Supplementary materials of "scSemiGCN: boosting cell-type annotation from noise-resistant graph neural networks with extremely limited supervision"

Jue Yang¹, Weiwen Wang²*, Xiwen Zhang³

¹School of Mathematics, Sun Yat-sen University, Guangzhou, China
²Department of Mathematics, School of Information Science and Technology, Jinan University, Guangzhou, China
³College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
* To whom correspondence should be addressed. Email: wangww29@jnu.edu.cn.

Table S1: The number of annotated cells for each cell type in six datasets for training.

	Buettner	Kolodziejczyk	yk Pollen Usoskin		Zeisel	Cortex
Type-1	3	15	1	7	15	11
Type-2	3	8	1	8	19	12
Type-3	3	12	1	4	47	14
Type-4	-	-	1	12	41	5
Type-5	-	-	1	-	5	41
Type-6	-	-	1	-	9	47
Type-7	-	-	1	-	10	20
Type-8	-	-	2	-	2	-
Type-9	-	-	2	-	3	-
Type-10	-	-	1	-	-	-
Type-11	-	-	1	-	-	-

Fig. S1: Effects of dimension of embeddings d in SIMLR on scSemiGCN. (a) Buettner; (b) Cortex.

Fig. S2: Effects of number of kernels used in SIMLR on scSemiGCN. We take Buettner as an example. As the number of kernels varies, the accuracy oscillates. But we also see that an appropriate number of kernels can be chosen in a wide range.

Fig. S3: Visualization of latent representations generated by neural-network-based methods. Cell types are indicated by colors. (a)Buettner;(b)Pollen; (c)Usoskin.

Fig. S4: **AUC of validation data under different settings of hyperparameters**. (a)Buettner; (b)Pollen; (c)Usoskin; (d)Cortex.

Fig. S5: **F1-score of validation data under different settings of hyperparameters**. (a)Buettner; (b)Pollen; (c)Usoskin; (d)Cortex.

Cell type	Number of cells
Transitional memory CD4 T cells	7
Mast cells	4
M2 TAMs	6
T helper cells	8
Naive-memory CD4 T cells	14
Pre-exhausted CD8 T cells	17
pDC	7
Recently activated CD4 T cells	17
SPP1 TAMs	3
mDC	6
Cytotoxic CD8 T cells	9
Monocytes	5
Proinflamatory TAMs	4
Plasma B cells	4
Naive T cells	10
Effector memory CD8 T cells	16
Proliferative B cells	4
Proliferative T cells	12
NK	9
Terminally exhausted CD8 T cells	9
B cells	6
Proliferative monocytes and macrophages	4
Th17 cells	12
Regulatory T cells	12
cDC	6

Table S2: The number of annotated cells for each cell type in TICA-3C for training.

Table S3: Accuracy of test data in TICA-3C.

	SIMLR	GCN	GAT	scSemiAE	scSemiGAN	scSemiGCN
ACC	0.3739	0.3751	0.3429	0.3721	0.3764	0.4432

Fig. S6: Confusion matrix of test data in TICA-3C. Recall and precision of each cell type are also summarized in columns and rows, respectively.

Supplementary Notes

Practical usage of scSemiGCN

Semi-supervised cell-type annotation methods including scSemiGCN require a small subset of annotated cells. There are several ways to obtain such gold-standard annotated cells for semi-supervised cell-type annotation. A few as options are listed below.

- First group cells by classic clustering methods and then identify cell types of representatives of each group based on expression of marker genes.
- Project all unannotated cells onto well-labeled reference data (e.g by Seurat (Stuart *et al.*, 2021)) and select unannotated data cells with high confidence in prediction as landmarks.
- Combine representatives from well-labeled reference data (e.g Human Cell Atlas¹) with unannotated cells.
- Utilize accumulative annotated cells.

References

Stuart, T. et al. (2019) Comprehensive integration of single-cell data. Cell, 177, 1888–1902.

¹https://www.humancellatlas.org