Supplementary Information

Molecular and clinical analyses of PHF6 mutant myeloid neoplasia provide their pathogenesis and therapeutic targeting

Yasuo Kubota¹, Xiaorong Gu¹, Laila Terkawi¹, Juraj Bodo², Bartlomiej P. Przychodzen¹, Hussein Awada¹, Nakisha Williams¹, Carmelo Gurnari^{1,3}, Naomi Kawashima¹, Mai Aly¹, Arda Durmaz¹, Minako Mori¹, Ben Ponvilawan¹, Tarig Kewan¹, Waled Bahaj¹, Manja Meggendorfer⁴, Babal K. Jha^{1,5}, Valeria Visconte¹, Heesun J Rogers², Torsten Haferlach⁴, Jaroslaw P. Maciejewski¹

- 1. Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- 2.Department of Laboratory Medicine, Cleveland Clinic, Cleveland Clinic, Cleveland, OH, USA.
- 3. Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- 4.MLL Munich Leukemia Laboratory, Munich, Germany.
- 5. Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute (LRI) Cleveland Clinic, Cleveland, OH, USA.

Inventory of Supplementary Information

Supplementary Figure 1: Lollipop plot illustrating PHF6 mutational data in this study group. Supplementary Figure 2: The frequencies of PHF6 mutations in MNs and their subtypes. Supplementary Figure 3: PHF6 status in femal AML cases. Supplementary Figure 4: Comparisons of frequencies of mutations in nonescpaing genes based on X chromosomal status. Supplementary Figure 5: Comparisons of frequencies of mutations with or without RUNX1 mutations based on each MN disease. Supplementary Figure 6: Significant genetics correlations by each sex. Supplementary Figure 7: Survival analysis for AML cases with or without PHF6 mutations by each cohort. Supplementary Figure 8: Event free survival for AML cases with or withous PHF6 mutations in the CCF and MLL cohort. Supplementary Figure 9: Survival analysis for AML cases by disease risk. Supplementary Figure 10: Survival analysis for AML cases with double mutations (PHF6 and RUNX1) by each cohort. Supplementary Figure 11: Event free survival for AML cases with double mutations (PHF6 and RUNX1) in the CCF and MLL cohort. Supplementary Figure 12: SDS-PAGE for IP-WB. Supplementary Figure 13: Gene expression analysis in RUNX1-mutated AML cases. Supplementary Figure 14: The fraction of truncating mutations in PHF6- and/or RUNX1-mutated AML cases. Supplementary Figure 15: Western blots of PHF6 IP. Supplementary Figure 16: Western blots of endogenous PHF6 IP. Supplementary Figure 17: Lollipop plot showing RUNX1 stopgain mutations in male AML cases. Supplementary Figure 18: Comparisons between PHF6- and/or RUNX1-mutated AML cases. Supplementary Table 1: Test statistics for mutations in genes on X chromosome. Supplementary Table 2: Upregulated pathways in PHF6-mutated AML. Supplementary Table 3: Downregulated pathways in RUNX1-mutated AML. Supplementary Table 4: FCM results in patients' with PHF6 mutations. Supplementary Table 5: The number of cases by each cohort.

Supplementary Table 6: Targeted panel genes.

Supplementary Figure 1

Lollipop plot illustrating *PHF6* mutational data in this study group.

(A) Disease types and (B) sexes are shown by colors as indicated. The numbers in circles indicate the number of cases.

Supplementary Figure 2

(A) Comparisons of frequencies of *PHF6* mutations based on MN disease in each sex. Each dot in the upper panel represents the cell fraction with *PHF6* mutation.

(B) Comparisons of frequencies of *PHF6* mutations based on each MN subtype. Each dot in the upper panel represents the cell fraction with *PHF6* mutation.

Heterozygous mutations (n=31) Hemizygous mutations (n=4)

Homozygous mutations (n=1)

Heterozygous deletions (n=58)

Supplementary Figure 3

PHF6 status in female AML cases.

Supplementary Figure 4

Comparisons of frequencies of mutations in nonescaping genes based on X chromosomal status.

Supplementary Figure 5

Comparisons of frequencies of *PHF6* mutations with or without *RUNX1* mutations based on each MN disease. *p* values are from the two-sided Fisher's exact test and considered statistically significant at p < 0.05.

Supplementary Figure

Bubble plot showcasing statistically significant (FDR < 0.05) positive (red) and negative (blue) correlations across gene group in all (A; n=6887), male (B; n=3715), and female (C; n=3172) cases.

Correlations across gene groups were assessed by Fisher's exact test and corrected by employing the Benjamini-Hochberg method.

Survival analysis for AML cases with or without PHF6 mutations by each cohort.

Kaplan-Meier survival curves of overall survival for AML in CCF (A), MLL (B), open data (C), and CCF plus open data (D) cohort. For survival analysis, survival was estimated using the Kaplan-Meier method and the log-rank test was used to assess differences between groups.

Supplementary Figure 8

Event free survival for AML cases with or without *PHF6* mutations in the CCF and MLL cohort. Kaplan-Meier survival curves of event free survival for AML in all (A), male (B), and female (C) cases. For survival analysis, survival was estimated using the Kaplan-Meier method and the log-rank test was used to assess differences between groups.

Survival analysis for AML cases by disease risk.

Kaplan-Meier survival curves of overall survival for adverse risk AML in all cases (A), male cases (B), female cases (C), favorable risk in all cases (D), male cases (E), female cases (F), intermediate risk in all cases (G), male cases (H), and female cases(I). For survival analysis, survival was estimated using the Kaplan-Meier method and the log-rank test was used to assess differences between groups.

Supplementary Figure 10

Survival analysis for AML cases with double mutations (PHF6 and RUNX1) by each cohort.

Kaplan-Meier survival curves of overall survival for AML in CCF (A), MLL (B), and open data (C) cohort. For survival analysis, survival was estimated using the Kaplan-Meier method and the log-rank test was used to assess differences between groups.

Supplementary Figure 11

Event free survival for AML cases with double mutations (*PHF6* and *RUNX1*) in the CCF and MLL cohort. Kaplan-Meier survival curves of event free survival for female AML cases with double mutations (*PHF6* and *RUNX1*), single mutations, and negative cases in all (A), male (B), and female (C) cases.

For survival analysis, survival was estimated using the Kaplan-Meier method and the log-rank test was used to assess differences between groups.

(A) 1D SDS-PAGE for IP-WB in Figure 6C. (B)1D SDS-PAGE for IP-WB in Figure 6D. Proteins were visualized with Coomassie Blue staining. PHF6 / Phf6 and Runx1 IP clearly showed enrichments of selected proteins from the input.

- (A) Volcano plot comparing significant expression difference between *RUNX1*-mutated (n=17) and wild-type (n=115) AML. Lymphoid and myeloid genes with differentially expression are colored in orange and blue, respectively. For differential expression gene analysis, we used the Bayesian method by the linear models for microarray expression data (limma) package version 3.50.0 in R software.
- (B) GSEA plot showing changes in lymphoid and myeloid signature genes between *RUNX1*-mutated and wild-type AML. To perform the enrichment of difference between *RUNX1*-mutated and wild-type AML, we used the Gene Set Enrichment (GSEA) software (v.4.3.2).

Supplementary Figure 14

The fraction of truncating and non-truncating mutations in *PHF6*-mutated, *RUNX1*-mutated, and bothmutated samples. Samples with mutations in both genes have at least one truncating mutation in either *PHF6* or *RUNX1*.

Supplementary Figure 15

Western blots of PHF6 IP of nuclear protein extracts in AML samples with PHF6 mutations or wild-types. PHF6 bands are indicated by arrow in red color. The Western blot was done once in THP-1 and K562 cells.

Supplementary Figure 16

Western blots of endogenous PHF6 IP of nuclear protein extracts in AML samples with wild-type *RUNX1* or Runt domain mutations. 5% input, IgG control IP, and PHF6 IP product were run side by side. The same membrane was probed with an anti-rabbit monoclonal antibody to PHF6 and an antimouse monoclonal antibody to RUNX1. PHF6 and RUNX1 bands are indicated by arrows in red color. The other RUNX1 isoforms bands are indicated by arrows in blue color. The Western blot was done once in these AML cells.

Lollipop plot showing *RUNX1* stopgain mutations in male AML samples with double (*RUNX1* and *PHF6*) mutations, or only *RUNX1* mutations. Mutational groups are shown by colors as indicated. The numbers in circles indicate the number of cases.

Lollipop plot of *PHF6* mutations in case with *PHF6* and *RUNX1* mutations (A) and only *PHF6* mutations (B). Lollipop plot of *RUNX1* mutations in cases with *PHF6* and *RUNX1* mutations (C) and only *RUNX1* mutations (D). The cell fraction with mutated *PHF6* or *RUNX1* allele in cases with *PHF6* and *RUNX1* mutations (E) and *PHF6* or *RUNX1* mutations (F).

Gene	Odds ratio	95% CI	<i>p</i> value	FDR
PHF6	3.02	1.93 - 4.72	2.43 × 10 ⁻⁷	2.19 × 10 ⁻⁶
UBA1*	14.0	1.20 - 163	3.29 × 10 ⁻²	7.40 × 10 ⁻²
ZRSR2	4.31	2.18 - 8.52	2.70 × 10 ⁻⁶	1.22 × 10⁻⁵
STAG2	1.79	1.32 - 2.43	1.57 × 10 ⁻⁴	4.71 × 10 ⁻⁴
BCORL1	1.76	0.537 - 5.76	0.409	0.525
BCOR	1.29	0.957 - 1.74	0.100	0.180
ATRX	1.13	0.252 - 5.07	1	1
PIGA	1.04	0.834 - 1.30	0.780	0.877
KDM6A	0.592	0.292 - 1.20	0.157	0.236

Supplementary Table 1: Test statistics for mutations in genes on X chromosome

*To avoid dividing zero, pseudo count of 1 is added to each cell in 2x2 table.

Supplementary Table 2: Upregulated pathways in <i>PHF6</i> -mutated AML

Pathway	Size	N	IES	NOM p-val	FDR q-val	FWER p-val	Rank at max Leading edge	
VALK_AML_CLUSTER_1	29	0.67682016	2.0028014	0		1 0.49	5 2216 tags=55%, list=12%, signal=63%	,
BOGNI_TREATMENT_RELATED_MYELOID_LEUKEMIA_DN	33	0.5629568	1.8665005	0.012048192		1 0.81	5 5363 tags=64%, list=30%, signal=90%	,
REACTOME_RUNX2_REGULATES_BONE_DEVELOPMENT	29	0.5176277	1.8553703	0.0072202166		1 0.83	.4 1623 tags=41%, list=9%, signal=45%	
HADDAD_B_LYMPHOCYTE_PROGENITOR	274	0.46060374	1.8315852	0.014836796		1 0.86	.6 4305 tags=45%, list=24%, signal=58%	,
CORONEL_RFX7_DIRECT_TARGETS_UP	43	0.4852861	1.8039889	0.0027027028		1 0.90	2 2722 tags=40%, list=15%, signal=46%	,
WP_HEMATOPOIETIC_STEM_CELL_GENE_REGULATION_BY_GABP_ALPHABETA_COMPLEX	21	0.60628396	1.7770096	0.014150944		1 0.92	.3 3229 tags=52%, list=18%, signal=64%	
FARMER_BREAST_CANCER_CLUSTER_5	19	0.6610508	1.7377043	0.016032064		1 0.95	.8 3559 tags=47%, list=20%, signal=59%	
KEGG_BASAL_TRANSCRIPTION_FACTORS	32	0.53525555	1.7120938	0.020703934		1 0.9	7 2322 tags=38%, list=13%, signal=43%	
DAZARD_UV_RESPONSE_CLUSTER_G6	142	0.4376627	1.7111005	0.027842227		1 0.9	4775 tags=49%, list=27%, signal=66%	
DAZARD_RESPONSE_TO_UV_NHEK_DN	294	0.41728464	1.655613	0.03211009		1 0.98	.8 4695 tags=48%, list=26%, signal=64%	
BIOCARTA_RAC1_PATHWAY	20	0.496195	1.6541853	0.021686748		1 0.9	.9 1795 tags=35%, list=10%, signal=39%	,
YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_2	45	0.42334962	1.652738	0.016216217		1 0.9	9 2908 tags=38%, list=16%, signal=45%	
MEISSNER_NPC_ICP_WITH_H3K4ME3	19	0.5282084	1.6264662	0.016528925		1 0.99	1 3779 tags=53%, list=21%, signal=67%	
REACTOME_RUNX2_REGULATES_OSTEOBLAST_DIFFERENTIATION	23	0.47860286	1.6218047	0.026936026		1 0.99	3 1623 tags=39%, list=9%, signal=43%	
YUAN_ZNF143_PARTNERS	21	0.58038586	1.6008521	0.04863813		1 0.99	5 5322 tags=52%, list=30%, signal=74%	
STAMBOLSKY_TARGETS_OF_MUTATED_TP53_UP	42	0.39657044	1.5962424	0.012594459		1 0.99	5 3159 tags=38%, list=18%, signal=46%	
REACTOME_CONSTITUTIVE_SIGNALING_BY_EGFRVIII	15	0.5440623	1.585723	0.045212764		1 0.99	5 1143 tags=33%, list=6%, signal=36%	
LINDGREN_BLADDER_CANCER_CLUSTER_1_UP	116	0.3728909	1.5791982	0.014251782		1 0.99	6 4023 tags=40%, list=22%, signal=51%	
BIOCARTA_CTCF_PATHWAY	24	0.50041837	1.5755477	0.046753246		1 0.99	4076 tags=58%, list=23%, signal=75%	
BYSTROEM_CORRELATED_WITH_IL5_DN	60	0.44670147	1.5701308	0.033783782		1 0.99	7 3699 tags=45%, list=21%, signal=56%	
OSMAN_BLADDER_CANCER_DN	420	0.37290838	1.5638547	0.03908046		1 0.99	5067 tags=46%, list=28%, signal=62%	
FIGUEROA_AML_METHYLATION_CLUSTER_2_UP	46	0.40709114	1.5517147	0.031073445		1 0.99	7 3579 tags=39%, list=20%, signal=49%	
PID_SMAD2_3NUCLEAR_PATHWAY	76	0.37118644	1.5437632	0.025568182		1 0.99	7 5020 tags=46%, list=28%, signal=64%	
PID_IL2_PI3K_PATHWAY	33	0.4148004	1.532098	0.044619422		1 0.99	8 4076 tags=42%, list=23%, signal=55%	
GENTILE_UV_LOW_DOSE_UP	25	0.46566504	1.5169954	0.048231512		1 0.99	9 4218 tags=44%, list=23%, signal=57%	
GAL_LEUKEMIC_STEM_CELL_UP	117	0.34872118	1.5157202	0.015337423		1 0.99	9 3617 tags=33%, list=20%, signal=41%	
PID_AR_TF_PATHWAY	46	0.40596524	1.5073072	0.045783132		1 0.99	9 2561 tags=33%, list=14%, signal=38%	
BILD_CTNNB1_ONCOGENIC_SIGNATURE	74	0.3902668	1.4852865	0.031400967		1 0.99	9 3438 tags=35%, list=19%, signal=43%	
REACTOME_NR1H3_NR1H2_REGULATE_GENE_EXPRESSION_LINKED_TO_CHOLESTEROL_TRANSPORT_AND_EFFLUX	33	0.43678012	1.4816378	0.04477612		1 0.99	9 4339 tags=42%, list=24%, signal=56%	
BROWNE_HCMV_INFECTION_6HR_DN	157	0.3272081	1.4804101	0.04731861		1 0.99	9 4396 tags=42%, list=24%, signal=55%	
LEE_AGING_NEOCORTEX_DN	51	0.34871122	1.4739994	0.022653721		1 0.99	9 2178 tags=27%, list=12%, signal=31%	2
MARTORIATI_MDM4_TARGETS_FETAL_LIVER_DN	479	0.31409332	1.4693968	0.043062203		1 0.99	9 4417 tags=37%, list=25%, signal=47%	,
HOWLIN_CITED1_TARGETS_1_UP	33	0.3844786	1.459304	0.04373178		1 0.99	9 2861 tags=27%, list=16%, signal=32%	
SHIPP_DLBCL_CURED_VS_FATAL_UP	29	0.38754874	1.448318	0.04661017		1 0.99	9 2415 tags=31%, list=13%, signal=36%	
KONDO_EZH2_TARGETS	192	0.26440793	1.3345587	0.04477612		1	1 3033 tags=26%, list=17%, signal=30%	

Supplementary Table 3: Downregulated pathways in RUNX1-mutated AML

Pathway	Size ES		NES	NOM p-val	FDR q-val	FWER p-val	Rank at max Leading edge
BIOCARTA_MITOCHONDRIA_PATHWAY	19	-0.7161914	-2.039181	0	0.25681373	0.173	1719 tags=53%, list=10%, signal=58%
REACTOME_GLYCOSPHINGOLIPID_METABOLISM	39	-0.60526234	-1.8162571	0.0033955858	1	0.872	743 tags=31%, list=4%, signal=32%
WP_NANOMATERIAL_INDUCED_APOPTOSIS	20	-0.6128473	-1.7895322	0.0055555557	1	0.916	2946 tags=45%, list=16%, signal=54%
WAGNER_AP02_SENSITIVITY	18	-0.6235822	-1.7509547	0.008695652	1	0.965	1263 tags=33%, list=7%, signal=36%
WP_APOPTOSIS_MODULATION_BY_HSP70	19	-0.6269025	-1.7266896	0.013257576	1	0.981	2946 tags=47%, list=16%, signal=57%
KEGG_GLYCOSAMINOGLYCAN_DEGRADATION	18	-0.6867038	-1.6856623	0.010638298	1	0.994	2984 tags=56%, list=17%, signal=67%
WP_GLYCOSAMINOGLYCAN_DEGRADATION	15	-0.69961977	-1.6617068	0.03068592	1	0.997	2984 tags=60%, list=17%, signal=72%
ROYLANCE_BREAST_CANCER_16Q_COPY_NUMBER_DN	19	-0.5919067	-1.6546073	0.029513888	1	0.997	1730 tags=53%, list=10%, signal=58%
WP_METHIONINE_DE_NOVO_AND_SALVAGE_PATHWAY	19	-0.597519	-1.6521629	0.021032505	1	0.997	3757 tags=58%, list=21%, signal=73%
KEGG_OTHER_GLYCAN_DEGRADATION	15	-0.6779646	-1.6257278	0.04708098	1	0.999	1282 tags=53%, list=7%, signal=57%
WANG_CLASSIC_ADIPOGENIC_TARGETS_OF_PPARG	24	-0.5626743	-1.5848125	0.016313214	1	1	5374 tags=71%, list=30%, signal=101%
REACTOME_HYALURONAN_METABOLISM	16	-0.6030546	-1.5688671	0.049099836	1	1	323 tags=31%, list=2%, signal=32%
REACTOME_BBSOME_MEDIATED_CARGO_TARGETING_TO_CILIUM	23	-0.5820366	-1.5460275	0.04518664	1	1	5741 tags=65%, list=32%, signal=96%
REACTOME_BLOOD_GROUP_SYSTEMS_BIOSYNTHESIS	17	-0.5470982	-1.5379107	0.024853801	1	1	1263 tags=29%, list=7%, signal=32%
ZHAN_MULTIPLE_MYELOMA_CD1_AND_CD2_DN	54	-0.3959537	-1.5377092	0.02247191	1	1	3365 tags=39%, list=19%, signal=48%
MOREIRA_RESPONSE_TO_TSA_UP	28	-0.47837305	-1.5352522	0.039049234	1	1	5186 tags=54%, list=29%, signal=75%
BILANGES_SERUM_SENSITIVE_VIA_TSC1	15	-0.5335756	-1.5202199	0.036363635	1	1	2823 tags=53%, list=16%, signal=63%
KEGG_AMYOTROPHIC_LATERAL_SCLEROSIS_ALS	41	-0.44808972	-1.5107236	0.036585364	1	1	3095 tags=37%, list=17%, signal=44%
BOYAULT_LIVER_CANCER_SUBCLASS_G123_DN	42	-0.440007	-1.5103427	0.030165913	1	1	3353 tags=38%, list=19%, signal=47%
REACTOME_KERATAN_SULFATE_KERATIN_METABOLISM	27	-0.47758374	-1.5037926	0.028753994	1	1	2984 tags=41%, list=17%, signal=49%
RUAN_RESPONSE_TO_TROGLITAZONE_UP	20	-0.49625146	-1.4982431	0.036624204	1	1	2270 tags=40%, list=13%, signal=46%
YEGNASUBRAMANIAN_PROSTATE_CANCER	93	-0.40100428	-1.4921252	0.04858934	1	1	3293 tags=32%, list=18%, signal=39%
WP_SARSCOV2_MITOCHONDRIAL_CHRONIC_OXIDATIVE_STRESS_AND_ENDOTHELIAL_DYSFUNCTION	25	-0.46568382	-1.4850926	0.04553734	1	1	5151 tags=64%, list=29%, signal=90%
REACTOME_PHASE_I_FUNCTIONALIZATION_OF_COMPOUNDS	65	-0.4158694	-1.4746938	0.030259365	1	1	3674 tags=40%, list=20%, signal=50%
WP_PARKINSONS_DISEASE_PATHWAY	35	-0.42404723	-1.4475983	0.042955328	1	1	2935 tags=37%, list=16%, signal=44%
ROSS_AML_WITH_PML_RARA_FUSION	79	-0.58043605	-1.4379978	0.044262294	1	1	3229 tags=48%, list=18%, signal=58%
REACTOME_BIOLOGICAL_OXIDATIONS	139	-0.3832166	-1.4340707	0.0474732	1	1	3757 tags=37%, list=21%, signal=47%

Supplementary Table 4: FCM result in patients' with PHF6 mutation

Cohort ID	Age Group	Sex	Dx	Subtype	Karyotype	cDNA	AA	VAF	TdT	GCSAM	LY9
PHF6_0057	70-80	М	AML	sAML	Trisomy 8	c.953C>G	p.S318X	0.89	Neg	Pos (dim)	Pos
PHF6_0060	50-60	Μ	AML	pAML	Other	c.862G>A	p.A288T	1	Pos	Neg	Neg
PHF6_0370	70-80	Μ	AML	sAML	Trisomy 8	c.908A>G	p.Y303C	0.8333	Pos	Neg	Neg
PHF6_0692	60-70	Μ	AML	sAML	Normal	c.385C>T	p.R129X	0.9256	Neg	Pos (dim)	Neg
PHF6_0992	50-60	F	AML	sAML	DelX	c.820C>T	p.R274X	1	Neg	Neg	Pos
PHF6_1085	60-70	Μ	AML	pAML	Normal	c.712_714delGCCinsTGA	p.A238X	0.933	Neg	Neg	Neg

Supplementary Table 5 The number of cases by each cohort

Cohort	Diseases	Number of cases
	All	1465
	AML	1039
CCF	MDS	208
	MDS/MPN	42
	MPN	176
	All	5109
	AML	4007
MLL	MDS	706
	MDS/MPN	335
	MPN	61
	All	618
	AML	589
BeatAML	MDS	17
	MDS/MPN	9
	MPN	3
German–Austrian AML Study	AML	1251

Supplementary Table 6 Targeted panel genes

Gene	Transcript	Exon
ABI 1	NM 005157.5	4-6
		1 010
ASXLI	INM_15338.5	10-13
BCOR	NM 17745.5	2-15
BCORL1	NM_0219464	1-12
DDAF		45
BRAF	NM_004333.4	15
CALR	NM 004343.3	9
CBI	NM_005188.3	8-9
CDKNAA	NIM_000077.4	10
CDKN2A	NW_000077.4	1-2
CDKN2A	NM_058195.3	1
CEBPA	NM 004364 4	1
COEAD	NM 000760 2	
	NIVI_000760.3	14-17
CUX1	NM_001202543.1	15-24
CUX1	NM 001913.4	1-23
	NIM_016222.3	1_17
	NNI_010222.3	1-17
DINIMI 3A	NM_022552.4	2-23
EED	NM 003797.4	1-12
FTNK1	NM_018638.4	3
	NIM_001007.4	10
EIVO	NIVI_001987.4	1-8
EZH2	NM_004456.4	2-20
FBXW7	NM 0183154	7-11
	NM 004110.0	14 17 10 00
	NIVI_004119.2	14-17, 19-20
GATA1	NM_002049.3	2, 4
GATA2	NM 032638.4	2-6
GNAS	NM_000516.5	R_11
	NM 005000 0	4
IDH1	NM_005896.3	4
IDH2	NM 002168.3	4
IK7F1	NM_006060 5	2-3 5-7
	NM_000000.0	10,10
JAK2	NM_004972.3	12-16
JAK3	NM_000215.3	11-18
KDM6A	NM 021140 3	1-29
	NIM_000000.0	0 0 11 10 17
	INIVI_000222.2	2, 0-11, 13, 17
KMT2A	NM_005933.3	1-36
KRAS	NM 004985.4	2-4
	NIM_001244595_1	2.11
	NNI_001244505.1	2-11
MPL	NM_005373.2	10-11
MYD88	NM 002468.4	5
NF1	NM_000267.3	1-57
		1.07
INF I	NM_001042492.2	31
NOTCH1	NM_17617.4	26, 27, 34
NPM1	NM 002520.6	8-11
NDAS	NIM_002524_4	04
NHA5	NN_002324.4	2-4
PAX5	NM_016734.2	1-10
PHF6	NM 001015877.1	2-10
PIGA	NM_002641.3	2-6
		16
PPMID	INIVI_003620.3	1-0
PRPF8	NM_006445.3	2-43
PTEN	NM 000314.6	1-9
PTPN11	NM_002834 3	3-4 12-13
		0 14
RAD21	INIVI_006265.2	2-14
RIT1	NM_006912.5	5
RUNX1	NM 001754.4	2-9
RUNY1	NM 001100607 1	5
HUNAT	NIVI_001122007.1	5
SETBP1	NM_015559.2	4
SF3B1	NM 012433.3	13-16
SH2B3	NM 005475 2	2
SMC1A	NM 000000 0	1 05
SIVICIA	INIVI_000306.3	1-20
SMC3	NM_005445.3	1-29
SRSF2	NM 003016.4	1-2
STAG2	NM 00104070 0	3-35
01/102	NIVI_001042/9.2	0-00
STAT3	NM_003150.3	20-21
STAT5B	NM 012448.3	16-18
SU712	NM 015355 3	1-16
7570	NM 004407000 0	0.14
1612	INIM_00112/208.2	3-11
TP53	NM_000546.5	2-11
U2AF1	NM 006758 2	2.6
1/T1	NM 000270 4	-, 0
VV I I	INIVI_000378.4	1-9
ZRSR2	NM 005089.3	1-11