
   

Supplementary Material 

S1 Appendix. Extended methods 

Data preprocessing 

CMR sequences 

CMR images were differentiated according to the number of dimensions that characterized them. 

Hypervideo cine-SAx sequences were composed of 3 spatial dimensions (i.e., width, height, and 

slice) and 1 time dimension. There was heterogeneity between patients regarding the number of 

frames (temporal dimension) and the number of slices (spatial dimensions) acquired. The maximum 

number of frames was 30, so we augmented all the cine-SAx sequences, including “null frames”, up 

to 30 frames. The same process of adding “null slices” was applied to all SAx (i.e., both cine and 

LGE) with less than 25 slices. After preprocessing, all hypervideo cine-SAx images consisted of a 

30x640x480x25 dimensional array (i.e., raw original pixels plus the “null” augmented ones). 

Standard video cine-LAx sequences were composed of 2 spatial dimensions (i.e., width and height) 

and 1 time dimension. To obtain the same number of dimensions for each cine sequence, they were 

represented like single-slice hypervideos, i.e., 4-dimensional with a single level in the last one only. 

After that, the same preprocessing steps of the cine short axis were applied to each video. Therefore, 

all video cine-LAx consisted of 30x640x480x1 dimensional arrays. 

Standard LGE-LAx images were composed of 2 spatial dimensions (i.e., width and height). In the 

same way as for cine-LAx, to obtain the same number of dimensions as LGE-LAx hyperimages, they 

were represented as single slice hyperimages, i.e., 3-dimensional arrays with a single level in the last 

dimension. After that, all LGE-LAx images were represented as 256x256x1 dimensional arrays. 

Hyperimages LGE-SAx sequences were composed of 3 spatial dimensions (i.e., width, height, and 

slice). Therefore, “null slices” were added when necessary to obtain homogeneous hyperimages 

represented as 640x480x25 dimensional arrays. 

Image and covariate analysis 

Long short-term memory (LSTM) networks are a particular type of recurrent neural network (RNN) 

able to model sequencies in input and output. Thanks to LSTM architecture based on a memory cell 

and input, output, and forget gates, it is able to maintain complex relevant information (i.e., temporal 

correlation) across the sequences even for long-range dependencies.[1–3] At the same time, 

convolutional neural networks (CNNs) are designed to specifically model complex spatial 

correlations from the input data.[4–6] To process 4D and 3D cine-CMRs, we adopted ConvLSTM 

architectures, i.e., LSTM models adopt convolutional structures in all the internal transitions of the 

recurrent architecture.[7] 

The final architecture proposed concatenated all four cine-CMRs in a c-1 input tensor (i.e., a 

multidimensional array) of shape 30x640x480x28 (time x width x height x slice), rescaled from 0-

255 (image grey-level pixel-intensity range) to 0-1, and processed them with 32 2D-ConvLSTM with 

a 4x4 mask to a c-2 tensor of shape 640x480x32. At the same time, all four LGE-CMRs were 

concatenated in an l-1 tensor of shape 256x256x28. The LGE-SAx, which is originally of shape 

640x480x25, was previously preprocessed by two early layers: the first, padding it to 767x512x25, 
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and the second by a 2x2 max-pooling mask with a 3x2 stride CNN transforming it to a tensor of 

shape 256x256x25.l-1 is processed by a 32 2D CNN with a 4x4 mask to an l-2 tensor of shape 

256x256x32. The same padding + max-pooling processing is applied to c-2 to obtain the c-3 tensor 

of shape 256x256x32 as well. Next, c-3 and l-2 are simultaneously processed by the same 16 2D 

CNN outputting two corresponding transformed c-4 and l-3 tensors of shape 256x256x16 each, 

concatenated together in an m-1 tensor of shape 256x256x32 passed to further 16 2D CNNs 

outputting m-2 of shape 256x256x16. After flattening them in a linear tensor of shape 1048576, 8 

fully connected networks encode the result in a tensor m-3 of shape 8. At the same time, the 18 

baseline features f-1 (i.e., a tensor of shape 18) are shifted and scaled to be approximately in 0-1 (i.e., 

shift is set to zero for every continuous or Boolean covariate, while it is set to 1 for categorical 

covariates originally encoded with integers starting from 1; scale was set as the inverse of a fixed 

maximum value for each one) and processed by two consecutive sets of 8 fully connected networks 

producing a tensor f-2 of shape 8. Therefore, m-3 and f-2 were concatenated in an m-4 tensor of 

shape 16 and finally processed by two consecutive sets of 8 fully connected networks and a final 

single fully connected network to the o-1 output tensor of shape 1 (i.e., our)ℎ̂𝐷𝐴𝑅𝑃−𝐷(𝑥)). To speed 

up the training, taking under control the overfitting and protecting from exploding and vanishing 

weights, after each described layer of the network is stacked, the following layers are stacked: batch 

normalization, activity regularization (with both ℓ1 and ℓ2 regularization factors set to 0.1 for all the 

weights), and drop-out (set to drop 20% of weights for input layers, 70% for hidden and recurrent 

layers, and to 12.5%, i.e., a single neuron dropped, for the last two final layers).(28) 

Survival model 

Cox proportional hazard is the standard model for survival (i.e., time-to-event) analyses using 

individual covariate information in the estimations of the survival function. [10] In the Cox model, 

the hazard function 𝜆(𝑡|𝑋) represents the risk of an event at each time 𝑡 > 0 based on the effect of 

the observed covariates 𝑋 and under the hypotheses that the subject has survived until time 𝑡. The 

defined relation is based on a base risk 𝜆(𝑡) supposed to be the same for all subjects and assumes 

individual risk modification as a multiplicative exponential term for the base risk independent of 

time. The hazard function is then defined as 𝜆(𝑡|𝑋) =  𝜆(𝑡)𝑒𝑋𝛽. There, the term 𝑋𝛽 is a linear 

combination of the individual covariates 𝑋 and corresponding weights 𝛽 estimated by the 

maximization of the Cox partial likelihood: 

𝐿𝑐(𝛽) = ∏
𝑒𝛽𝑇𝑥𝑖

∑ 𝑒𝛽𝑇𝑥𝑗
𝑗∈ℜ(𝑇𝑖)𝑖∈{𝑖: 𝐸𝑖=1}

 

where 𝐸𝑖 is the event indicator for subject 𝑖 (i.e., 𝐸𝑖 = 1 if the event occurred, 𝐸𝑖 = 0 if the event did 

not occur, or the subject was right censored), 𝑇𝑖 is the last known time for subject 𝑖 (i.e., the event or 

censored time), and ℜ(t) is the risk set at time 𝑡 (i.e., the subjects are still event-free at time 𝑡 and so 

at risk at 𝑡). 

Calling ℎ(𝑥) the log-hazard function represented by ℎ(𝑥) =  𝛽𝑇𝑥 in the Cox model, nonlinear 

extension to this model based on deep-learning architectures to estimate the individual log-hazard 

function is already present in the literature.[11–13] In 1995, Faraggi and Simon proposed a method 

for nonlinear survival models using a simple feed-forwards neural network with a single linear output 

layer ℎ̂𝜃(x) estimating ℎ(𝑥) and modifying the partial likelihood accordingly.[12] In 2018, with 
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DeepSurv, Katzman et al. extended the Faraggi-Simon method by applying a deeper network and 

modern deep learning techniques to design and optimize the network (i.e., its weights 𝜃s) minimizing 

an objective loss function defined as the average of the modified Cox negative log partial likelihood 

including an ℓ2 regularization component. 

𝐿𝐷𝑆(𝜃) =  −
1

𝑁𝐸=1
∑ (ℎ̂𝜃(𝑥𝑖) − 𝑙𝑜𝑔 ∑ 𝑒ℎ̂𝜃(𝑥𝑗)

𝑗∈ℜ(𝑇𝑖)

)

𝑖∈{𝑖:𝐸𝑖=1}

 

Here, 𝑁𝐸=1 is the number of subjects at risk.[13] There, the network structure was a sequential design 

of fully connected layers followed by a dropout layer to address overfitting. Inputs remain baseline 

covariates only. 

In April 2022, Popescu et al. proposed SSCAR, a survival deep learning model to estimate individual 

patient times to arrhythmic SCD (SCDA).[11] In their model, they embedded both MRI 3D images 

(LGE-CMR only, two channels for 12 slices of interpolated 64x64 images to an array input size of 

64x64x12x2, i.e., width, height, slice, and channel correspondingly) and clinical covariates. They 

implemented a two independent-branch network: the first is an encoder-decoder that compresses 

images well, and the second is a sequential fully connected network for the baseline covariates. Each 

branch outputs in a two-neuron layer estimating the parameters 𝜇 and 𝜎 for the probability 

distribution of time-to-SCDA, merging them in the final model output as a per-patient individual 

cause-specific survival curve based on the individual log-logistic distribution: 

𝑆𝑖(𝑡; 𝜇𝑖 , 𝜎𝑖) =  
1

1+𝑒

log(𝑡)−𝜇𝑖
𝜎𝑖

. 

We propose a per-patient survival model powered by modern deep-learning techniques able to 

process uncompressed noninterpolated raw time-dependent 4D (cine-SAx) hypervideos, 3D (cine-

LAx) videos, 3D (LGE-SAx) hyperimages, 2D (LGE-LAx) images, and baseline patient covariates in 

a unique heterogeneous network to directly estimate the individual nonlinear log-hazard function 

ℎ(𝑥) as ℎ𝜃̂(𝑥), i.e., the single-neuron last layer output of our neural network. 
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