# Supplementary information

# Structural basis of ribosomal 30S subunit degradation by RNase R

In the format provided by the authors and unedited

# Supplementary Information for

#### Structural basis of ribosomal 30S subunit degradation by RNase R

Lyudmila Dimitrova-Paternoga<sup>1</sup>, Sergo Kasvandik<sup>2</sup>, Bertrand Beckert<sup>3</sup>, Sander Granneman<sup>4</sup>, Tanel Tenson<sup>2</sup>, Daniel N. Wilson<sup>1,\*</sup>, Helge Paternoga<sup>1,\*</sup>

<sup>1</sup> Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany

<sup>2</sup> University of Tartu, Institute of Technology, 50411 Tartu, Estonia

<sup>3</sup> Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland

<sup>4</sup> Centre for Engineering Biology (SynthSys), University of Edinburgh, Edinburgh, Scotland

\*Correspondence to:

Helge Paternoga (Helge.Paternoga@uni-hamburg.de)

Daniel Wilson (Daniel.Wilson@uni-hamburg.de)

#### **Table of Contents**

Supplementary Fig. 1. Source data Supplementary Fig. 2. Purification of the RNase R-30S complex Supplementary Fig. 3. Establishment of an RNase R *in vitro* degradation assay Supplementary Table 1. Northern blot probe sequences Supplementary Table 2. Primers used to create endogenously-tagged RNase R-FLAG

| a Figure 2 |         |            |         |         |
|------------|---------|------------|---------|---------|
|            | )))     |            |         |         |
|            | Input   | probe a    | probe b | probe c |
|            | J       | <b>~</b> - |         |         |
|            | probe d | probe e    | probe f | probe g |









**Supplementary Fig. 1. Source data. (a)**, Uncropped Northern blots used for Fig. 2. **(b)**, Uncropped gels used for Fig. 3. **(c)**, Uncropped gel and Northern blots used for Extended Figure 7. **(d)**, Uncropped gels, Northern and Western blots used for Supplementary Fig. 2. For the Western blot shown in panel c (top), saturated pixels are shown in red (the signal of interest is not saturated) **(e)**, Uncropped gels used for Supplementary Fig. 3.



**Supplementary Fig. 2. Purification of the RNase R-30S complex.** (a) SDS-PAGE analysis of immuno-precipitated C-terminally FLAG-tagged RNase R (plasmid-based expression) (lane 2) as compared to a pull-down from vector-only control strain (lane 1) (n=5). (b) RNA analysis of immuno-precipitated C-terminally FLAG-tagged RNase R (plasmid-based expression) (n=5). Total RNA was loaded as a control. (c) Western blot analysis of wildtype strain (-), endogenously tagged RNase R-FLAG and a plasmid-borne RNase R-FLAG (expressed in  $\Delta rnr$  cells). The FLAG-tagged species were detected by HRP-coupled anti-FLAG Antibody (upper panel). The inputs were stained by Ponceau S as loading control (lower panel). The bands corresponding to RNase R-FLAG are indicated with an asterisk (two technical replicates were performed). (d) TBE-Urea polyacrylamide gel electrophoresis (PAGE) analysis of RNA extracted after immunoprecipitation of C-terminally FLAG-tagged RNase R, both from endogenous and plasmid-based expression. Equal amounts of RNA were loaded. Lower panel: Northern Blot analysis of the same RNA samples with probe b highlights the same truncation pattern of 16S rRNA (two technical replicates were performed). For gel source data, see Supplementary Fig. 1.



**Supplementary Fig. 3. Establishment of an RNase R** *in vitro* degradation assay. (a) Multiple sequence alignment of RNase R from *B. subtilis, E. coli* and *S. aureus.* The conserved active center of the enzyme is underlined. In *B. subtilis,* D260, D267 and D268 are predicted by homology to coordinate a Mg<sup>2+</sup> ion with two waters (Chu *et al.* "Structural Insights into RNA Unwinding and Degradation by RNase R." Nucleic Acids Research 45, no. 20 (November 16, 2017): 12015–24. https://doi.org/10.1093/nar/gkx880). (b) SDS-PAGE analysis of recombinantly expressed and purified wildtype RNase R (Rnr<sup>wt</sup>) and catalytically inactive RNase R-D260N mutant (Rnr<sup>D260N</sup>) (n=3). (c) *In vitro* degradation assay using linear RNA as a substrate. RNase R was mixed with the substrate and incubated at 37°C for 0-60 mins, after which the RNA was analyzed on 6 % denaturing TBE-Urea gels (n=2). (d-f) Inputs for the assays in Figure 3 c, d, f, respectively (n=2). (g) *In vitro* degradation assay of isolated 30S ribosomal subunits, catalyzed by recombinantly purified RNase R wt and catalytic mutant in a buffer containing 15 mM MgCl<sub>2</sub>. RNase R was mixed with the substrate and incubated at 37°C for the above indicated times after which the RNA was extracted and analyzed on 6 % denaturing TBE-Urea gel source data, see Supplementary Fig. 1.

| Probe            | Boundaries  | Sequence                       |
|------------------|-------------|--------------------------------|
| а                | 22 - 41     | CCAGCGTTCGTCCTGAGCCA           |
| b                | 652 - 670   | CTGCACTCAAGTTCCCCAG            |
| С                | 1372 - 1391 | GAACGTATTCACCGCGGCAT           |
| d                | 1392 - 1409 | GGTGTGTACAAGGCCCGG             |
| е                | 1412 - 1432 | CAAACTCTCGTGGTGTGACGG          |
| f                | 1422 - 1441 | CGGGTGTTACAAACTCTCGT           |
| g                | 1527 - 1549 | GGAGGTGATCCAGCCGCACCTTC        |
| 3' pre           | +1 - +30    | CCAAGGTCTTATATTCCGTAAAATATCCTT |
| (1:1<br>mixture) | +43 - +57   | CTAAACAAGACAGGGAACGTTC         |

### Supplementary Table 1 Northern blot probe sequences

## Supplementary Table 2 Primers used to create endogenously-tagged RNase R-FLAG

| iPCR_GS5-   | gattataaagatgatgatgataaaTAAGCCTCCTAAATTCACTTTAGATAAAAATTTAGGAG |
|-------------|----------------------------------------------------------------|
| FLAG-CAT_fw |                                                                |
| iPCR_GS5-   | gcttcctgagccgcttcctgagccGgatccCTTGTCTGCTTTCTTCATTAGAATCAATCC   |
| FLAG-CAT_rv |                                                                |
| over1_fw    | CAACGGAAAGAATGACATATTCAGATGTG                                  |
| over1_rv    | gcttcctgagccggatccTTTCTTCTTTTTCCGTTTCTGTTTCG                   |
| over2_fw    | ggatccggctcaggaagc                                             |
| over2_rv    | TTATAAAAGCCAGTCATTAGGCCTATC                                    |
| over3_fw    | GATAGGCCTAATGACTGGCTTTTATAAcagctcaaccagcaaataggg               |
| over3_rv    | GCTGGGATTGAAATGGAAGTACG                                        |
| COL_fw      | GACAATTAACAGTCAGGGACAGG                                        |
| COL_rv      | ATTCAGCTTCATTATTCATCCCTCC                                      |