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Supplementary Note 1 - Additional Results
SUDO is a reliable proxy for model performance on Multi-Domain Sentiment dataset
We implemented SUDO on the Multi-Domain Sentiment dataset. This allowed us to determine the effectiveness of SUDO on a
dataset with a known distribution shift and which contains ground-truth labels.

We trained an NLP model to classify the sentiment of book reviews (source domain) and deployed it on reviews of electronic
devices (target domain). Since the reviews from these two domains exhibit some differences (e.g., in content and vocabulary),
they follow a different data distribution. In Supplementary Fig. 1a, we present the distribution of the probability values
generated by the NLP model for data points from the negative and positive class, colour-coded in blue and green, respectively.
Such colour-coding is only possible in this setting because of the presence of ground-truth labels, which we will not have in our
target use-case and an assumption which we will discard in later sections.

We found that deciles exhibit class contamination, each containing data points from multiple classes. For example, for
AI-based probabilities, p ≈ 0, the majority of the data points belonged to the negative class (blue) yet there still existed some
data points which belonged to the positive class (green).

We present the area under the receiver operating characteristic curve (AUC) achieved by a pair of classifiers (in the distinct
pseudo-label settings) per decile when evaluated on a fixed held-out set (see Supplementary Fig. 1c). SUDO suggested that
data points with p → 0 are more likely to stem from the negative class than from the positive class (Supplementary Fig. 1c).
This can be seen by ↑ AUC achieved by a classifier trained on the former (AUC ≈ 0.68) compared to one trained on the latter
(AUC ≈ 0.50). The reverse argument can be made for data points with p → 1. At this point, it is worthwhile to mention the
apparent asymmetry when comparing both ends of the probability spectrum. Specifically, the performance of a classifier trained
on data points with p ≈ 1 and pseudo-labelled as positive is worse (AUC ≈ 0.60) than one trained on data points with p ≈ 0
and pseudo-labelled as negative (AUC ≈ 0.68). This is despite the fact that these probability deciles exhibit relatively little
contamination from the opposite class. One hypothesis for this is class overlap; namely, data points (p ≈ 1) pseudo-labelled
as positive (and which in fact are positive) might share some similarities and thus overlap with existing labelled data points
from the negative class. Therefore, a classifier that attempts to distinguish between the two learns an unfavourable decision
boundary, thus leading to the lower performance. Such an example underscores the potential limitations associated with strictly
pseudo-labelling data points with a single class. Our pseudo-label discrepancy avoids such limitations by explicitly accounting
for pseudo-labels from all possible classes (i.e., negative and positive).

We also present the per-decile pseudo-label discrepancy: the difference in performance between classifiers trained in two
settings with different pseudo-label assignments (Supplementary Fig. 1e). We colour-code the bars based on the setting in
which higher classifier performance was achieved. The main takeaway here is that the pseudo-label discrepancy confirms
typical expectations about the approximate distribution of classes along the probability spectrum. Data points where p → 0 are
more likely to belong to the negative class than positive class. The opposite holds true where p → 1. Note that the pseudo-label
discrepancy, more broadly, does not necessitate the presence of ground-truth labels for data points in the wild (our target data
set of interest). Its purpose, in this context, is to help better determine which subset of model predictions are unreliable. For
example, based on Supplementary Fig. 1e, we can choose a cutoff value of |D|= 0.05 for the pseudo-label discrepancy, thereby
identifying data points in the interval 0.30 < p < 0.80 as unreliable: data points whose assigned labels are likely to be incorrect.

Having shown that pseudo-label discrepancy aligns with expectations, we also quantified its relationship with the accuracy
of AI-based predictions. We define accuracy as is done in the machine learning calibration literature?, reflecting the proportion
of data points per decile which belong to the positive class. The intuition is that if pseudo-label discrepancy strongly correlates
well with accuracy (see Supplementary Fig. 1g, |ρ|= 0.98), then it can be thought of as a reliable gauge of the distribution of
classes (or equivalently class contamination) per decile. This, in turn, suggests that the pseudo-label discrepancy can be reliably
deployed on data points without ground-truth labels.
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Supplementary Figure 1. SUDO produces a reliable proxy for model performance on Multi-Domain Sentiment
dataset. An NLP model is trained to classify the sentiment of reviews about books (source domain) and deployed on reviews of
electronics (target domain). Distribution of probability values output by an (a) ordinary and (b) overly-confident NLP model.
(c) - (d) Performance of classifiers in the two pseudo-label discrepancy settings. (e) - (f) Pseudo-label discrepancy colour-coded
based on the setting with higher performance. (g) - (h) Correlation, ρ , between pseudo-label discrepancy and proportion of data
points in positive class per quantile. The high correlation indicates that the pseudo-label discrepancy metric is a reliable gauge
of the distribution of classes (which we refer to as class contamination).
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Exploring the limits of SUDO on simulated data
We implemented SUDO on simulated data in attempt to explore the limits of SUDO’s applicability. We first experimented with
multiple scenarios in which the data in the wild is varied by, for example, introducing an imbalance in the number of data points
from each class (Supplementary Fig. 2b) or introducing data points from a third-and-unseen class (Supplementary Fig. 2c). The
details of how we sampled the data can be found in the Methods section and the findings are summarized in the Results section.

Supplementary Figure 2. SUDO continues to act as a reliable proxy for model performance under various scenarios.
We implement SUDO on simulated data where the data in the wild exhibit (left column) distribution shift, (middle column)
distribution shift with an imbalance in the number of data points from each class, and (right column) distribution shift with the
presence of a third class. (a-c) Scatter plot of the data points in the training set (light shade) and in the wild (dark shade). (d-f)
Distribution of the prediction probability values of models deployed on the data in the wild, colour-coded according to the
ground-truth classes. (g-i) Correlation between the SUDO values and the proportion of positive instances in each of the
probability intervals.
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We conducted additional experiments to further probe the limits of SUDO’s applicability. In particular, we explored the
scenario in which the distribution of data points in the wild from one class remains fixed whereas the distribution of data
points from the opposite class varied. In the baseline scenario (Supplementary Fig. 3a), we previously demonstrated that
SUDO strongly correlates with the proportion of positive instances in each probability interval (ρ = −0.99). Note that the
negative direction of this relationship is expected based on how we defined SUDO (see Supplementary Figs. 2g-i for additional
evidence).

We then held fixed the distribution of the data points in the wild from class 0, and exclusively varied the mean of the
distribution of the data points in the wild from class 1 (Supplementary Figs. 3b-c). The latter distribution was shifted to overlap
with the former distribution (Supplementary Fig. 3b) and ultimately to swap its ordering (Supplementary Fig. 3c). We quantified
this change as the distance of the mean from that in the baseline scenario (Supplementary Fig. 3a). We illustrate the correlation
of SUDO with the proportion of positive instances as a function of these shifted distributions (Supplementary Fig. 3d). We
found that SUDO no longer correlates (ρ = 0) with the proportion of positive instances when data points in the wild from
opposite classes share similar features and are difficult to distinguish from one another. We also found that SUDO’s relationship
with the proportion of positive instances was inverted when the ordering of the distributions of data in the wild differs from that
of training data. For example, ρ ≈ 0.65 at a distribution change of 3

√
2 (Supplementary Fig. 3d). Based on how we defined

SUDO, this finding suggests that SUDO would erroneously indicate that the majority of data points in a probability interval
belonged to class 0 when in reality they belonged to class 1. Although this scenario may be somewhat fictitious, it helps identify
when SUDO should not be depended on.

Supplementary Figure 3. SUDO can sometimes fail to act as a reliable proxy for model performance. We implement
SUDO on simulated data where we hold fixed the distribution of data in the wild from class 0, and vary the distribution of data
from the class 1. (a-c) Scatter plot of the data points in the training set (light shade) and in the wild (dark shade). (d)
Correlation between the SUDO values and the proportion of positive instances as a function of the change in the mean of the
distribution of data points from class 1. We show that extreme changes in that distribution can disrupt the reliability of SUDO
as a proxy for model performance.
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SUDO is insensitive to various hyperparameters
Here, we explore the sensitivity of SUDO to various hyperparameters. We implemented SUDO on the Flatiron Health ECOG
PS dataset (without ground-truth annotations) having reduced the number of data points sampled from each probability
interval (200 → 50, Supplementary Fig. 4b), and having changed the classifier used to distinguish between pseudo-labelled and
ground-truth labelled data points (Fig. 4a - logistic regression vs. Fig. 4c - random forest). We show that these changes have a
minimal effect on the correlation of SUDO with the proportion of positive instances in each probability interval.

Supplementary Figure 4. SUDO is insensitive to various hyperparameters. (a-c) SUDO values on the Flatiron Health
ECOG PS dataset with ground-truth annotations (a) having sampled 200 data points from each probability interval, (b) having
sampled 50 data points from each probability interval, and (c) having used a different classifier to distinguish between
pseudo-labelled and ground-truth labelled data points. (d-e) Correlation between the SUDO values and the proportion of the
positive instances in each probability interval.
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SUDO is agnostic to the metric used to evaluate classifiers
We claimed that SUDO works well with almost any metric used to evaluate the classifiers. Although we predominantly
presented results for SUDOAUC in the main manuscript, we show that SUDOPrecision and SUDOACC , where we used classifier
precision and accuracy as the evaluation metrics, correlate equally well to the proportion of positive instances in each probability
interval.

Supplementary Figure 5. SUDO is agnostic to the metric used to evaluate classifiers. Correlation between SUDO values
and the proportion of positive instances in each probability interval on the Stanford DDI dataset. Results are shown for the (left
column) DeepDerm and (right column) HAM10000 models. SUDO values are based on the (a-b) precision and the (c-d)
accuracy of the classifiers.
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