proximal tubule cells (middle), and metanephric mesenchyme (right). The
expression levels are categorized by a 6-hour bin. All plots are screenshots from our website
(https://omg.gs.washington.edu/).
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The authors discuss Foxd1 lineage which is not as abstract as it need be given extensive lineage
mapping studies (eg Kobayshi et al. 2014). GUDMAP (www.gudmap.org) has set the community bar for
kidney annotation. I understand “mesangial” but terms “pericyte” and “renal stroma” are confusing.
There are blood vessels throughout the kidney and stroma in some definitions is everything
non-epithelial so wouldn’t pericytes be a subset of stroma. The Carroll lab have highlighted the
complexity of what has been broadly described as interstitial cells or stroma, much of it descended from
Foxd1 progenitor cells, though clearly not all, particularly the smooth muscle progenitor/smooth muscle
regions in the deep medullary region, the focus of studies from the Kispert lab. The bottom line here is
that the authors could do a much better job with the terms employed for cell clusters and with bringing
in insight from the literature.

Thank you for the insightful comments. We re-examined the two cell populations, previously termed
renal pericytes & mesangial cells (termed "A") and renal stromal cells (termed "B").

1. Both A and B express Foxd1, as well as stromal marker genes including Prrx1, Pdgfra, and
Pdgfrb, indicating they are both renal stromal cells derived from Foxd1+ progenitor cells
(Reviewer Fig. 2a).

2. Spatial mapping places A in the cortex, and B in the medulla (Fig. 3d-e). Moreover, the cap
mesenchyme marker gene Six2 is only expressed in A. Other genes that are highly expressed
in A, such as Eya1 and Pax2, are also detected in the cortical region of the kidney by in situ
hybridization (ISH). Cell populations that overlap in Foxd1 and Six2 expression have been
discussed in the literature (Kobayashi et al. 2014), but these overlaps seem to occur at early
stages of organogenesis (before the onset of ureteric branching), in contrast to our findings,
where we identified overlap at much later stages, even close to P0.

3. We identified heterogeneity within B. If you look at the cluster on the right in Reviewer Fig.
2a-b, the “bottom” cells express Foxd1, which is also expressed in the cortex, while the top cells
express Lrriq1, which is also expressed in the medulla. This was also verified by published ISH
of several other genes that are highly expressed in either cell population. Additionally, the top
cells express interstitial cell markers (more specifically, smooth muscle cell markers) Acta2,
Pparg, and Myh11. Thus, B indicates a developmental trajectory from cortical stromal cells
(Foxd1+) to medullary interstitial cells (note in time-annotated version of this UMAP, that the the
earliest cells (pre-E10) are at the “bottom” of the B cluster, and thus correspond to the cortical
Foxd1+ subset of B.

4. However, the A and B populations are very clearly distinct from one another, even at the earliest
stages of the timelapse.

5. Integrating these two cell populations with their potential origins in the mesoderm, we found that
A appears to be derived from the intermediate mesoderm and metanephric mesenchyme, while
B appears to be derived from the lateral plate mesoderm. However, without lineage tracing
studies, we refrain from making any definitive conclusions about the origins of these two
subpopulations of renal stromal cells.

In summary, we decided to rename A to "renal cortical stromal cells" and B to "renal medullary stromal
cells". We have revised the text as follows:
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Original text (initial submission): “We can also distinguish two subsets of LPM-derivatives mapping to the
kidney, one to the cortex and the other more heterogeneously, which may correspond to renal stroma and
the renal pericytes and mesangial cells, respectively (Fig. 3g).”

Original text (first revision): “We can also distinguish two subpopulations of LPM-derivatives mapping to
the kidney, one to the cortex and the other more heterogeneously distributed within the renal
mesenchyme, which we believe correspond to renal pericytes & mesangial cells and renal stromal cells,
respectively. Although both subpopulations express Foxd1, supporting their assignment to the kidney,
focused analyses are consistent with their having distinct origins (Supplementary Fig. 13). However,
lineage tracing experiments would be necessary to test this hypothesis. Of note, renal stromal cells
exhibited gene expression heterogeneity along what may be the cortical-medullary spatial axis, of genes
including Foxd1 (cortical), Netrin-1 (cortical) and Zeb2 (medullary) (Supplementary Fig. 14).”

Revised text: “Two subtypes spatially mapped to the kidney, one to the cortex and the other
heterogeneously, which we term renal cortical stromal cells and renal medullary stromal cells, respectively
(Fig. 3d-e; Extended Data Fig. 7a-c). Although both express Foxd1+, focused analyses suggest distinct
origins, with renal cortical stromal cells appearing to derive from the intermediate mesoderm and
metanephric mesenchyme, and renal medullary stromal cells appearing to derive from LPM (Extended
Data Fig. 7d-e). However, lineage tracing experiments would be necessary to conclusively prove this. Of
note, renal medullary stromal cells exhibited heterogeneity along what may be a cortical-medullary spatial
axis (Extended Data Fig. 7f).”

5



Reviewer Figure 2 (Extended Data Fig. 7 in the revised manuscript). Assessing the potential origins of
LPM subsets annotated as renal cortical & medullary stromal cells. a, Re-embedded 2D UMAP of 39,468
cells from renal cortical & medullary stromal cells. Cells are colored by either annotation (top) or timepoint
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(bottom, after downsampling to a uniform number of cells per time window). b, Top: The same UMAP as in panel
a, colored by gene expression of marker genes which appear specific to renal cortical & medullary stromal cells.
Both cell types express Foxd1, Prrx1, Pdgfra, and Pdgfrb, but only renal cortical stromal cells express Six2.
Middle: Virtual in situ hybridization (ISH) images of individual genes. Bottom: ISH images of individual genes. c,
Top: The same UMAP as in panel a, colored by gene expression of marker genes which appear specific to renal
cortical stromal cells (Eya1+, Pax2+), and renal medullary stromal cells (Lrriq1+, Acta2+, Pparg+, Myh11+).
Middle: Virtual ISH images of individual genes. Bottom: ISH images of individual genes. d, Re-embedded 2D
UMAP of 206,908 cells from renal cortical & medullary cells, anterior intermediate mesoderm, posterior
intermediate mesoderm, metanephric mesenchyme, and splanchnic mesoderm. Cells are colored by either their
initial annotations (left) or timepoint (right, after downsampling to a uniform number of cells per time window). e,
The average normalized expression of Foxd1 over time is shown for renal cortical stromal cells (left) and renal
medullary stromal cells (right). Gene expression was normalized by the size factor estimated by Monocle/3. f, Top:
The same UMAP as in panel a, colored by gene expression of marker genes which appear specific to two subsets
of renal stromal cells: medullary renal stromal cells (Zeb2+, Plcb1+) and cortical renal stromal cells (Ntn1+,
Zbtb7c+, Sema3d+), respectively. Middle: Virtual ISH images of individual genes. Bottom: ISH images of
individual genes. In panel b, c, and f, virtual ISH images of individual genes were obtained from one selected
section (E1S1) from E14.5 of the Mosta data (https://db.cngb.org/stomics/mosta/). ISH images were obtained
from the Jackson Laboratory Mouse Genome Informatics (MGI) website (https://www.informatics.jax.org/). The
original reference for these ISH images are (Diez-Roux et al. 2011; Hoffman et al. 2008; Visel, Thaller, and
Eichele 2004).

One minor point in this sentence in “revised text” on page 9, and in several others, the authors use ‘it”
instead of the relevant noun and its confusing and need not be: “However, analysis of genes correlated
with Npm1 found it to be declining ….”. An “it” extraction throughout will help the reader.

We apologize for any confusion. We have revised the text to clarify our meaning.

Original text (first revision): “Other genes such as Npm1 and Hsp90 isoforms are plausibly associated
with batch effects. However, analysis of a module of genes correlated with Npm1 found it to be declining
with developmental time across the entire time series, rather than correlated with batch variables.”

Revised text: “Other genes such as Npm1 and Hsp90 isoforms are plausibly associated with batch
effects. However, analysis of a module of genes correlated with Npm1 revealed that this module declined
with developmental time across the entire time series, rather than being correlated with batch variables.”
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