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Supplemental Information
S1 Hybrid discrete-continuum multiscale model
The mathematical model here is an extension of a published multi-scale model of cancer metabolism1–4.
Figure S1A visualizes the model, which simulates a two-dimensional slice (panel A) through a tumor via
a coupled cellular automata and partial differential equation model. Snapshots (left-to-right) of the tumor
spatial map, phenotypes, vascular renewal probabilities, T-cells, diffusible molecules (oxygen, glucose, acid),
PD-L1 and immune susceptibility. The model prescribes the behavior of cells interacting with neighbors and
environmental factors (figure S1B), the rules governing internal tumor cell decisions (figure S1C), the range
of phenotype space (acid resistance, glycolysis, and PD-L1 in figure S1D), and the rules governing T-cell
internal decision (figure S1E). Parameterization is shown below in Supplemental Table ??, where chosen
parameters are typically identical to previous publications using the non-immune metabolism model2,3,
except where parameter values are shown in brackets. A sweep is performed across the full range of the
bracketed parameters in order to determine the effect of the parameter on outcomes and test hypotheses.
New parameters developed in this manuscript (i.e. the immune module) are shown below the solid line.
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Box 2: Mathematical model description
S1.1 Baseline mathematical model
An overview of the mathematical model is shown in figure S1. The model simulates a two-
dimensional slice through a tumor via a coupled cellular automata (CA) and partial differential
equation (PDE) model. Vasculature is modeled as a set of point sources, with spacing consistent
with those measured in normal stroma2. As timescales of metabolism and cell-scale dynamics (e.g.
proliferation) vary significantly, we solve the PDEs to reach steady state between CA timesteps.
The model includes several diffusible molecules: oxygen, acid, and glucose (figure S1B, yellow
boxes). The concentration of each diffusible is modeled by the following diffusion-production-
consumption equation:

∂C
∂ t

= D∇2C+ f (x, t) (1)

where C represents the diffusible molecule concentration, D is the diffusion constant, and f (x, t)
is the molecule-specific rate of consumption/production of each particular molecule. For example,
oxygen consumption ( fO) by cells is given by Michaelis-Menten dynamics:

fO =−VO
O

O+ kO
(2)

where kO is the oxygen concentration for half-maximal oxygen consumption and VO is the maximal
oxygen consumption by cells. Glucose consumption is given by the following modified Michaelis-
Menten equation:

fG =−
(

pGAo

2
+

27 fO

10

)
G

G+ kG
(3)

where pG is the heritable trait which represents aerobic glycolysis and its resultant excessive
glucose consumption. Ao is the ATP production rate in normal cells, kG is glucose concentration
for half-maximal glucose consumption. ATP production rate is given by:

fA =−
(

2 fG +
27 fO

5

)
, (4)

and proton production rate given by:

fH = kH

(
29(pGVO + fO)

5

)
. (5)

S1.2 Phenotypic drift
Both normal and tumor cells undergo a decision process in figure S1C, involving cell cell cycle
dynamics, proliferation and phenotypic drift. Cells with low ATP efficiency or cells which are
maladapted for acidosis die. Cells take on three phenotypic traits: acid resistance (pH), glycolysis
(pG), PD-L1 expression (pP). Phenotypes may drift upon cell division as follows:

pi(t +∆t) = pi(t) · (1+∆i)
(U(−1,1)) (6)

where i ∈ {H,G,P}, representing acid-resistance, glycolysis, PD-L1 phenotypes respectively (see
Table ??). U(−1,1) represents a uniform probability distribution drawn on the interval -1 to 1 and
∆t is the timestep (2 hours). Phenotype variation rate parameters (∆i ∈ [∆G,∆H ,∆P]) are shown in
Table ??.
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S1.3 Immune recruitment model
Immune cells are recruited in proportion to the current tumor size a few days prior, N(t − τT )) at
a rate αT until the number of T-cells equals or exceeds this value. T-cells undergo a natural decay
rate if they have not encountered a tumor cell in the past βT number of days.

T (t +1) =


αT N(t − τT )−

1
βT

T (t), N(t − τT )> T (t)

T (t)− 1
βT

T (t), N(t − τT )≤ T (t)
(7)

Tumor cells have several mechanisms for immune evasion in the mathematical model: PD-L1
and acid inactivation.

S1.4 PD-L1
The probability, Pk, that a tumor cell is successfully eliminated by a T-cell is a function of the
constitutive PD-L1 expression (pP) and the bound PD-L1 (pB; see section on treatment with
anti-PD-L1 below):

Pk = 1− 10pP−pB

10pP,norm−pP,min
(8)

where pP,min and pP,norm are the maximal PD-L1 phenotype (corresponding to zero probability of
kill; see figure ??B) and normal PD-L1 phenotype, respectively. See table ?? for parameter values.

S1.5 T-cell viability in high acid
Recent results from Pilon-Thomas et. al. have suggested that acid does not affect T-cell viability
but instead impairs activation5. Low pH arrests T-cell cytokine and chemokine production (a
measure of activation) . Thus, we model probability of successful engagement of a cancer cell by
a T-cell depends on the microenvironmental pH:

Pe =
1

1+ e−σp(H−Hp)
(9)

where H is the pH value, Hp is the half-max engagement probability and σp represents the pH at
which engagement probability is half its maximum value. Secondly, exocytosis of lytic granules
is impaired in low pH6, causing increased time to kill targets in low pH. The probability that a
tumor cell successfully inactivates a T-cell due to low acid is given by:

PAI = 1− Pe∆t
de
(
1+ e−σe(H−He)

) (10)

where de represents the minimum engagement time duration, modulated by acid concentration,
H7. He is the half-max engagement time and σe is the steepness parameter, and ∆t is the length
of a single time step (2 hours).

T-cells are also assumed to undergo death at higher rates in low glucose concentrations. This
component of the model was parameterized using experimental data from ref. 8, where probability
of death after two days is fit to the following equation:

L(G) = (L0 −Li)eGLg +Li, (11)

where L0 and Li T-cell survival rate in low and high glucose concentrations, G, with steepness
parameter Lg (see figure ??E).
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S1.6 Immune susceptibility
The total immune susceptibility of a cell is the likelihood of a T-cell kill as a function of PD-L1
expression multiplied by the likelihood that a T-cell is not acid-inactivated:

S = Pk(1−PAI), (12)

S1.7 Treatment
Two treatments are considered: anti-PD-L1 and buffer therapy. Anti-PD-L1 is modelled as a
diffusible molecule (eqn. 1), with tumor cell uptake of bound PD-L1 (pB) at rate DA and natural
decay at rate γA (see Table ??). Bound PD-L1 in each tumor cell is limited to the range pB ∈ [0, pP],
where T-cell kill rate, PK , is a function of the difference between constitutively expressed and bound
PD-L1 (see figure ??B). Cell internal bound PD-L1 decays at rate γP. Buffer therapy is modeled
as a change in proton buffering coefficient, kH :

kH = 0.00025(1−B(t)), (13)

where B(t) is the time-dependent administration of buffer therapy, and the baseline value of the
buffering coefficient is kH = 0.00025 (see Table ?? and ref. 2).

S1.8 Local Neighborhoods
The model is carried out on a two-dimensional lattice where each tumor, normal, or immune cell
occupies a single lattice location, (x,y). The cell’s local neighborhood is a set of lattice locations
defined in relation to the focal cell’s location, defined as Nm (Nm = 8 for a Moore neighborhood).
When the focal cell undergoes division a daughter cell is placed in a random neighboring grid point
and the parent cell remains on the original lattice point. The cell may undergo apoptosis (death)
and is removed from the domain. After each generation cells are shuffled and iterate through in
random order in future time steps.
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Figure S1. Hybrid Discrete-Continuum Model Diagram. (A) Snapshot is shown for example simulation of the full
multi-scale hybrid cellular automata model: tumor spatial map, phenotypes, vascular renewal probability, T-cells, diffusible
molecules (oxygen, glucose, pH), tumor cell PD-L1, and immune susceptibility (see equation 12). Each snapshot has a
corresponding colorbar (right) with a marker indicating average value. (B) Model interaction network for diffusible molecules
(yellow), vasculature (light gray), normal tissue (dark gray), and variable tumor phenotypes (colors). Red lines indicate
inhibitory interactions while green lines indicated promoting interactions. (C) Decision process for each cell, with diamonds
representing decisions. Green arrows indicate that the condition is satisfied, and red that the condition is not met. (D) A map
of tumor phenotype state space on three axes. The horizontal axis is the constitutively activated glycolytic capacity (pG), and
vertical axis is the change in acid resistance (pH) from normal, with higher resistance to acidic conditions being higher on the
plot, and the final axis is constitutively expressed PD-L1 (pP). The normal metabolic phenotype is at the intersection of the
two yellow lines, with the cloud of black dots representing normal variation in phenotypes within the tumor composition (each
black dot is a single tumor cell). (E) Decision process for T-cells. T-cells are recruited in proportion to tumor size at a rate of
αT . T-cells are inactivated and removed if they remain is acidic conditions too long, or if they are inactivated by a PD-L1
positive cancer cell.
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Figure S2 Supplemental Video S1.mov Simulation of the full multi-scale hybrid cellular automata model: tumor spatial
map, phenotypes, vascular renewal probability, T-cells, diffusible molecules (oxygen, glucose, pH), tumor cell
PD-L1, and immune susceptibility (see equation 12). Each grid has corresponding colorbar (right) with marker
indicating average value. This is an example realization of “weak vasculature” (νmean = 20; pang = 0.1). Acidic
conditions in tumor core select for acid resistant and glycolytic Warburg phenotype (pink color on the Tumor
grid). Subsequently, nectrotic cells form in the tumor interior. Immune response is weak (αT = 10−3), not selecting
for PD-L1 positivity. The primary means of immune escape is acid-inactivation of T-cells caused by
acid-producing Warburg cells.

Figure S3 Supplemental Video S2.mov Evolution of metaphenotypes in Weak vasculature under high immune predation
(αT = 10−2). The left-hand side shows three phenotypes (Acid Resistance, Glycolsis, and PD-L1), along with acid
concentration and T-cell location. It is difficult to determine the major driver of immune escape from the maps of
phenotypes alone: areas of high glycolysis and high PD-L1 are each spatially heterogeneous and overlapping.
However, metaphenotypes give a detailed picture of immune escape dynamics. Much of the tumor interior is
unaffected by immune cells (Immune Desert), regardless of tumor phenotype. The outer rim is
immune-protected by PD-L1 Attack and Self-Acidify phenotypes. Slightly inset from the rim, cells use
metaphenotypes that Mooch Acid and Mooch PD-L1 from cells on the rim. Cells in regions of high turnover
employ the Proliferate Fast metaphenotype. Starve Glucose remains at low levels throughout all treatment
modalities. Treatment with Anti-PD-L1 selects for the aggressive Self-Acidify metaphenotype, while Buffer
selects for PD-L1 Attack. Combination therapy results in small, slow-growing tumors with less aggressive
metaphenotypes (Mooch PD-L1 and Starve Glucose).

Figure S4 Supplemental Video S3.mov Evolution of metaphenotypes in Intermittent Hypoxia vasculature under high
immune predation (αT = 10−2). The left-hand side shows three phenotypes (Acid Resistance, Glycolsis, and
PD-L1), along with acid concentration and T-cell location. Similar to S3, it is difficult to determine the major
driver of immune escape from the maps of phenotypes alone: areas of high glycolysis and high PD-L1 are each
spatially heterogeneous and overlapping, but metaphenotypes give a detailed picture of immune escape dynamics.
Here, Immune Desert comprises a much lower fraction of tumor metaphenotypes, as better vascularization
delivers T-cells into the tumor core. PD-L1 Attack is used near blood vessels and on the tumor rim, with
Mooch PD-L1 employed by nearby cells. In untreated conditions, Self-Acidify does not occur due to low
turnover. However, Anti-PD-L1 negates immune escape from PD-L1 Attack, inducing turnover and selecting for
Self-Acidify and Mooch Acid metaphenotypes. Combination therapy results in small, slow-growing tumors
with less aggressive metaphenotypes (Mooch PD-L1 and Starve Glucose).

Figure S5 Supplemental Video S4.mov Evolution of metaphenotypes in heterogeneous vasculature. Simulation of tumor
evolution (middle panel) whereby differential vascular conditions are set in each quadrant: quadrant A is low
stability / high renewal, B is high stability, high renewal, C is low stability, low renewal, and D is high stability,
low renewal. Associated metaphenotypes are shown in the outer panels.
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Barcoding

“Phenotypic” Barcoding

barcode at time t0

barcode at time t1

Figure S6. Phenotypic barcoding Schematic of “phenotypic barcoding” scheme for visualizing tumor evolution. At time
point 0, all cells are given a unique ID, also known as a barcode (top). This can be repeated at later times (e.g., time point t1)
by adding a second unique ID to each extant cell (middle). Clones and subclones can be re-colored by average phenotype
(bottom) so that both the phenotype and lineage information are visualized during tumor evolution.

8



Anti-PD-L1 Buffer CombinationUntreated 

T-cell recruitment rate, log10(αT) T-cell recruitment rate, log10(αT)

M
et

ap
he

no
ty

pe
 e

xp
re

ss
io

n

A T-cell recruitment rate B T-cell recruitment rate
Anti-PD-L1 Buffer CombinationUntreated 

M
et

ap
he

no
ty

pe
 e

xp
re

ss
io

n

PD-L1 Attack Starve GlucoseSelf-Acidify Mooch AcidMooch PD-L1 Proliferate FastImmune Desert

Legend

Figure S7. Evolution of metaphenotypes under treatment. Supplementary figure corresponding to figure ??E,F in
the main text. (A) Final distribution of metaphenotypes after treatment (t = 300; weak vasculature), including Immune
Desert. (B) Final distribution of metaphenotypes after treatment (t = 300; intermittent hypoxia), including Immune
Desert. In all treatment scenarios, the presence of Immune Desert phenotypes decreases as T-cell recruitment rate
increases (left-to-right), indicative of increased T-cell perfusion.
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