SUPPLEMENTARY MATERIAL

Epilepsy and SUDEP in a mouse model of human *SCN1B*linked Developmental and Epileptic Encephalopathy

Chunling Chen¹, Julie Ziobro², Larissa Robinson-Cooper¹, Samantha L. Hodges¹, Yan Chen¹,

Nnamdi Edokobi¹, Luis Lopez-Santiago¹, Karl Habig¹, Chloe Moore¹, Joe Minton¹, Sabrina

Bramson¹, Caroline Scheuing¹, Noor Daddo⁵, Katalin Štěrbová³, Sarah Weckhuysen^{4,7,8,9}, Jack M.

Parent^{5,6,10}, and Lori L. Isom^{1,5}

Author affiliations:

¹Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA

²Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA

³Department of Pediatric Neurology, Charles University and Motol Hospital, Prague, Czech Republic

⁴Applied&Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium

⁵Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA ⁶Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA

⁷Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium

⁸Department of Neurology, Antwerp University Hospital, Antwerp, Belgium

⁹µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium

¹⁰VA Ann Arbor Healthcare System, Ann Arbor, MI 49105, USA

Supplementary Figures:

Supplementary Figure 1. Original, uncropped blots for Figure 1F.

Supplementary Figure 2. Original, uncropped blots for Figure 2A.

IB: anti-V5 (β1)

IB: anti- α -tubulin

Supplementary Figure 3: Original, uncropped blots for Figure 2B.

Supplementary Figure 4. β 1-p.R89C does not modulate Nav1.1-generated I_{Na} density. HEK cells stably expressing human Nav1.1 were transiently co-transfected with β 1-WT-V5-2AeGFP (dark blue) β 1-p.R89C-V5-2AeGFP (purple), or eGFP (light blue). Cells transfected with eGFP were used as negative controls. (A) Representative I_{Na} density traces. (B) Nav1.1 I_{Na} current-voltage relationship. (C) I_{Na} density was increased with co-expression of β 1-WT but unchanged in the

presence of β 1-p.R89C. (D) No differences were observed in the mean voltage-dependent activation and inactivation curves. (E) Recovery from inactivation was expressed as the fraction of current produced by a second pulse over time following an identical pre-pulse. The data were fit to a double exponential function. Data in (B), (C), (D), and (E) are presented as means ± SEM. **p < 0.01 by a one-way ANOVA with Tukey's post-hoc comparison test. Dots represent individual cells.

Supplementary Figure 5. β 1-p.R89C does not modulate Na_v1.5-generated *I*_{Na} density. HEK cells stably expressing human Na_v1.5 were transiently co-transfected with β 1-WT-V5-2AeGFP (dark blue) β 1-p.R89C-V5-2AeGFP (purple), or eGFP (light blue). Cells transfected with eGFP were used as negative controls. (A) Representative *I*_{Na} density traces. *I*_{Na} was recorded in response to a series of voltage steps between -120 and +30mV in 5 mV increments, from a holding potential of

-120 mV for 200 msec. (B) Na_v1.5 I_{Na} current-voltage relationship. (C) I_{Na} density was increased with co-expression of β 1-WT but unchanged in the presence of β 1-p.R89C. (D) No differences were found in the mean voltage-dependent activation and inactivation curves. Data were obtained by fitting individual activation or inactivation curves to a Boltzmann equation. (E) A standard two pulse protocol was used to investigate the recovery from inactivation. Recovery from inactivation was expressed as the fraction of current produced by a second pulse over time following an identical pre-pulse. The data were fit to a double exponential function. Data in (B), (C), (D), and (E) are presented as means \pm SEM. **p < 0.01 by a one-way ANOVA with Tukey's post-hoc comparison test. Dots represent individual cells.

Supplementary Tables

Na _v 1.5	+ eGFP	+ β1 WT	+ β1-p.R89C			
Voltage dependence of activation						
$V_{1/2}({ m mV})$	-40.61 ± 0.24	-41.78 ± 0.39	-39.50 ± 0.24			
<i>k</i> (mV)	6.77 ± 0.21	6.53 ± 0.34	6.65 ± 0.21			
n	18	16	14			
Voltage dependence of inactivation						
$V_{1/2}({ m mV})$	-78.45 ± 0.48	-76.71 ± 0.43	-77.20 ± 0.56			
<i>h</i> (mV)	-8.45 ± 0.40	-7.90 ± 0.37	-7.83 ± 0.48			
n	18	16	14			
Recovery from Inactivation						
τ _{fast} (ms)	7.55 ± 0.78	$4.845 \pm 0.60*$	$4.932 \pm 0.51*$			
n	9	6	7			

Supplementary Table 1. Biophysical properties of I_{Na} expressed by Na_v1.5. Data are presented as means \pm sem. *p < 0.05 versus + eGFP using a one-way Anova with Tukey's post-hoc comparison test.

Na _v 1.1	+ eGFP	+ β1 WT	+ β1-p.R89C		
Voltage dependence of activation					
$V_{1/2}({ m mV})$	-23.90 ± 0.18	-23.51 ± 0.28	-23.34 ± 0.26		
<i>k</i> (mV)	6.81 ± 0.15	6.78 ± 0.24	7.40 ± 0.22		
n	17	16	14		
Voltage dependence of inactivation					
$V_{1/2}({ m mV})$	-56.86 ± 0.25	-56.61 ± 0.40	-57.40 ± 0.40		
<i>h</i> (mV)	-5.32 ± 0.22	-6.07 ± 0.35	-5.52 ± 0.35		
n	17	16	14		
Recovery from Inactivation					
$ au_{fast}(ms)$	1.17 ± 0.14	1.01 ± 0.25	1.05 ± 0.18		
n	8	6	6		

Supplementary Table 2. Biophysical properties of I_{Na} expressed by Na_v1.1. Data are presented as means \pm sem. *p < 0.05 versus + eGFP using a one-way Anova with Tukey's post-hoc comparison test.

Nav1.6	+ eGFP	+ β1 WT	+ β1-p.R89C			
Voltage dependence of activation						
V _{1/2} (mV)	-20.06 ± 0.29	-19.49 ± 0.32	-20.12 ± 0.21			
<i>k</i> (mV)	6.36 ± 0.26	6.00 ± 0.26	5.91 ± 0.26			
n	15	11	17			
Voltage dependence of inactivation						
$V_{1/2}({ m mV})$	-58.29 ± 0.64	-55.55 ± 0.78	-54.93 ± 0.41			
<i>h</i> (mV)	-6.46 ± 0.56	-5.41 ± 0.66	-5.95 ± 0.35			
n	15	11	17			
Recovery from Inactivation						
τ _{fast} (ms)	1.42 ± 0.56	0.93 ± 0.24	2.28 ± 0.49			
n	8	8	10			

Supplementary Table 3. Biophysical properties of I_{Na} expressed by Na_v1.6. Data are presented

as means \pm sem. *p < 0.05 versus + eGFP using a one-way Anova with Tukey's post-hoc comparison test.