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Supplementary Table Captions 4 
 5 
Supplementary Table 1. Numerical results for robustness and power of TCSC regression in 6 
simulations. Across six different eQTL sample sizes, we evaluate the causal and null bias in 7 
estimates of disease heritability explained by the cis-genetic component of gene expression in 8 
tissue 𝑡′ (ℎ!"($%)

' ), the type I error, and the power of TCSC. The standard errors (SE) are 9 
computed as the standard deviation of measurements across simulations divided by the square 10 
root of the number of simulations, e.g. 1,000. Type I error is measured as the percentage of 11 
estimates of ℎ!"($%)

'  for non-causal tissues that were significantly positive for non-causal tissues 12 
at p < 0.05 for nominal significance or at 5% FDR across tissues using a one-sided z-test. Power 13 
is measured as the percentage of estimates of ℎ!"($%)

'  for causal tissues that were significantly 14 
positive at p < 0.05 for nominal significance or at 5% FDR across tissues using a one-sided z-test.  15 
 16 
Supplementary Table 2. Type I error and power of RTC Coloc, LDSC-SEG, RolyPoly, and 17 
CoCoNet in simulations. We implemented all methods as previously described and applied it to 18 
our TCSC simulation framework, such that the same eQTL effect sizes and co-regulation was 19 
used. We performed 1,000 simulations of LDSC-SEG, RolyPoly, and CoCoNet and 100 20 
simulations of RTC Coloc, due to the complexity and prohibitively large computation time of 21 
RTC Coloc.  22 
 23 
Supplementary Table 3. Numerical results for robustness and power of cross-trait TCSC in 24 
simulations. Across six different eQTL sample sizes, we evaluate the causal and null bias on the 25 
estimate of tissue-specific contributions to covariance, the type I error, and the power of cross-26 
trait TCSC. The standard errors (SE) are computed as the standard deviation of measurements 27 
across simulations divided by the square root of the number of simulations, e.g. 1,000. Type I 28 
error is measured as the percentage of estimates of 𝜔!"($%) for non-causal tissues that were 29 
significantly positive at p < 0.05 for nominal significance or at 5% FDR across tissues using a 30 
one-sided z-test. Power is measured as the percentage of estimates of 𝜔!"($%) for causal tissues 31 
that were significantly positive at p < 0.05 for nominal significance or at 5% FDR across tissues 32 
using a one-sided z-test.  33 
 34 
Supplementary Table 4. List of 78 diseases and complex traits analyzed in primary analyses. 35 
We selected 78 diseases/traits, 33 of which are from UK Biobank, such that all summary 36 
statistics have SNP-heritability z-score > 6 and no pair of traits have a squared genetic 37 
correlation greater than 0.1 as well as substantial sample overlap. We report the SNP-38 
heritability, standard error, z-score, GWAS sample size, trait nickname used to index traits in 39 
plots and tables, and the name of the most closely related trait analyzed in previous studies1,2.  40 
 41 
Supplementary Table 5. Numerical results for tissue-specific contributions to disease and 42 
complex trait heritability. For each significant tissue-trait pair identified by TCSC as reported in 43 



Fig. 3, we report the value of 𝜋$! , or the proportion of SNP-heritability explained by tissue-44 
specific predicted gene expression, and the false discovery rate for each finding. We also report 45 
the result of an independent analysis for traits for which we could easily obtain independent 46 
GWAS summary statistics.  47 
 48 
Supplementary Table 6. Numerical results for tissue-specific contributions to disease and 49 
complex trait heritability for all tissues and diseases/traits analyzed. For every tissue-trait pair 50 
analyzed by TCSC, across 39 tissues and 78 diseases/traits, we report the phenotypic variance 51 
explained by tissue-specific predicted gene expression, ℎ!"($%)

' , the jackknife standard error of 52 
this quantity, the nominal P value from a one-sided z-test, the FDR calculated across tissues 53 
per-trait, the value of 𝜋$! , and the standard error of 𝜋$! . We estimated the standard error of 54 
this quantity using a genomic block jackknife. We note that no value of ℎ!"(())	$+,,-",)

'  exceeds 55 
the SNP-heritability for a given trait. The largest value of ℎ!"(())	$+,,-",)

'  is 0.68, which is for red 56 
blood cell distribution width.  57 
 58 
Supplementary Table 7. Median jackknife P values across traits for each tissue. Here we 59 
report the median jackknife P value across traits for each tissue. For pairs of tissues with high 60 
genetic correlation, if the median jackknife P value is substantially different across traits, this 61 
means TCSC is systematically more likely to identify the tissue with lower median jackknife P 62 
value as a causal tissue relative to the other, and this might suggest an issue in quality of gene 63 
expression prediction models from the tissue with larger median jackknife P value.  64 
 65 
Supplementary Table 8. Numerical results for tissue-specific contributions to disease and 66 
complex trait heritability in secondary analysis of 23 tissues, removing tissues with small 67 
eQTL sample size. To increase the power of TCSC to identify causal tissues, we removed tissues 68 
with eQTL sample size less than 320. As a result, we analyzed 23 tissues across 78 69 
diseases/traits. We report the same quantities reported in Supplementary Table 6. 70 
 71 
Supplementary Table 9. Statistical significance of differences between TCSC estimates in 72 
primary and secondary analyses. For every significant tissue-trait pair identified in the primary 73 
analysis (analysis of 39 tissues, Fig. 4), we assessed if the value of 𝜋$!  was significantly different 74 
than the value produced in the secondary analysis (analysis of 23 tissues, Supplementary Table 75 
8). We used a genomic block jackknife to assess the difference and using a two-sided test, 76 
identified that no differences were significantly nonzero at 10% FDR.  77 
 78 
Supplementary Table 10. List of 41 brain diseases/traits analyzed in brain-specific analysis. 79 
We performed a brain-specific TCSC analysis to exploit the diversity of brain tissues provided by 80 
GTEx (n = 13 brain tissues). We analyzed 41 brain diseases/traits using a similar trait selection 81 
procedure as was used to select the 78 diseases/traits previously analyzed. However, we first 82 
selected for diseases/traits that were behavioral or a known cognitive disorder and iteratively 83 
removed traits until no pair of traits had a squared genetic correlation greater than 0.25.  84 
     85 



Supplementary Table 11. List of 13 GTEx brain tissues analyzed in brain-specific analysis. For 86 
the brain-specific TCSC analysis, we built gene expression prediction models using all European 87 
samples from each of 13 GTEx brain tissues, without subsampling or meta-analysis. Here we list 88 
the name and eQTL sample size of each GTEx brain tissue, e.g. tissue names beginning with 89 
“Brain_”. For this analysis, we excluded several tissues relevant to the central nervous system, 90 
including pituitary (N = 220) and tibial nerve (N > 320). 91 
 92 
Supplementary Table 12. Numerical results for tissue-specific contributions to disease and 93 
complex trait heritability in brain-specific analysis. For every brain tissue and brain trait 94 
analyzed in the brain-specific TCSC analysis, we report 𝜋$! ,	its standard error, and false 95 
discovery rate.  96 
 97 
Supplementary Table 13. Numerical results for comparison of disease-critical tissues 98 
identified by RTC Coloc, LDSC-SEG and TCSC for 5 representative traits. For every tissue-trait 99 
pair shown in Fig. 4, we report the FDR and -log10FDR of the association statistic for each 100 
method (enrichment statistic for Ongen 2017 RTC Coloc, tau* S-LDSC statistic for Finucane 2018 101 
LDSC-SEG, and 𝜋$!  for TCSC). The seven traits are the ones having at least one significantly 102 
associated tissue across the three methods with the largest SNP-heritability z-score. The tissues 103 
reported here are the causal tissues for each of the five traits as well as the most genetically 104 
correlated tissue (using marginal eQTL effect sizes).  105 
 106 
Supplementary Table 14. Numerical results for comparison of disease-critical tissues 107 
identified by RTC Coloc, LDSC-SEG and TCSC for all 21 diseases/traits with causal tissue-trait 108 
associations identified by TCSC. We report the FDR and -log10FDR of the association statistic for 109 
each method across all traits shown in Fig. 3 and each tissue with an association statistic with 110 
FDR < 5%.  111 
 112 
Supplementary Table 15. Numerical results for comparison of disease-critical tissues 113 
identified by RTC Coloc, LDSC-SEG and TCSC for all diseases/traits and tissues included in 114 
these comparisons. We report the FDR and -log10FDR for every tissue-trait pair (39 tissues, 78 115 
traits) across each of three compared methods. A value of NA indicates that the tissue-trait pair 116 
was not analyzed by the corresponding method. 117 
 118 
Supplementary Table 16. Numerical results for comparison of disease-critical tissues 119 
identified by RTC Coloc, LDSC-SEG and TCSC for brain-specific analysis. We report the FDR and 120 
-log10FDR for the brain-specific analysis for each of 41 brain traits, 13 brain tissues, and 3 121 
methods, restricting to tissues and traits with a TCSC finding at FDR < 10%, plotted in Extended 122 
Data Fig. 8. A value of NA indicates that the tissue-trait pair was not analyzed by the 123 
corresponding method.  124 
 125 
Supplementary Table 17. List of 262 pairs of diseases/traits analyzed by cross-trait TCSC. We 126 
computed the genetic correlation between all pairs of 78 diseases/traits and selected those 127 
pairs with genetic correlation two-sided z-test P value < 0.05/3,003 pairs of traits, e.g. using a 128 



Bonferroni correction threshold. Here, we report the genetic correlation z-score of these pairs 129 
and the estimate of the covariance.  130 
 131 
Supplementary Table 18. Numerical results for tissue-specific contributions to the genetic 132 
covariance of two diseases/traits (Figure 6A). For all tissue-trait covariance pairs identified by 133 
TCSC at 10% FDR, we report the value of 𝜁$!, or the proportion of covariance explained by 134 
predicted gene expression in tissue 𝑡% and the FDR.  135 
 136 
Supplementary Table 19. Numerical results for tissue-specific contributions to the genetic 137 
covariance of two diseases/traits for all tissues and disease/trait pairs analyzed. For all tissue-138 
trait covariance pairs analyzed by TCSC, we report the estimated tissue-specific covariance, its 139 
jackknife standard error, nominal P value from a two-sided z-test, 𝜁$!  and corresponding 140 
standard error, FDR, and genome-wide covariance for the trait pair. 141 
  142 
Supplementary Table 20. List of tissue-trait covariance pairs and reported differences in 143 
tissue-specific contributions to genetic covariance vs. constituent trait heritability. For every 144 
pair of traits implicated by Figure 6 and for each of 38 tissues, we assess the difference 145 
between 𝜁$!  and 𝜋$!  for each trait. We identified five tissue-trait covariance pairs for which the 146 
difference was significantly nonzero while the value of 𝜋$!  was not significantly different than 147 
zero at a significance threshold of 5% FDR across tissues per-trait.  148 
 149 

Supplementary Table 21. Scenarios where TCSC has more power in the cross-trait analysis 150 
than in the single-trait analysis. We used primary simulations and performed new simulations 151 
in which tissue-specific contributions to covariance where greater than tissue-specific 152 
contributions to heritability in order to report the percentage of simulations in which the causal 153 
tissue was detected in the cross-trait analysis but not detected in both of the single-trait 154 
analyses.    155 

 156 
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 159 
 160 
 161 
 162 
 163 
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Supplementary Note 165 
 166 
Simulation Framework  167 
 168 

We employed a widely used TWAS simulation framework (Mancuso Lab TWAS 169 
Simulator, see Code Availability) to assess the power, bias, and calibration of TCSC in the 170 
presence of co-regulation across genes and tissues. We simulated a genome in which there are 171 
1,000 protein-coding genes from chromosome 1, of which 100 (10%) are causal3. For each 172 
tissue, 500 genes were chosen to be cis-heritable; in the causal tissue and the three most highly 173 
genetically correlated tagging tissues, all 100 causal genes were cis-heritable. Each primary 174 
simulation consists of 10 tissues, of which at least one is causal, defined as having nonzero 175 
gene- disease effect sizes. We create a covariance structure among tissues mimicking empirical 176 
GTEx data. We use a previously published method to estimate the causal cross-tissue 177 
correlation of eQTL effect sizes which is 0.754. Briefly, this method extends cross-trait LD score 178 
regression and leverages cis-eQTL summary statistics across all expressed genes in a tissue to 179 
compute cross-tissue genetic correlations. We observe that not all GTEx tissues are equally 180 
correlated to one another. We estimate three different cross-tissue eQTL correlation quantities: 181 
(1) average correlation across all pairs of tissues = 0.75, (2) average correlation across similar 182 
tissues = 0.80, e.g. brain (13 in GTEx) or adipose (2 in GTEx) tissues, and (3) average correlation 183 
across dissimilar tissues, e.g. pairs of brain and adipose tissues = 0.74. To represent these 184 
biological modules, we let simulated tissues 1-3 have higher correlation of true eQTL effects to 185 
one another than to other tissues; likewise for tissues 4-6 and 7-10. We set covariance 186 
parameters, described below, such that the similar tissues had an average eQTL correlation of 187 
0.795 across genes, dissimilar tissues have an average eQTL correlation of 0.722, and the 188 
average eQTL correlation across any pair of tissues is 0.753. We use real genotypes from 189 
European individuals in the 1000 Genomes Project to define the pairwise SNP LD structure 190 
which is used to simulate genotypes, gene expression traits, and complex traits/diseases. We 191 
simulate each gene having 5 true cis-eQTLs, based on the upper bound of empirical data from 192 
GTEx5 and others6, as well as the value used in other TWAS simulation methods7. Between pairs 193 
of co-regulated tissues, the same gene shares 3 cis-eQTLs. Between pairs of co-regulated genes 194 
in the same tissue, 3 cis-eQTLs are shared. The minimum allowed cis-heritability of a gene is 195 
0.01 in our simulations. Cis-heritability is approximated as the sum of squared true cis-eQTL 196 
effect sizes, as done previously8. The cis-heritability of each gene was sampled from an 197 
exponential distribution, and neighboring co-regulated genes were assigned the same 198 
heritability to maximize gene-gene co-regulation. In each tissue, the average cis-heritability 199 
(across genes) was set to 0.08 (sd = 0.05, ranging from 0.01 to 0.40) in order to achieve an 200 
average estimated cis-heritability (across significantly cis-heritable genes, estimated by GCTA9) 201 
varying from 0.11 to 0.31 (across gene expression sample sizes), which matches empirical 202 
values from GTEx5. Effect sizes for the 3 shared eQTLs across tissues are sampled from a 203 
multivariate normal distribution with mean 0 and a variance-covariance matrix. We define the 204 
variance and covariance terms of this matrix such that (1) the proportion of genes detected as 205 
significantly cis-heritable by GCTA at a given sample size and (2) the average cis heritability of 206 
detected genes at a given sample size match empirical observations from GTEx data at sample 207 
sizes N = 100, 200, 300 and 500. As a result, the diagonal of the variance-covariance matrix, e.g.  208 



the variance term, is set to 0.075, and the off-diagonal elements are set to the product of the 209 
variance term and the desired correlation for each tissue pair, described above.  210 

For each of 1,000 independent simulations per analysis, we simulate a GWAS (N = 211 
10,000) by creating a complex trait which is the summation of the genetic components of 212 
causal gene expression (in the causal tissue). We use simulated genotypes based on the LD 213 
structure of 1000 Genomes. Gene-disease effect sizes are drawn from a normal distribution 214 
with mean 0 and variance 1. In cross-trait TCSC analysis, effect sizes across genes between the 215 
two traits are correlated with default Rg = 0.5. To simulate a GWAS trait, we first compute the 216 
genetic component of each gene, which is the product of GWAS cohort genotypes and eQTL 217 
effects, such that we have 100 gene-specific traits. We then add noise to each gene-specific 218 
trait such that the total variance of the phenotype explained by the five eQTLs from the causal 219 
tissue is equal to a specified value; the value of  ℎ!"($)' 	in primary simulations is 10%. Then, we 220 
multiply each gene-specific trait by the causal gene-disease effect size, consistent with the 221 
additive generative model of gene-level effects on trait (see above). Finally, we take the sum 222 
across all gene-specific traits to make one complex trait, where the total variance of the trait 223 
explained by gene effects from the causal tissue is ℎ!"($)' , e.g. 10%.  224 

We simulate an eQTL cohort of various gene expression sample sizes (N = 100, 200, 300, 225 
500, 1000, 1500) using simulated genotypes based on the LD structure of 1000 Genomes. We 226 
simulate total gene expression in the eQTL cohort by adding a desired amount of noise to the 227 
genetic component of gene expression, e.g. the product of individual genotypes and true eQTL 228 
effect sizes, with variance equal to one minus the gene expression heritability, which is the sum 229 
of squared eQTL effects. Next, we fit gene expression prediction models by regressing the total 230 
gene expression on eQTL cohort genotypes of cis variants using lasso regularization, a standard 231 
approach used in TWAS. We define significantly cis-heritable genes as genes with GCTA 232 
heritability P value < 0.0110 and heritability estimate > 0, and adjusted-R2 > 0 in cross-validation 233 
prediction. 234 

Then we estimate co-regulation scores at each different eQTL sample size by predicting 235 
gene expression into a cohort of 500 individuals, to approximate the size of the European 236 
sample of 1000 Genomes (N = 489). Using significantly cis-heritable genes from each tissue at a 237 
given sample size, we estimate gene and tissue co-regulation scores 𝑙(𝑔, 𝑡; 𝑡%) as described 238 
above, including bias correction. In simulations, cis genes are defined as genes within the same 239 
1 Mb block.  240 

Then we apply TWAS to individual-level simulated GWAS data and gene expression 241 
prediction models. We predict gene expression into each of the 10,000 GWAS cohort individuals 242 
across all significantly cis-heritable genes for each tissue. We regress each complex trait on 243 
predicted gene expression to obtain TWAS z-scores. Finally, we run TCSC by regressing TWAS χ2	244 
statistics, or products of TWAS z-scores, on bias-corrected gene and tissue co-regulation scores. 245 
 246 
 We simulated four tissue-trait association methods: RTC Coloc1, LDSC-SEG2, RolyPoly11, 247 
or CoCoNet12. First, we simulated the RTC Coloc method1 by leveraging our existing TCSC 248 
simulation framework such that both methods could be compared via application to same 249 
simulated data (Code Availability, ref.13). We used the same simulated GWAS cohort of 10,000 250 
individuals as in our TCSC simulations and then followed the steps of the RTC Coloc method as 251 



published. Briefly, we perform a genome-wide association study using our simulated complex 252 
trait and the genotypes of our simulated GWAS cohort and select null variants with similar LD 253 
properties. Then, we simulate an eQTL cohort consisting of total gene expression and 254 
genotypes, using the same underlying true eQTL effect sizes as for TCSC simulations. Then, we 255 
perform colocalization analysis of GWAS variants with eQTLs, across 10 tissues at 6 different 256 
eQTL sample sizes, to obtain the regulatory trait concordance (RTC) score. This is repeated for 257 
the set of null variants. Next, we perform colocalization analysis of eQTL variants between pairs 258 
of tissues to obtain tissue-sharing RTC scores, and similarly repeat this for null variants. GWAS-259 
eQTL RTC scores are divided by tissue-sharing RTC scores summed across variants. Tissue-260 
specific enrichment is computed as the ratio of this quotient to the null quotient. The 261 
enrichment P value is obtained using a Wilcox test comparing the values of the quotient to the 262 
values of the null quotient. 263 
 Second, we simulated the three methods that utilize GWAS data and total expression 264 
across tissues: LDSC-SEG2 (using S-LDSC v1.0.0), RolyPoly11 (v0.1.0), and CoCoNet12 (v1.0). To 265 
this end, we retained the full GWAS summary statistics from the RTC Coloc analysis above. We 266 
separately simulated total expression across tissues in which the 100 causal genes in addition to 267 
200 randomly selected genes were positively differentially expressed in the causal tissue and 268 
the two tagging tissues in the same simulated “module” as the causal tissue, e.g. with higher 269 
genetic correlation of gene regulatory effects. We also selected 100 random non-causal genes 270 
to be negatively differentially expressed in the causal tissue and the other two module tissues. 271 
For the remaining 7 tagging tissues, we randomly selected 300 genes to be positively 272 
differentially expressed, some of which at random will be causal genes, and let the remaining 273 
700 genes be negatively differentially expressed. Then, as previously done2, we calculated the t-274 
statistics for the specific expression of each gene in each tissue. While we have modules of 275 
tissues that are more highly correlated to one another, these within-module tissues were 276 
excluded from the calculation of t-statistics, as previously done2. Finally, we created SNP-based 277 
annotations for each tissue, across 1000 simulations, and across 6 sample sizes, in which SNPs 278 
within +/- 100 kb of a specifically expressed gene is assigned a value of 1 and 0 otherwise, as 279 
previously done2. Then, we calculated LD scores and partitioned the heritability of our 280 
simulated complex traits. For the simulations of RolyPoly and CoCoNet, we installed the 281 
following R packages: rolypoly (v0.1.0) and CoCoNet (v1.0) and used the simulated data above 282 
to run each method. While CoCoNet does not technically use GWAS summary statistics, but 283 
rather gene-based “outcome variables”, we used the label of causal or non-causal for each gene 284 
in each tissue of our simulations as the outcome variable.  285 
 286 
 287 
Single-trait simulation analysis at large sample size 288 
 289 
We simulated four larger gene expression sample sizes: 10K, 50K, 100K, and infinite sample size 290 
(for infinite sample size, we used the true eQTL effect sizes in place of estimated effect sizes 291 
from the gene expression prediction model). Due to the computational intractability of running 292 
GCTA at these sample sizes across thousands of simulations, we used cross-validation adjusted-293 
R2 > 0 in lieu of GCTA to define significantly cis-heritable genes in analyses at very large sample 294 
sizes. We determined that the type I error of TCSC plateaus at 1,500 individuals (Fig. 2C); we 295 



also confirmed that the alternative definition of cis-heritable genes did not impact results at 296 
intermediate sample sizes (Fig. 2C vs. Fig. 2B).   297 
 298 
Cross-trait simulation analyses 299 
 300 
We first evaluated the bias in TCSC estimates of the genetic covariance explained by the cis-301 
genetic component of gene expression in tissue 𝑡% (𝜔!"($%)), for both causal and non-causal 302 
tissues (Extended Data Fig. 2A, Supplementary Table 3). For causal tissues, TCSC produced 303 
unbiased estimates of 𝜔!"($%) (conservative estimates when setting 𝐺$! 	to the number of 304 
significantly cis-heritable genes, rather than the number of true cis-heritable genes), analogous 305 
to single-trait simulations. For non-causal tissues, TCSC again produced estimates of 𝜔!"($%)	that 306 
were significantly positive when averaged across all simulations, but not large enough to 307 
substantially impact type I error. We next evaluated the type I error of cross-trait TCSC for non-308 
causal tissues. TCSC was well-calibrated with type I error ranging from 5.4%-6.7% at p < 0.05 309 
(Extended Data Fig. 2B). Finally, we evaluated the power of cross-trait TCSC for causal tissues. 310 
We determined that cross-trait TCSC was modestly powered at realistic eQTL sample sizes, with 311 
power ranging from 8%-27% across eQTL sample sizes at p < 0.05 (Extended Data Fig. 2C) (and 312 
1-6% power at p < 0.004 corresponding to 5% per-trait FDR across tissues in these simulations; 313 
Supplementary Table 3); as noted above, the power of TCSC varies greatly with the choice of 314 
parameter settings (see below). In ROC curve analysis, TCSC attained an AUC of 0.67 (Extended 315 
Data Fig. 1). 316 
 317 
Secondary simulation analyses  318 
 319 
We performed twelve secondary analyses. First, we varied the eQTL sample size across tissues. 320 
Specifically, we set the eQTL sample size of the causal tissue to 300 individuals and the eQTL 321 
sample sizes of the non-causal tissues to range between 100 and 1,500 individuals. We 322 
observed inflated type I error for non-causal tissues (particularly those with larger eQTL sample 323 
sizes), implying that large variations in eQTL sample sizes may compromise type I error 324 
(Supplementary Fig. 1).  325 

Second, we evaluated the robustness of TCSC when varying the number of expressed 326 
genes in the causal tissue under four scenarios: (i) only the 500 cis-heritable genes are 327 
expressed in the causal tissue, (ii) only 375 cis-heritable genes (including all 100 causal genes) 328 
are expressed in the causal tissue, (iii) only 225 cis-heritable genes (including all 100 causal 329 
genes) are expressed in the causal tissue, and (iv) only the 100 causal genes are expressed in 330 
the causal tissue. We determined that type I error remained approximately well-calibrated in all 331 
scenarios, and that power was dramatically improved and bias for non-causal tissues decreased 332 
as the number of tagging genes in the causal tissue decreased (Supplementary Fig. 2-3); for 333 
causal tissues, estimates of ℎ!"($%)

'  were upward biased when setting	𝐺$% to the number of true 334 
cis-heritable genes and unbiased when setting 𝐺$%	to the number of significantly cis-heritable 335 
genes across tissues.  336 

Third, we varied the true values of ℎ!"($%)
'  (or 𝜔!"($%)) for causal tissues. We determined 337 

that patterns of bias, type I error, and power were generally robust across different parameter 338 



values, although the smallest values resulted in lower power and greater bias for non-causal 339 
tissues (Extended Data Figs. 3-4). Specifically, in Extended Data Fig. 3, we varied the value of 340 
ℎ!"($%)
' 	for causal tissues across different eQTL sample sizes. In panel A, we observe that at type 341 

I error is more consistent across different values of ℎ!"($%)
'  at smaller eQTL sample sizes. At 342 

larger eQTL sample sizes, smaller values of ℎ!"($%)
'  have the lowest error rates, with the smallest 343 

value not significantly different than 5%. In panel B, we observe that small values of ℎ!"($%)
'  344 

result in low power, medium values of ℎ!"($%)
'  result in the greatest observed power, and 345 

(potentially unrealistically) large values of ℎ!"($%)
'  result in mediocre power. In panel C, 346 

estimates of ℎ!"($%)
'  are unbiased across sample sizes and different true values of ℎ!"($%)

' .	In 347 
panel D, there is greater null bias for small eQTL sample sizes and larger values of ℎ!"($%)

'  in the 348 
causal tissue. These patterns are similar when varying the value of 𝜔!"($%)	in Extended Data Fig. 349 
4.   350 

Fourth, we varied the number of causal tissues, considering 1, 2, or 3 causal tissues. We 351 
observed that the power of TCSC decreased with multiple causal tissues but did not differ 352 
greatly between 2 and 3 causal tissues (Supplementary Figs. 4-5); for causal tissues, estimates 353 
of ℎ!"($%)

'  were upward biased when setting 	𝐺$% to the number of true cis-heritable genes. 354 
Specifically, in Supplementary Fig. 4, we varied the number of causal tissues in the TCSC model. 355 
In panel A, the type I error tends to decrease with an increasing number of causal tissues. In 356 
panel B, the power to detect two or three causal tissues was significantly less than the power to 357 
detect a single causal tissue. In panel C, estimates of ℎ!"($%)

'  for causal tissues have anti-358 
conservative bias for two or more tissues. In panel D, null bias decreases when there are 359 
multiple causal tissues. We observe similar patterns in Supplementary Fig. 5 when varying the 360 
number of causal tissues in cross-trait TCSC simulations.   361 

Fifth, we varied the number of non-causal tissues from 0 to 9. For causal tissues, TCSC 362 
estimates were upward biased with fewer tagging tissues but unbiased with more tagging 363 
tissues (Extended Data Figs. 5-6). TCSC type I error and power were generally higher with fewer 364 
tagging tissues; this finding does not compromise our real trait analysis, which involve a large 365 
number of tissues. Specifically, in Extended Data Fig. 5, we varied the number of non-causal 366 
tissues in the TCSC regression. In panel A, type I error decreased when increasing the number of 367 
non-causal tissues. In panel B, power was greatest for one or two tagging tissues, but decreased 368 
with every additional tagging tissue. In panel C, the estimate of ℎ!"($%)

'  for causal tissues had 369 
anti-conservative bias when there were fewer than 9 tagging tissues and unbiased when there 370 
were 9 tagging tissues. In panel D, null bias of ℎ!"($%)

'  for non-causal tissues is not significantly 371 
different than zero where there is only one tagging tissue; the most extreme case of anti-372 
conservative null bias occurs at middle numbers of tagging tissues. We observed similar 373 
patterns for cross-trait TCSC in Extended Data Fig. 6. 374 

Sixth, we modified TCSC to not correct for bias in tissue co-regulation scores arising 375 
from differences between cis-genetic and cis-predicted expression. We determined that 376 
removal of bias correction resulted in conservative bias in estimates for causal tissues, 377 
increased type I error, and similar power (Supplementary Figs. 6-7).  378 

Seventh, we modified TCSC to apply bias correction to the calculation of all correlations 379 
of cis-predicted expression contributing to co-regulation scores rather than only those involving 380 



the same gene and tissue, which resulted in a decrease in power, anti-conservative bias in 381 
estimates for causal tissues, and similar type I error rate (Supplementary Figs. 8-9).  382 

Eighth, we modified TCSC to use bias-corrected co-regulation scores in the calculation of 383 
regression weights, which resulted in similar performance to the default setting 384 
(Supplementary Figs. 10-11). We note that regression weights pertain to maximizing signal to 385 
noise and not avoiding bias in estimates of ℎ!"($)' ; we continue to not perform bias correction 386 
when calculating regression weights, consistent with GCSC8.  387 

Ninth, we violated the model assumption that gene-disease effects are independent and 388 
identically distributed (i.i.d.) across tissues by including a second causal tissue whose gene-389 
disease effects correlate with varying degree to the gene-disease effects of the original causal 390 
tissue (Supplementary Figs. 12-13). We determined that while this increases noise to TCSC 391 
estimates, the estimates are generally unbiased and TCSC is able to powerfully identify the 392 
causal tissue, similar to the addition of a causal tissue where there are no shared gene-disease 393 
effects (see Supplementary Figs. 4-5).  394 

Tenth, we violated the i.i.d. model assumption by duplicating the causal tissue. We 395 
determined that TCSC performs well, (e.g. frequently identifies both tissues as causal and 396 
estimates ℎ!"($%)

'  for both tissues without bias) despite the violation of model assumption 397 
(Supplementary Fig. 14-15), similar to the previous analysis.  398 

Eleventh, we evaluated the robustness of TCSC in the presence of disease heritability 399 
that is not mediated via gene expression. We observed that all areas of TCSC performance are 400 
affected, with slightly increased type I error rates, decreased power in the case of larger non-401 
mediated heritability, and upward bias in estimates of ℎ!"($%)

'  for causal tissues (Supplementary 402 
Fig. 16-17). However, in simulations incorporating the four larger gene expression sample sizes 403 
(see above), we determined that the type I error of TCSC at a given level of non-mediated 404 
disease heritability does not increase with larger gene expression sample size (Supplementary 405 
Fig. 18-19).  406 

Finally, we evaluated the robustness of TCSC to variation in the window size used to 407 
identify co-regulated genes in the calculation of co-regulation scores and determined that TCSC 408 
performance was robust and type I error decreased with larger window sizes (Supplementary 409 
Fig. 20-21). 410 

 411 
Analyzing GTEx tissues 412 
 413 

We downloaded GTEx v8 gene expression data for 49 tissues. We excluded tissues with 414 
fewer than 100 samples, e.g. kidney cortex (n = 69). We retained only European samples for 415 
each tissue, as labeled by GTEx via PCA of genotypes. We constructed gene expression models 416 
for two scenarios: (1) subsampling to 320 individuals including meta-analyzed tissues (Table 1) 417 
or (2) using all European samples per tissue. We recommend meta-analyzing gene expression 418 
prediction models across tissues in the case of tissues with low eQTL sample size (e.g. < 320 419 
samples) and high pairwise genetic correlation (e.g. > 0.93). We determined in simulations that 420 
TCSC is sensitive to eQTL sample size differences, such that a tagging tissue with larger sample 421 
size than a causal tissue can produce false positive results; the subsampling approach was 422 
designed to mitigate this issue. For the subsampling procedure, we first set aside tissues with 423 



more than 320 samples; we chose 320 based on the average GTEx tissue sample size (N = 271) 424 
and robustness of TCSC in simulations at N = 300. Then, we grouped tissues with genetic 425 
correlation, e.g. marginal effect size correlation as reported by GTEx, with Rg > 0.93, an arbitrary 426 
threshold that produced biologically plausible groups of related tissues, separating groups of 427 
brain tissues based on cranial compartment. We meta-analyzed gene expression prediction 428 
models for these grouped tissues in order to achieve a total sample size of 320 individuals 429 
where each tissue contributed an approximately equal number of samples, using an inverse-430 
variance weighted meta-analysis across genes that were significantly cis-heritable in two or 431 
more constituent tissues. The prediction weights of genes that were significantly cis-heritable in 432 
a single constituent tissue were left unmodified.  433 
 434 
Extended primary analysis of tissue-specific contributions to diseases and complex traits. 435 
 436 
WHRadjBMI (waist-hip-ratio conditional on body mass index) and subcutaneous adipose tissue 437 
(𝜋$! 	= 0.10, s.e. = 0.037, P = 2.4 × 10./). A previous study comparing subcutaneous adipose 438 
tissue to visceral adipose tissue found that the level of adiponectin, a hormone released by 439 
adipose tissue to regulate insulin, is specifically associated with subcutaneous adipose tissue 440 
and not visceral adipose tissue; and, adiponectin levels are significantly negatively correlated 441 
with waist-hip-ratio14.  Furthermore, LDSC-SEG found WHRadjBMI to be associated not only 442 
with subcutaneous adipose, but also with visceral adipose tissue. While RTC Coloc finds many 443 
WHR-associated tissues, it was able to distinguish subcutaneous adipose (FDR = 2.9 × 10.0) 444 
from visceral adipose (FDR = 1). 445 
 446 
HDL (high density lipoprotein) with subcutaneous adipose tissue (𝜋$! 	= 0.159, s.e. = 0.054, P = 447 
1.5 × 10./) and whole blood (𝜋$! 	= 0.098, s.e. = 0.034, P = 1.8 × 10./). Previous work has 448 
implicated subcutaneous adipose tissue in mediating HDL levels, as this tissue stores cholesterol 449 
and expresses genes involved in cholesterol transport and HDL lipidation15. The relationship 450 
with whole blood is likely due to the role that red blood cells play in cholesterol transport, while 451 
being a large proportion of cells in whole blood samples16. Notably, TCSC did not identify liver 452 
as a causal tissue for HDL, and this might be due to the smaller eQTL sample size of liver which 453 
limits the power to detect this association.  454 
 455 
BMI (body mass index) and brain cerebellum (𝜋$! 	= 0.042, s.e. = 0.015, P = 2.6 × 10./). While 456 
several studies have found that the central nervous system is enriched for genetic variation 457 
associated with BMI and obesity17,2,18, the precise causal brain tissue is uncertain. Neither LDSC-458 
SEG nor RTC Coloc can distinguish between highly co-regulated brain tissues, such as the 459 
cerebellum and cortex. Previous studies have indicated that the brain cerebellum takes part in 460 
regulating feeding control (for example via connection to the hypothalamus) and therefore can 461 
have substantial impacts on obesity related traits and diseases19. Moreover, differential activity 462 
has been observed in the brain cerebellum in individuals experiencing hunger, thirst, or 463 
satiation19.  Furthermore, a different study associated the brain cerebellum with endocrine 464 
homeostasis, suggesting that the cerebellum plays several important biological roles, rather 465 
than strictly motor control20. A more recent multi-omics approach identified that cerebellar 466 



nuclei in mice are activated when they are eating and even suggests a potential therapeutic 467 
target for the management of excessive eating behavioral traits21.  468 
 469 
Fecundity and brain cerebellum (𝜋$! 	= 0.075, s.e. = 0.024, P = 9.1 × 10.0). This is consistent 470 
with the known relationship between fertility and energy metabolism, involving hormone 471 
secretion, which is largely regulated by the brain. However, previous studies have specifically 472 
linked fertility-related hormonal dysregulation to the hypothalamus and brainstem22,23.    473 
 474 
Total protein and fibroblasts (𝜋$! 	= 0.079, s.e. = 0.025, P = 7.0 × 10.0) and whole blood (𝜋$! 	= 475 
0.081, s.e. = 0.027, P = 1.5 × 10./). Fibroblasts are cells that play diverse roles across the 476 
tissues of the body, markedly producing protein complexes that constitute the extracellular 477 
matrices that define the structure of fibroblasts24. Serum protein is a quantity measured from 478 
whole blood, explaining the second relationship.  479 
 480 
Cerebral cortex surface area and fibroblasts (𝜋$! 	= 0.10, s.e. = 0.034, P = 1.8 × 10./). Tissue 481 
surface areas are likely related to developmental processes governing body proportions. As 482 
stated in the main text, TCSC identified fibroblasts (and skeletal muscle) as causal tissues for 483 
height, the most commonly studied anthropometric phenotype, which suggests that 484 
fibroblasts, as a connective tissue, likely regulates the growth of different organs and tissues.  485 

 486 
Lipid traits and liver: AST (𝜋$! 	= 0.077, s.e. = 0.025, P = 9.2 × 10.0), RBC width (𝜋$! 	= 0.077, s.e. 487 
= 0.027, P = 1.9 × 10./), total cholesterol (𝜋$! 	= 0.14, s.e. = 0.044, P = 5.3 × 10.0), Bilirubin 488 
(𝜋$! 	= 0.11, s.e. = 0.036, P = 1.0 × 10./). These causal tissue-trait pairs are reasonable as the 489 
liver is the production center of cholesterol and phospholipids.  490 
 491 
Blood cell traits and whole blood: eosinophil count (𝜋$! 	= 0.17, s.e. = 0.052, P = 6.5 × 10.0), 492 
lymphocyte count (𝜋$! 	= 0.22, s.e. = 0.053, P = 2.1 × 10.1), monocyte count (𝜋$! 	= 0.25, s.e. = 493 
0.078, P = 7.5 × 10.0). These causal tissue-trait pairs are reasonable as these different blood 494 
cell populations are present in whole blood.  495 
 496 
MDD (Major depressive disorder) and whole blood (𝜋$! 	= 0.068, s.e. = 0.022, P = 1.3 × 10./). 497 
This is consistent with reports of elevated immune system cytokines in MDD cases25. 498 
 499 
Secondary analysis of tissue-specific contributions to diseases and complex traits (N = 320 500 
tissues only) 501 
 502 
Tissues with smaller eQTL sample size may be underpowered in TCSC analysis. This prompted 503 
us to remove tissues with eQTL sample size less than 320 individuals. The number of causal 504 
tissue-trait pairs with significantly positive contributions to disease/trait heritability (at 5% FDR) 505 
increased from 21 to 23, likely due to a decrease in multiple hypothesis testing burden from 506 
removing underpowered tissues. The 23 significant tissue-trait pairs reflect a gain of 8 newly 507 
significant tissue-trait pairs (and a loss of 6 formerly significant tissue-trait pairs, of which 5 508 
were lost because the tissue was removed), but estimates of	𝜋$!  for each significant tissue-trait 509 
pair were not statistically different from our primary analysis (Supplementary Table 9). 510 



Notably, among the newly significant tissue-trait pairs, whole blood was associated with 511 
hypothyroidism (𝜋$! 	= 0.100, s.e. = 0.032, P = 8.9 × 10.0); we note that thyroid had a 512 
quantitatively large but only nominally significant association (𝜋$! 	= 0.452, s.e. = 0.225, P = 0.02, 513 
FDR = 26%). Esophagus muscularis (rather than lung tissue) was associated with the lung trait 514 
FEV1/FVC26 (𝜋$! 	= 0.167, s.e. = 0.056, P = 1.4 × 10./). This result may be explained by the fact 515 
that smooth muscle in the lung is known to affect FEV1/FVC and influence pulmonary disease 516 
pathopysiology27, and this unobserved causal tissue is likely highly co-regulated with the 517 
smooth muscle of the esophagus, which is indeed the site from which the GTEx study sampled 518 
the esophagus muscularis tissue5. Other newly significant findings are discussed below and 519 
numerical results for all tissues and diseases/traits are reported in Supplementary Table 8. 520 
 521 
BMI and tibial nerve: This is broadly consistent with the role of the central nervous system in 522 
BMI28,17,29,30,2,31, although the precise causal relationship that might exist between tibial nerve 523 
and BMI is not straightforward.  524 
 525 
Additional causal tissues for platelet count identified in this secondary analysis include brain 526 
cortex, esophagus muscularis, and fibroblasts. Regarding the brain, platelets are often found in 527 
blood vessels and are key participants in thrombosis, or the clotting of blood vessels32,33. 528 
Moreover, platelets have been linked to inflammation of death of neurons in the cortex and 529 
hippocampus34. Regarding the esophagus muscularis, high platelet counts are associated with 530 
greater severity of esophageal cancer, likely due to the angiogenic properties of platelets, e.g. 531 
creating new blood vessels35. Regarding fibroblasts, these cells are known to be recruited to 532 
sites of blood clots, caused by platelets, to remedy the clot36. Therefore, increased presence of 533 
fibroblasts likely reduces platelet activity in individuals with greater susceptibility to vascular 534 
clotting. While it is possible that platelet count may have a diverse tissue-specific genetic basis, 535 
this result could also be caused by an absent causal tissue or cell type that is co-regulated with 536 
these three newly detected tissues.   537 
 538 
Sleep duration and breast tissue: melatonin is a hormone whose levels are considered 539 
protective for breast cancer risk37. Melatonin is also a common supplement taken to promote 540 
sleep. However, melatonin is produced in the brain, and therefore the causal relationship from 541 
breast tissue to sleep duration is unclear.  542 
 543 
Height with fibroblasts and muscle skeletal tissue. Skin tissue has been shown to widely express 544 
growth factors, including embryonic growth factor which plays a key role in fetal 545 
development38. Fibroblasts are the predominant cell type of skin tissue. Skeletal muscle is one 546 
of the most likely causal tissues for anthropometric, or skeletal growth, traits such as height, 547 
consistent with previous genetic studies identifying enrichments of height-associated genetic 548 
variation near genes regulated in skeletal muscle17,2, which includes colocalization with eQTLs 549 
regulating key growth factors such as IGFBP-339.  550 
 551 
RBC count with fibroblasts and whole blood: Red blood cells and fibroblasts work together 552 
during tissue remodeling processes of extracellular matrices40,41. However, these studies 553 
suggest that red blood cells stimulate fibroblasts to secrete important tissue remodeling 554 



molecules, such as interleukin-8 and metalloproteinases. As a blood cell population, the causal 555 
relationship between whole blood and red blood cell count is expected.  556 
 557 
Eosinophil count with fibroblasts and muscle skeletal tissue: Similar to the role of red blood 558 
cells in tissue remodeling described above, eosinophils also interact with fibroblasts in tissue 559 
remodeling and fibrosis, although typically in response to inflammation and allergy42. 560 
Eosinophils have previously been implicated in myopathy, or muscular disease43, likely due to 561 
their recruitment in response to allergy, infection, or cancer.  562 
 563 
Testosterone and muscle skeletal tissue: atrophy of skeletal muscle is associated with lower 564 
levels of testosterone, a hormone produced by the testes and understood to be regulated by 565 
brain tissues44,45. These studies suggest that there is a causal relationship of testosterone on 566 
muscle skeletal tissue, rather than the reverse relationship suggested by TCSC. 567 
 568 
Secondary analysis of brain-specific contributions to diseases and complex traits 569 
While a subset of our diseases/traits are psychiatric and behavioral phenotypes, we sought to 570 
increase the power of our TCSC analysis by restricting tissues to those that are in the brain. We 571 
identified 41 independent brain-related traits, reflecting a less stringent squared genetic 572 
correlation threshold of 0.25. We relaxed our threshold so that we would have a substantial 573 
number of brain traits to analyze, as many would were excluded under the original threshold of 574 
0.1. The 13 GTEx brain tissues were analyzed without merging tissues into meta-tissues, and 575 
irrespective of eQTL sample size (range: N = 101-189 individuals); we expected power to be 576 
limited due to the eQTL small sample sizes and substantial co-regulation among individual brain 577 
tissues. TCSC identified 8 brain tissue-brain trait pairs at 5% FDR (Extended Data Fig. 8, 578 
Supplementary Table 12). For ADHD, TCSC identified brain hippocampus as a causal tissue 579 
(𝜋$! 	= 0.127, s.e. = 0.045, P = 2.5	 × 10./), consistent with the correlation between 580 
hippocampal volume and ADHD diagnosis in children46. A recent ADHD GWAS identified a locus 581 
implicating the FOXP2 gene47, which has been reported to regulate dopamine secretion in 582 
mice48; hippocampal activation results in the firing of dopamine neurons49. For BMI, TCSC 583 
identified brain amygdala (𝜋$! 	= 0.054, s.e. = 0.023, P = 8.3	 × 10./) and brain cerebellum (𝜋$! 	= 584 
0.039, s.e. = 0.016, P = 7.0	 × 10./) as causal tissues, consistent with previous work linking the 585 
amygdala to obesity and dietary self-control50, although no previous study has implicated the 586 
amygdala in genetic regulation of BMI. As for brain cerebellum, previous research has 587 
implicated the cerebellar function in dietary behavior, rather than strictly regulation motor 588 
control function20,19,21. We note that the brain-specific analysis is expected to have greater 589 
power to identify tissue-trait pairs than the analysis of Fig. 3 due to the smaller number of total 590 
tissues in the model (as simulations show higher power for TCSC when there are fewer tagging 591 
tissues; Extended Data Fig. 5). Numerical results for all brain tissues and brain traits analyzed 592 
are reported in Supplementary Table 12.  593 
 594 
Caudate volume and accumbens: In individuals with major depressive disorder, the basal 595 
ganglia, of which the nucleus accumbens is a component, has an attenuated response to 596 
positive stimuli compared to healthy controls; and, it has been observed that this associates 597 
with reduced caudate volume51.  598 



 599 
Anisotropy mode with accumbens and cerebellum: Mode of anisotropy reflects the 600 
organization of white matter fibers in the brain and is used to suggest abnormalities in brain 601 
connections52. Therefore, any brain tissue connected to white matter could be causal for 602 
morphological anisotropy mode; indeed the nucleus accumbens and cerebellum have 603 
connections to white matter53,54. 604 
 605 
Schizophrenia with brain frontal cortex, brain cerebellum, and brain caudate. The association 606 
with the frontal cortex is consistent with previous studies reporting differences in gray and 607 
white matter volumes in schizophrenia cases vs. controls within the prefrontal cortex55,56. 608 
Previous large-scale genetic studies identified enrichments of schizophrenia-associated variants 609 
in gene sets regulating excitatory and inhibitory neurons2,57,58, but did not distinguish the origin 610 
of this enrichment among the cortex, hippocampus, and amygdala. The association with the 611 
cerebellum might be due to its large proportion of neurons, and is also consistent with previous 612 
reports of decreased blood flow within the cerebellum in schizophrenia patients59. The 613 
association with caudate is consistent with early studies reporting schizophrenia-like 614 
characteristics in patients with damaged caudate projections60,61. While TCSC often identifies 615 
one causal tissue for a given trait, the identification of three causal tissues for schizophrenia 616 
may reflect a diverse tissue-specific genetic basis for the disease, the absence of the true causal 617 
tissue or cell type and its co-regulation with analyzed tissues, or the common presence of the 618 
true causal cell type among each of the three tissues. 619 
  620 
Bipolar disorder with caudate and cerebellum: This is consistent with previous work linking 621 
reduced cerebellar volume to anxiety-related disorders62,63 and is similarly consistent with 622 
previous work associating reduced caudate volumes with bipolar disorder64. 623 
 624 
Reaction time and cerebellum: This is consistent with previous studies in patients and monkeys 625 
with reduced reaction time and cerebellar lesions65. 626 
 627 
Cerebral cortex width with frontal cortex and spinal cord: Intuitively, the frontal cortex has a 628 
causal effect on the tissue of the same name. While the connection between spinal cord and 629 
cerebral cortex is not as straightforward, the spinal cord and hypothalamus are connected via 630 
hypothalamic projections66 and hypothalamic projections to the cerebral cortex are responsible 631 
for propagating autonomic signaling67. 632 
 633 
Starting age of smoking habit and frontal cortex: This is consistent with previous work reporting 634 
that development of the frontal cortex during adolescence is associated with behaviors and 635 
lifestyle choices, such as smoking68.  636 
 637 
Brainstem volume and spinal cord: This is consistent with the brainstem being the connection 638 
point of the brain to the spinal cord69. 639 
 640 
Brain-specific comparison across RTC Coloc, LDSC-SEG and TCSC  641 
 642 



In the brain-specific analysis, patterns of LDSC-SEG and RTC Coloc were striking. First, LDSC-SEG 643 
did not identify heritability enrichments in any brain tissues other than cerebellum and cortex, 644 
suggesting that these two tissues are the only disease relevant parts of the brain, although this 645 
is highly unlikely. For example, for four traits LDSC-SEG produced very similar enrichments for 646 
the frontal cortex and the cortex. TCSC attributed these associations to the brain cerebellum, 647 
and in the specific case of schizophrenia, also implicated the frontal cortex. Second, six of the 648 
ten brain traits, for which TCSC identified a causal tissue at 10% FDR, had no associated tissue 649 
according to LDSC-SEG; these traits coincided with traits not analyzed by the RTC Coloc study. 650 
We note that the RTC Coloc study did not analyze all GTEx tissues; brain amygdala, spinal cord, 651 
and substantia nigra were omitted from their study. Lastly, RTC Coloc found 8 of 8 tested 652 
tissues shown in Extended Data Fig. 10 to be associated with schizophrenia and four of 8 tested 653 
tissues to be associated with BMI, a superset of the tissues implicated by TCSC.  654 
 655 
Extended analysis of tissue-specific contributions to genetic covariance  656 
 657 
We note that the direction of effect of tissue-specific contributions to the genetic covariance 658 
between two traits may be in the opposite direction of the global covariance between two 659 
traits, analogous to how local contributions to genome-wide genetic correlation may be in the 660 
opposite direction of the genome-wide genetic correlation70-73. 661 
 662 
Before discussing all significant findings, we discuss two particularly compelling examples. First, 663 
brain substantia nigra had a significantly negative contribution to the genetic covariance of age 664 
at first birth and height (𝜁$!  = -0.11, s.e. = 0.032, P = 4.5 × 10.0). Previous work in C. elegans 665 
reported that fecundity is positively regulated by dopamine74,75, which is produced in the 666 
substantia nigra76. Therefore, it is plausible that reproductive outcomes related to fecundity, 667 
such as age at first birth, are also regulated by dopamine via the substantia nigra. Dopamine 668 
also plays a role in regulating the levels of key growth hormones such as IGF-1 and IGF-BP377 669 
and has been previously shown to be associated with height78. Second, pituitary had a 670 
significantly negative contribution to the genetic covariance of vitamin D and WHR | BMI (𝜁$!  = 671 
-0.19, s.e. = 0.057, P = 4.5 × 10.0). Irregularities in pituitary development are associated with 672 
decreased vitamin D levels and decreased IGF-1 levels, the latter of which is integral for bone 673 
development and is directly proportional to body proportion phenotypes such as WHR | BMI79-674 
81. 675 
 676 
Negative contribution of brain cortex to the genetic covariance of neuroticism and years of 677 
education (𝜁$!	= -0.10, s.e. = 0.029, P = 2.1 × 10.0). When certain personality traits underlie 678 
neuroticism, such as conscientiousness, neuroticism has been shown to be positively correlated 679 
with educational success82. The specific implication of the brain cortex, as opposed to other 680 
brain tissues, has not be reported previously in the literature. 681 
 682 
Positive contribution of the brain spinal cord to the genetic covariance of type 2 diabetes (T2D) 683 
and vitamin D (𝜁$!	= 0.17, s.e. = 0.052, P = 5.5 × 10.0). Vitamin D is a known neurosteroid, 684 
which affects various brain functions including calcium signaling and cellular differentiation83, 685 



and reduced vitamin D is a prominent risk factor for infectious diabetes as well as diabetes 686 
mellitus (a subset of which is T2D)84, explaining the negative covariance identified by TCSC.  687 
 688 
Negative contribution of breast tissue to the genetic covariance of white blood cell count and 689 
BMI (𝜁$!  = -0.16, s.e. = 0.041, P = 4.1 × 10.1). This observation is consistent with many previous 690 
studies reporting an association of elevated white blood cell counts with breast cancer, as these 691 
cells are a biomarker of inflammation and are predictive of other cancers and cardiovascular 692 
disease85-87. One of these studies investigated this relationship in the context of BMI and found 693 
that in premenopausal women, individuals with lower BMI and breast cancer had elevated 694 
white blood cell counts87. This direction of effect is consistent with TCSC’s detection of tissue-695 
specific negative covariance between white blood cell count and BMI, despite a genome-wide 696 
positive genetic correlation of these two traits.   697 
 698 
Negative contribution of lung to the genetic covariance of age at first birth and intelligence (𝜁$!  699 
= -0.096, s.e. = 0.026, P = 1.2 × 10.0). First, previous work has found that older age at first birth 700 
is associated with reduced risk of lung cancer involving regulation by steroid hormones; and 701 
while some studies consider age at first birth to be a causal protective factor, this relationship 702 
might be better explained by reverse causality88-91. Indeed, TCSC is not impacted by reverse 703 
causality as phenotype cannot influence gene expression-modifying genetic variation. Second, 704 
positive health outcomes, including lung function, are genetically associated with cognitive 705 
traits in GWAS, although the causal mechanisms are poorly understood92-94. However, the 706 
direction of effect estimated by TCSC is inconsistent with these findings, possibly suggesting 707 
distinct causal mechanisms of lung tissue on these traits.  708 
 709 
Negative contribution of lung to the genetic covariance of intelligence and years of education 710 
(𝜁$!  = -0.045, s.e. = 0.013, P = 2.2 × 10.0). As stated above, we would expect lung genes with a 711 
positive effect on intelligence to have a consistent direction of effect on years of education. 712 
While this is not what TCSC concludes, this may suggest distinct causal mechanisms of lung 713 
tissue on these traits.    714 
 715 
Negative contribution of pituitary to the genetic covariance of vitamin D and WHRadjBMI (𝜁$!  = 716 
-0.19, s.e. = 0.057, P = 4.5 × 10.0). Previous work has established a relationship between 717 
vitamin D and bone structure development, which is directly related to WHRadjBMI80. Other 718 
work has suggested that this may be due to the positive correlation between vitamin D levels 719 
and growth hormone levels, such as IGF-179. Moreover, irregularities in pituitary development 720 
(specifically pituitary stalk interruption syndrome) are associated with reduced IGF-1, in which 721 
individuals also have reduced serum levels of vitamin D81. 722 
 723 
Contributions to the genetic covariance of eosinophil count and platelet count by lung(𝜁$!  = -724 
0.20, s.e. = 0.068, P = 1.5 × 10./), ovary (𝜁$!  = -0.15, s.e. = 0.052, P = 2.2 × 10./), skin (𝜁$!  = 725 
0.28, s.e. = 0.087, P = 7.1 × 10.0), and whole blood (𝜁$!  = 0.30, s.e. = 0.105, P = 2.2 × 10./). 726 
Eosinophils and platelets are highly co-regulated, with eosinophils secreting platelet-activating 727 
enzymes95. Therefore, it is expected that across multiple tissues, genes have pleiotropic effects 728 



on eosinophil count and platelet counts. It is also possible that such genes have a direct effect 729 
on eosinophil count and a secondary effect mediated be eosinophils on platelet count.  730 
 731 
Negative contribution of vagina to the genetic covariance of testosterone and vitamin D (𝜁$!  = -732 
0.25, s.e. = 0.079, P = 6.5 × 10.0). Previous work has shown that vaginal tissue growth and 733 
differentiation were improved as a result of increased vitamin D levels96. Similarly, testosterone 734 
is a hormone that plays a key role in healthy vaginal function97. Since TCSC detected negative 735 
covariance for these two traits, it is likely that they are regulated by distinct sets of genes. 736 
 737 
Negative contribution of whole blood to the genetic covariance of age at first birth and 738 
rheumatoid arthritis (𝜁$!  = -0.17, s.e. = 0.053, P = 6.6 × 10.0). The association between 739 
rheumatoid arthritis (RA) and whole blood, which is comprised of many immune cell types, is 740 
logical. However, previous work has not reported an association between whole blood, or the 741 
immune system, and age at first birth. Moreover, it is not immediately clear why genes that 742 
increase risk for RA would also increase age at first birth. We hypothesize that the underlying 743 
mechanism pertains to age-related changes in an individual’s immune system which might 744 
affect reproductive behavior later in life, as risk for RA and other autoimmune diseases 745 
increases.  746 
 747 
Negative contribution of spleen to the genetic covariance of major depressive disorder (MDD) 748 
and BMI (𝜁$!  = -0.29, s.e. = 0.039, P = 7.3 × 10.0). As discussed above, whole blood was 749 
detected as causal tissue for MDD likely due to the role of the cytokines in regulation of MDD; 750 
the spleen plays a key role in the immune system.  It is widely known that obesity, or high BMI, 751 
is associated with irregularities in immune cell counts98. 752 
 753 
Negative contribution of coronary artery to the genetic covariance of years of education and 754 
menopause age (𝜁$!  = -0.13, s.e. = 0.115, P = 7.3 × 10.0). This is consistent with previous work 755 
indicating that reduced coronary artery disease risk is associated with more years of education 756 
via a Mendelian randomization study99. Late menopause is considered a protective factor 757 
coronary artery disease100. This biological consistency would suggest a positive covariance, 758 
therefore we might conclude that distinct sets of genes regulate years of education and 759 
menopause age in coronary artery.  760 
 761 
Positive contribution of aorta artery to the genetic covariance of mode of anisotropy and 762 
menopause age (𝜁$!  = 0.27, s.e. = 0.084, P = 7.8 × 10.0). Previous work has associated 763 
calcification in the aorta with bone loss, specifically in postmenopausal women101. Mode of 764 
anisotropy, from brain MRI which is a measure of structural cellular organization, is not a well-765 
studied complex trait and has a lack of literature evidence to support any role for aorta, and 766 
similarly for any other tissue.  767 
 768 
Contributions to the genetic covariance of anorexia and insomnia by tibial nerve (𝜁$!  = 0.20, s.e. 769 
= 0.063, P = 7.8 × 10.0), testis (𝜁$!  = 0.18, s.e. = 0.062, P = 1.7 × 10./), and whole blood (𝜁$!  = -770 
0.14, s.e. = 0.053, P = 3.9 × 10./). The explanation for tibial nerve can be found in the main 771 
text. The association with whole blood might be explained by previous work demonstrating the 772 



role of the immune system in anorexia102 and insomnia103. The immune regulation impacting 773 
insomnia is specifically discussed in the context of the central nervous system, further 774 
supporting the association with the tibial nerve, a central nervous system tissue. Testis size has 775 
also been associated with sleep irregularities104. Separately, the reduced production of the 776 
androgen hormone in the testis, or hypogonadism, is a comorbidity of male anorexia105. 777 
 778 
Negative contribution of prostate to the genetic covariance of medication use and years of 779 
education (𝜁$!  = -0.075, s.e. = 0.024, P = 7.8 × 10.0). This is consistent with previous studies 780 
establishing a negative association between drug use and prostate health outcomes106. The 781 
positive covariance detected with years of education is not supported by any literature 782 
evidence and could be a false positive. 783 
 784 
Positive contribution of muscle skeletal to the genetic covariance of brain accumbens volume 785 
and caudate volume (𝜁$!  = 0.20, s.e. = 0.063, P = 8.0 × 10.0). Previous work indicates that 786 
musculoskeletal tissue likely influences biological processes the brain via regulation of energy 787 
metabolism107.  788 
 789 
Negative contribution of muscle skeletal to the genetic covariance of total protein and 790 
WHRadjBMI (𝜁$!  = -0.27, s.e. = 0.084, P = 8.0 × 10.0). This is consistent with known regulation 791 
in musculoskeletal tissue influencing waist-hip-ratio108. Musculoskeletal tissue is also related to 792 
protein levels, as restricted protein intake leads to dysregulation and morphology of skeletal 793 
muscle109.  794 
 795 
Negative contribution of skin to the genetic covariance of height and FVC (𝜁$!  = -0.47, s.e. = 796 
0.155, P = 1.2 × 10./). Height and forced vital capacity (FVC) are genetically correlated as both 797 
are affected by body proportions and growth-regulating processes. Skin tissue has been shown 798 
to widely express growth factors, including embryonic growth factor which plays a key role in 799 
fetal development38.  800 
 801 
Negative contribution of lung to the genetic covariance of age at first birth and menopause age 802 
(𝜁$!  = -0.20, s.e. = 0.067, P = 1.3 × 10./). This is consistent with a negative association between 803 
earlier menopause age and healthy pulmonary function110,111. As described above, older age at 804 
first birth is associated with improved lung cancer outcomes112. 805 
 806 
Negative contribution of adipose subcutaneous to the genetic covariance of bipolar disorder 807 
and major depressive disorder (𝜁$!  = -0.18, s.e. = 0.051, P = 2.7 × 10.0). This is consistent with 808 
an expanding body of literature supporting a bidirectional link between obesity and 809 
depression113. 810 
 811 
Negative contribution of the meta-tissue brain limbic to the genetic covariance of risk tolerance 812 
and schizophrenia (𝜁$!  = -0.15, s.e. = 0.049, P = 8.5 × 10.0). Risk taking (or impulsivity) has 813 
previously been linked to both schizophrenia and bipolar disorder114.  814 
 815 
Extended analysis of differences in tissue-specific contributions to heritability vs. covariance  816 



 817 
We note that 𝜁$!  and 𝜋$!  are both signed proportions and are therefore on the same scale, thus 818 
the scenario in which these two quantities are equal is a natural and parsimonious null. 819 
 820 
Negative contribution of skin (sun exposed) to the genetic covariance of height and FVC: Skin 821 
does not explain a nonzero proportion of heritability for height or FVC; however, skin does 822 
explain a significant amount of positive covariance, although the genome-wide covariance of 823 
this trait pair is negative. 824 
  825 
Negative contribution of breast to the genetic covariance of WBC count and BMI: Breast is not a 826 
causal tissue for either trait, although it does explain a significant amount of negative 827 
covariance between the two traits, although the genome-wide covariance of this trait pair is 828 
positive. 829 
 830 
Negative contribution of brain cortex to the genetic covariance of years of education and 831 
neuroticism: Brain cortex is not a causal tissue for either trait, consistent with what we found in 832 
the brain-specific analysis. However, brain cortex explains a significant amount of positive 833 
covariance between the two traits, although the genome-wide covariance is negative.  834 
 835 
Negative contribution of pituitary to the genetic covariance of vitamin D and WHRadjBMI: 836 
While pituitary does not explain a nonzero proportion of the heritability of either trait, it does 837 
explain a significant amount of positive covariance between the two traits, although the 838 
genome-wide covariance is negative. 839 
 840 
Other tissue-trait association methods 841 
 842 
MaxCPP models contributions to heritability enrichment of fine-mapped eQTL variants across 843 
tissues or meta-tissues115; although this approach proved powerful when analyzing eQTL effects 844 
that were meta-analyzed across all tissues, it has limited power to identify disease-critical 845 
tissues: fine-mapped eQTL annotations for blood (resp. brain) were significant conditional on 846 
annotations constructed using all tissues only when meta-analyzing results across a large set of 847 
blood (resp. brain) traits (Fig. 4 of ref.115). eQTLenrich compares eQTL enrichments of disease-848 
associated variants across tissues116; this approach produced compelling findings for eQTL that 849 
were aggregated across tissues, but tissue-specific analyses often implicated many tissues (Fig. 850 
1d of ref.116). MESC estimates the proportion of heritability causally mediated by gene 851 
expression in assayed tissues117; this study made a valuable contribution in its strict definition 852 
and estimation of mediated effects (see below), but did not jointly model distinct tissues and 853 
had limited power to distinguish disease-critical tissues (Fig. 3 of ref.117). CAFEH leverages multi-854 
trait fine-mapping methods to simultaneously evaluate all tissues for colocalization with 855 
disease118; however, this locus-based approach does not produce genome-wide estimates and 856 
it remains the case that many (causal or tagging) tissues may colocalize with disease under this 857 
framework. Likewise, methods for identifying tissues associated to disease/trait covariance do 858 
not distinguish causal tissues from tagging tissues119,120. 859 
 860 



Other limitations 861 
 862 

1. TCSC has low power at small eQTL sample sizes; in addition, TCSC estimates are 863 
impacted by the number of significantly cis-heritable genes in a focal tissue, which can 864 
lead to conservative bias at small eQTL sample sizes. We anticipate that these 865 
limitations will become less severe as eQTL sample sizes increase.  866 

2. TCSC is susceptible to large variations in eQTL sample size, which may compromise type 867 
I error; therefore, there is a tradeoff between maximizing the number of tissues 868 
analyzed and limiting the variation in eQTL sample size. 869 

3. TCSC assumes that causal gene expression-disease effects are independent across 870 
tissues; this assumption may become invalid for tissues and cell types assayed at high 871 
resolution. However, we verified via simulations that TCSC performs well when this 872 
model assumption is violated (Supplementary Figs. 12-15). 873 

4. TCSC does not formally model measurement error in tissue co-regulation scores, but 874 
instead applies a heuristic bias correction. We determined that the bias correction 875 
generally performs well in simulations. 876 

5. Eighth, TCSC does not produce locus-specific estimates or identify causal tissues at 877 
specific loci. However, genome-wide results from TCSC may be used as a prior for locus-878 
based methods (analogous to GWAS fine-mapping with functional priors121). 879 

6. We did not apply TCSC to single-cell RNA-seq (scRNA-seq) data, which represents a 880 
promising new direction as scRNA-seq sample sizes increase122-124,6; we caution that 881 
scRNA-seq data may require new eQTL modeling approaches122. 882 

7. Finally, we focused our cross-trait analyses on relatively independent traits from the 883 
single-trait analysis, to enable comparisons with single-trait results (Fig. 5B, 5C); cross-884 
trait analysis of more strongly genetically correlated traits is a future direction of high 885 
interest. 886 
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Supplementary Figures 904 

 905 
Supplementary Figure 1. Type I error of TCSC regression in simulations with large variations in 906 
eQTL sample size of non-causal tissues. We performed n = 1,000 independent simulated 907 
genetic architectures in which each simulation had one causal tissue (gene expression sample 908 
size = 300 individuals) and nine non-causal tissues with the following sample sizes: 300, 200, 909 
300, 500, 1,000, 1500, 200, 300, 500. (A) We report the false positive rate for non-causal tissues 910 
as ℎ!"($%)

'   > 0 at p < 0.05 which is not well-controlled, demonstrating the need for comparable 911 
gene expression sample sizes across tissues in TCSC. (B) We report the false positive rate for 912 
non-causal tissues as 𝜔!"($%)	> 0 at p < 0.05 which is not well-controlled, demonstrating the 913 
need for comparable gene expression sample sizes across tissues in TCSC. For panels A and B, 914 
we used a one-sided z-test and the genomic block jackknife standard error to obtain p-values 915 
and data are presented as mean values +/- 1.96 x SEM.  916 
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 918 

 919 

Supplementary Figure 2. Robustness and power of TCSC regression in simulations when the 920 
causal tissue has fewer cis-heritable genes than tagging tissues. (A) Type I error when 921 
changing the number of expressed genes in the causal tissue. False positive event is defined as 922 
ℎ!"($%)
' 	> 0 for non-causal tissues at p < 0.05. (B) Power to detect the causal tissue per scenario. 923 

A true positive event is defined as ℎ!"($%)
'  > 0 for causal tissues at p < 0.05. (C) Bias on causal 924 

estimates of ℎ!"($%)
' 	for different scenarios. (D) Bias on non-causal estimates of ℎ!"($%)

' 	for 925 
different scenarios. (E) Bias on causal estimates of ℎ!"($%)

' 	for different scenarios. (F) Bias on 926 
non-causal estimates of ℎ!"($%)

' 	for different scenarios. For panels C and D, 	𝐺$% is set to the total 927 
number of unique cis-heritable genes across all tissues. For panels E and F, 𝐺$% is set to the 928 
number of significantly cis-heritable genes detected in each tissue. For panels C and E, dashed 929 
lines indicate true value of ℎ!"($%)

' . In all panels, we performed n = 1,000 independent simulated 930 
genetic architectures across different eQTL sample sizes (n = 100, 200, 300, 500, 1000, 1500); 931 
we used a one-sided z-test and the genomic block jackknife standard error to obtain p-values 932 
and data are presented as mean values +/- 1.96 x SEM.  933 
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 935 
Supplementary Figure 3. Robustness and power of TCSC regression in simulations when the 936 
causal tissue has fewer cis-heritable genes than tagging tissues. (A) Type I error when 937 
changing the number of expressed genes in the causal tissue. False positive event is defined as 938 
𝜔!"($%)	> 0 for non-causal tissues at p < 0.05. (B) Power to detect the causal tissue per scenario. 939 
A true positive event is defined as 𝜔!"($%)	> 0 for causal tissues at p < 0.05. (C) Bias on causal 940 
estimates of 𝜔!"($%)	for different scenarios. (D) Bias on non-causal estimates of 𝜔!"($%)	for 941 
different scenarios. (E) Bias on causal estimates of 𝜔!"($%)	for different scenarios. (F) Bias on 942 
non-causal estimates of 𝜔!"($%)	for different scenarios. For panels C and D, 	𝐺$% is set to the total 943 
number of unique cis-heritable genes across all tissues. For panels E and F, 𝐺$% is set to the 944 
number of significantly cis-heritable genes detected in each tissue. For panels C and E, dashed 945 
lines indicate true value of 𝜔!"($%). In all panels, we performed n = 1,000 independent simulated 946 
genetic architectures across different eQTL sample sizes (n = 100, 200, 300, 500, 1000, 1500); 947 
we used a one-sided z-test and the genomic block jackknife standard error to obtain p-values 948 
and data are presented as mean values +/- 1.96 x SEM.   949 
 950 
 951 
 952 
 953 
 954 

0.00

0.01

0.02

100 200 300 500 1000 1500
eQTL sample size

Es
tim

at
ed

 c
ov

ge
(t 

ta
gg

in
g)

Causal_Tissue
500 cis−h2 genes
375 cis−h2 genes
225 cis−h2 genes
100 cis−h2 genes

Cross−trait TCSC (covariance)

0.0

0.1

0.2

0.3

0.4

0.5

100 200 300 500 1000 1500
eQTL sample size

Es
tim

at
ed

 c
ov

ge
(t 

ca
us

al
)

Causal_Tissue
500 cis−h2 genes
375 cis−h2 genes
225 cis−h2 genes
100 cis−h2 genes

Cross−trait TCSC (covariance)

0.0

2.5

5.0

7.5

10.0

12.5

100 200 300 500 1000 1500
eQTL sample size

Ty
pe

 1
 E

rro
r (

%
)

Causal_Tissue
500 cis−h2 genes
375 cis−h2 genes
225 cis−h2 genes
100 cis−h2 genes

Cross−trait TCSC (covariance)

0

20

40

60

80

100 200 300 500 1000 1500
eQTL sample size

Po
we

r (
%

) Causal_Tissue
500 cis−h2 genes
375 cis−h2 genes
225 cis−h2 genes
100 cis−h2 genes

Cross−trait TCSC (covariance)

0.000

0.002

0.004

0.006

100 200 300 500 1000 1500
eQTL sample size

Es
tim

at
ed

 c
ov

ge
(t 

ta
gg

in
g)

Causal_Tissue
500 cis−h2 genes
375 cis−h2 genes
225 cis−h2 genes
100 cis−h2 genes

Cross−trait TCSC (covariance)

0.00

0.01

0.02

0.03

0.04

0.05

100 200 300 500 1000 1500
eQTL sample size

Es
tim

at
ed

 c
ov

ge
(t 

ca
us

al
)

Causal_Tissue
500 cis−h2 genes
375 cis−h2 genes
225 cis−h2 genes
100 cis−h2 genes

Cross−trait TCSC (covariance)

D

A B

C

FE



 955 
 956 
Supplementary Figure 4. Robustness and power of TCSC regression in simulations with 957 
different numbers of causal tissues. (A) Type I error for each different causal tissue 958 
architecture. A single causal tissue (pink) represents the primary simulation analysis. Other 959 
architectures include two causal tissues (green) and three causal tissues (blue). False positive 960 
event defined as ℎ!"($%)

' 	> 0 for non-causal tissues at p < 0.05. (B) Power to detect the causal 961 
tissue, defined by ℎ!"($%)

' 	> 0 for causal tissues at p < 0.05. (C) Bias on estimates of ℎ!"($%)
' 	in 962 

causal tissues for different numbers of causal tissues in the model. The dashed line indicates 963 
that the true value of ℎ!"($%)

' 	= 0.1. (D) Bias on estimates of ℎ!"($%)
' 	in non-causal tissues for 964 

different numbers of causal tissues in the model. In all panels, we performed n = 1,000 965 
independent simulated genetic architectures across different eQTL sample sizes (n = 100, 200, 966 
300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife standard 967 
error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The value of	𝐺$% 968 
is set to the total number of unique cis-heritable genes across all tissues. 969 
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 971 
Supplementary Figure 5. Robustness and power of cross-trait TCSC regression in simulations 972 
with different numbers of causal tissues. (A) Type I error for each different causal tissue 973 
architecture. A single causal tissue (pink) represents the primary simulation analysis. Other 974 
architectures include two causal tissues (green) and three causal tissues (blue). False positive 975 
event defined as 𝜔!"($%)	> 0 for non-causal tissues at p < 0.05. (B) Power to detect the causal 976 
tissue, defined by 𝜔!"($%)	> 0 for causal tissues at p < 0.05. (C) Bias on estimates of 𝜔!"($%)	in 977 
causal tissues for different numbers of causal tissues in the model. The dashed line indicates 978 
that the true value of 𝜔!"($%)	= 0.05. (D) Bias on estimates of 𝜔!"($%)	in non-causal tissues for 979 
different numbers of causal tissues in the model. In all panels, we performed n = 1,000 980 
independent simulated genetic architectures across different eQTL sample sizes (n = 100, 200, 981 
300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife standard 982 
error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The value of	𝐺$% 983 
is set to the total number of unique cis-heritable genes across all tissues. 984 
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 986 

 987 
Supplementary Figure 6. Robustness and power of TCSC regression with or without correction 988 
for bias in tissue co-regulation scores in simulations. (A) Type I error for each of two scenarios: 989 
(1) “BiasCorr”: tissue co-regulation scores estimated using bias correction as in primary 990 
simulations (pink) vs (2) “NoBiasCorr”: tissue co-regulation scores estimated without bias 991 
correction (green). False positive event defined as ℎ!"($%)

'  > 0 for non-causal tissues at p < 0.05. 992 
(B) Power to detect the causal tissue, in which ℎ!"($%)

'  > 0 for causal tissues at p < 0.05. (C) Bias 993 
on estimates of causal and non-causal ℎ!"($%)

'  whose true values are 0.1 (purple bars) and 0 994 
(gray bars), respectively, in the scenario of using no bias correction on tissue co-regulation 995 
scores. In all panels, we performed n = 1,000 independent simulated genetic architectures 996 
across different eQTL sample sizes (n = 100, 200, 300, 500, 1000, 1500); we used a one-sided z-997 
test and the genomic block jackknife standard error to obtain p-values and data are presented 998 
as mean values +/- 1.96 x SEM. The value of	𝐺$% is set to the total number of unique cis-999 
heritable genes across all tissues.  1000 
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 1018 
Supplementary Figure 7. Robustness and power of cross-trait TCSC regression with or without 1019 
correction for bias in tissue co-regulation scores in simulations. (A) Type I error for each of two 1020 
scenarios: (1) “BiasCorr”: tissue co-regulation scores estimated using bias correction as in 1021 
primary simulations (pink) vs (2) “NoBiasCorr”: tissue co-regulation scores estimated without 1022 
bias correction (green). False positive event defined as 𝜔!"($%) > 0 for non-causal tissues at p < 1023 
0.05. (B) Power to detect the causal tissue, in which 𝜔!"($%) > 0 for causal tissues at p < 0.05. (C) 1024 
Bias on estimates of causal and non-causal 𝜔!"($%) whose true values are 0.05 (purple bars) and 1025 
0 (gray bars), respectively, in the scenario of using no bias correction on tissue co-regulation 1026 
scores. In all panels, we performed n = 1,000 independent simulated genetic architectures 1027 
across different eQTL sample sizes (n = 100, 200, 300, 500, 1000, 1500); we used a one-sided z-1028 
test and the genomic block jackknife standard error to obtain p-values and data are presented 1029 
as mean values +/- 1.96 x SEM. The value of	𝐺$% is set to the total number of unique cis-1030 
heritable genes across all tissues.  1031 
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 1051 

Supplementary Figure 8. Robustness and power of single-trait TCSC regression without 1052 
(default) or with bias correction applied to all pairs of tissues in simulations. (A) Type I error 1053 
for each of two scenarios: (1) “BiasCorr”: tissue co-regulation scores estimated using bias 1054 
correction as in primary simulations, e.g. when t = t’ (pink) vs (2) “BiasCorr_AllTissues”: tissue 1055 
co-regulation scores estimated using bias correction applied to all correlations of predicted 1056 
gene expression (green). False positive event defined as ℎ!"($%)

' > 0 for non-causal tissues at p < 1057 
0.05. (B) Power to detect the causal tissue, in which ℎ!"($%)

' > 0 for causal tissues at p < 0.05. (C) 1058 
Bias on estimates of causal and non-causal ℎ!"($%)

' whose true values are 0.1 (purple bars) and 0 1059 
(gray bars), respectively, in the scenario of using bias correction applied to all correlations of 1060 
predicted gene expression in co-regulation scores. In all panels, we performed n = 1,000 1061 
independent simulated genetic architectures across different eQTL sample sizes (n = 100, 200, 1062 
300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife standard 1063 
error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The value of	𝐺$% 1064 
is set to the total number of unique cis-heritable genes across all tissues. 1065 
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 1074 

Supplementary Figure 9. Robustness and power of cross-trait TCSC regression without 1075 
(default) or with bias correction applied to all pairs of tissues in simulations. (A) Type I error 1076 
for each of two scenarios: (1) “BiasCorr”: tissue co-regulation scores estimated using bias 1077 
correction as in primary simulations, e.g. when t = t’ (pink) vs (2) “BiasCorr_AllTissues”: tissue 1078 
co-regulation scores estimated using bias correction applied to all correlations of predicted 1079 
gene expression (green). False positive event defined as 𝜔!"($%)	> 0 for non-causal tissues at p < 1080 
0.05. (B) Power to detect the causal tissue, in which 𝜔!"($%)	> 0 for causal tissues at p < 0.05. (C) 1081 
Bias on estimates of causal and non-causal 𝜔!"($%)	whose true values are 0.05 (purple bars) and 1082 
0 (gray bars), respectively, in the scenario of using bias correction applied to all correlations of 1083 
predicted gene expression in co-regulation scores. In all panels, we performed n = 1,000 1084 
independent simulated genetic architectures across different eQTL sample sizes (n = 100, 200, 1085 
300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife standard 1086 
error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The value of	𝐺$% 1087 
is set to the total number of unique cis-heritable genes across all tissues. 1088 
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 1105 

Supplementary Figure 10. Robustness and power of TCSC regression without (default) or with 1106 
bias correction for tissue co-regulation scores used to calculate regression weights in 1107 
simulations. (A) Type I error for each of two scenarios: (1) “NoBiasCorr_RegressionWeights”: 1108 
regression weights calculated using uncorrected tissue co-regulation scores as in primary 1109 
simulations (pink) vs (2) “BiasCorr_RegressionWeights”: regression weights calculated using 1110 
bias-corrected tissue co-regulation scores (green). False positive event defined as ℎ!"($%)

'  > 0 for 1111 
non-causal tissues at p < 0.05. (B) Power to detect the causal tissue, in which ℎ!"($%)

'  > 0 for 1112 
causal tissues at p < 0.05. (C) Bias on estimates of causal and non-causal ℎ!"($%)

'  whose true 1113 
values are 0.1 (purple bars) and 0 (gray bars), respectively, in the scenario of calculating 1114 
regression weights using bias-corrected tissue co-regulation scores. In all panels, we performed 1115 
n = 1,000 independent simulated genetic architectures across different eQTL sample sizes (n = 1116 
100, 200, 300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife 1117 
standard error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The 1118 
value of	𝐺$% is set to the total number of unique cis-heritable genes across all tissues.  1119 
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 1136 

Supplementary Figure 11. Robustness and power of cross-trait TCSC regression with or 1137 
without correction for bias in tissue co-regulation scores in simulations. (A) Type I error for 1138 
each of two scenarios: (1) “NoBiasCorr_RegressionWeights”: regression weights calculated 1139 
using uncorrected tissue co-regulation scores as in primary simulations (pink) vs (2) 1140 
“BiasCorr_RegressionWeights”: regression weights calculated using bias-corrected tissue co-1141 
regulation scores (green). False positive event defined as 𝜔!"($%) > 0 for non-causal tissues at p 1142 
< 0.05. (B) Power to detect the causal tissue, in which 𝜔!"($%) > 0 for causal tissues at p < 0.05. 1143 
(C) Bias on estimates of causal and non-causal 𝜔!"($%) whose true values are 0.05 (purple bars) 1144 
and 0 (gray bars), respectively, in the scenario of calculating regression weights using bias-1145 
corrected tissue co-regulation scores. In all panels, we performed n = 1,000 independent 1146 
simulated genetic architectures across different eQTL sample sizes (n = 100, 200, 300, 500, 1147 
1000, 1500); we used a one-sided z-test and the genomic block jackknife standard error to 1148 
obtain p-values and data are presented as mean values +/- 1.96 x SEM. The value of	𝐺$% is set to 1149 
the total number of unique cis-heritable genes across all tissues. 1150 
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 1161 
 1162 
Supplementary Figure 12. Robustness of cross-trait TCSC regression in simulations with two 1163 
causal tissues with varying levels of correlated gene expression-trait effects. We demonstrate 1164 
how TCSC would behave when there are two causal tissues with correlation gene-trait effects 1165 
(𝛼!$), each tissue of which contributes 5% heritability to the trait. This is a model violation 1166 
where TCSC assumes that gene expression-trait effects are i.i.d. (A) Type I error while varying 1167 
the correlation between the 𝛼!$ of each causal tissue. False positive event defined as ℎ!"($%)

'  > 0 1168 
for non-causal tissues at p < 0.05. (B) Power to detect the causal tissues in which ℎ!"($%)

' 	> 0 for 1169 
causal tissues at p < 0.05. (C) Bias on estimates of ℎ!"($%)

' 	for the causal tissue, while varying the 1170 
correlation between the 𝛼!$ of each causal tissue. The dashed line indicates that the true value 1171 
of ℎ!"($%)

'  for either causal tissue. (D) Bias on estimates of ℎ!"($%)
' 	for non-causal tissues, while 1172 

varying the correlation between the 𝛼!$ of each causal tissue. In all panels, we performed n = 1173 
1,000 independent simulated genetic architectures across different eQTL sample sizes (n = 100, 1174 
200, 300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife 1175 
standard error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The 1176 
value of	𝐺$% is set to the total number of unique cis-heritable genes across all tissues. 1177 
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 1179 
 1180 
Supplementary Figure 13. Robustness of cross-trait TCSC regression in simulations with two 1181 
causal tissues with varying levels of correlated gene expression-trait effects. We demonstrate 1182 
how TCSC would behave when there are two causal tissues with correlation gene-trait effects 1183 
(𝛼!$), each tissue of which contributes 5% heritability to the trait. This is a model violation 1184 
where TCSC assumes that gene expression-trait effects are i.i.d. (A) Type I error while varying 1185 
the correlation between the 𝛼!$ of each causal tissue. False positive event defined as 𝜔!"($%) > 0 1186 
for non-causal tissues at p < 0.05. (B) Power to detect the causal tissues in which 𝜔!"($%)	> 0 for 1187 
causal tissues at p < 0.05. (C) Bias on estimates of 𝜔!"($%)	for the causal tissue, while varying the 1188 
correlation between the 𝛼!$ of each causal tissue. The dashed line indicates that the true value 1189 
of 𝜔!"($%) for either causal tissue. (D) Bias on estimates of 𝜔!"($%)	for non-causal tissues, while 1190 
varying the correlation between the 𝛼!$ of each causal tissue. In all panels, we performed n = 1191 
1,000 independent simulated genetic architectures across different eQTL sample sizes (n = 100, 1192 
200, 300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife 1193 
standard error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The 1194 
value of	𝐺$% is set to the total number of unique cis-heritable genes across all tissues. 1195 
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 1207 
Supplementary Figure 14. Robustness of single-trait TCSC regression in simulations with two 1208 
causal tissues with identical gene expression-trait effects. We demonstrate how TCSC would 1209 
behave when there are two identical tissues contributing the same genetic component of gene 1210 
expression to the trait. This is a model violation where TCSC assumes that gene expression-trait 1211 
effects are i.i.d. To the original and duplicated causal tissue, we added a small amount of noise 1212 
(with mean 0, variance 0.0025) to the tissue co-regulation scores of each duplicated tissue to 1213 
avoid collinearity in the multiple linear regression. (A) Type I error; false positive event defined 1214 
as ℎ!"($%)

'  > 0 for non-causal tissues at p < 0.05. (B) Power to detect each of two causal tissues, 1215 
e.g. ℎ!"($%)

' 	> 0 for the causal tissue at p < 0.05. (C) TCSC estimates similar values of ℎ!"($%)
'  to 1216 

each causal tissue, approximately one-half the value of the trait variance explained by the 1217 
original causal tissue (0.1). Dashed line at 0.05, the expected tissue-specific contribution to 1218 
heritability for both original and duplicated tissue. In all panels, we performed n = 1,000 1219 
independent simulated genetic architectures across different eQTL sample sizes (n = 100, 200, 1220 
300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife standard 1221 
error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The value of	𝐺$% 1222 
is set to the total number of unique cis-heritable genes across all tissues. 1223 
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 1242 
Supplementary Figure 15. Robustness of cross-trait TCSC regression in simulations with two 1243 
causal tissues with identical gene expression-trait effects. We demonstrate how TCSC would 1244 
behave when there are two identical tissues contributing the same genetic component of gene 1245 
expression to the trait. This is a model violation where TCSC assumes that gene expression-trait 1246 
effects are i.i.d. To the original and duplicated causal tissue, we added a small amount of noise 1247 
(with mean 0, variance 0.0025) to the tissue co-regulation scores of each duplicated tissue to 1248 
avoid collinearity in the multiple linear regression. (A) Type I error; false positive event defined 1249 
as 𝜔!"($%) > 0 for non-causal tissues at p < 0.05. (B) Power to detect each of two causal tissues, 1250 
e.g. 𝜔!"($%)	> 0 for the causal tissue at p < 0.05. (C) TCSC estimates similar values of 𝜔!"($%) to 1251 
each causal tissue, approximately one-half the value of the trait covariance explained by the 1252 
original causal tissue (0.05). Dashed line at 0.025, the expected tissue-specific contribution to 1253 
covariance for both original and duplicated tissue. In all panels, we performed n = 1,000 1254 
independent simulated genetic architectures across different eQTL sample sizes (n = 100, 200, 1255 
300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife standard 1256 
error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The value of	𝐺$% 1257 
is set to the total number of unique cis-heritable genes across all tissues. 1258 
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 1272 

Supplementary Figure 16. Robustness and power of TCSC regression in simulations with 1273 
different amounts of direct SNP-trait heritability (ℎ234' ) not mediated by gene expression. (A) 1274 
Type I error per value of ℎ234' . False positive event is defined as ℎ!"($%)

' 	> 0 for non-causal 1275 
tissues at p < 0.05. (B) Power to detect the causal tissue per value of ℎ234' . A true positive event 1276 
is defined as ℎ!"($%)

'  > 0 for causal tissues at p < 0.05. (C) Bias on causal estimates of ℎ!"($%)
' 	for 1277 

different values of ℎ234' . Dashed line indicates true value of ℎ!"($%)
' . (D) Bias on non-causal 1278 

estimates of ℎ!"($%)
' 	for different values of ℎ234' . In all panels, we performed n = 1,000 1279 

independent simulated genetic architectures across different eQTL sample sizes (n = 100, 200, 1280 
300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife standard 1281 
error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The value of	𝐺$% 1282 
is set to the total number of unique cis-heritable genes across all tissues. 1283 
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 1286 

Supplementary Figure 17. Robustness and power of cross-trait TCSC regression in simulations 1287 
with different amounts of direct SNP-trait heritability (ℎ234' ) not mediated by gene 1288 
expression. (A) Type I error per value of ℎ234' . False positive event is defined as 𝜔!"($%)	> 0 for 1289 
non-causal tissues at p < 0.05. (B) Power to detect the causal tissue per value of ℎ234' . A true 1290 
positive event is defined as 𝜔!"($%) > 0 for causal tissues at p < 0.05. (C) Bias on causal estimates 1291 
of 𝜔!"($%)	for different values of ℎ234' . Dashed line indicates true value of 𝜔!"($%). (D) Bias on 1292 
non-causal estimates of 𝜔!"($%)	for different values of ℎ234' . In all panels, we performed n = 1293 
1,000 independent simulated genetic architectures across different eQTL sample sizes (n = 100, 1294 
200, 300, 500, 1000, 1500); we used a one-sided z-test and the genomic block jackknife 1295 
standard error to obtain p-values and data are presented as mean values +/- 1.96 x SEM. The 1296 
value of	𝐺$% is set to the total number of unique cis-heritable genes across all tissues. 1297 
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 1300 

Supplementary Figure 18. Robustness and power of TCSC regression in simulations with 1301 
different amounts of direct SNP-trait heritability (ℎ234' ) not mediated by gene expression at 1302 
large eQTL sample size. (A) Type I error per value of ℎ234' . False positive event is defined as 1303 
ℎ!"($%)
' 	> 0 for non-causal tissues at p < 0.05. (B) Power to detect the causal tissue per value of 1304 
ℎ234' . A true positive event is defined as ℎ!"($%)

'  > 0 for causal tissues at p < 0.05. (C) Bias on 1305 
causal estimates of ℎ!"($%)

' 	for different values of ℎ234' . Dashed line indicates true value of 1306 
ℎ!"($%)
' . (D) Bias on non-causal estimates of ℎ!"($%)

' 	for different values of ℎ234' . In all panels, we 1307 
performed n = 1,000 independent simulated genetic architectures across different eQTL sample 1308 
sizes (n = 1000, 1500, 10K, 50K, 100K, Infinite (true eQTL effects)); we used a one-sided z-test 1309 
and the genomic block jackknife standard error to obtain p-values and data are presented as 1310 
mean values +/- 1.96 x SEM. The value of	𝐺$% is set to the total number of unique cis-heritable 1311 
genes across all tissues. For these simulations, significantly cis-heritable genes were determined 1312 
using cross-validation adjusted-R2 > 0 rather than GCTA p < 0.01, due to the computationally 1313 
intensive nature of running GCTA on hundreds of thousands of samples across thousands of 1314 
simulations. 1315 
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 1317 

Supplementary Figure 19. Robustness and power of cross-trait TCSC regression in simulations 1318 
with different amounts of direct SNP-trait heritability (ℎ234' ) not mediated by gene 1319 
expression at large eQTL sample size. (A) Type I error per value of ℎ234' . False positive event is 1320 
defined as 𝜔!"($%)	> 0 for non-causal tissues at p < 0.05. (B) Power to detect the causal tissue 1321 
per value of ℎ234' . A true positive event is defined as 𝜔!"($%) > 0 for causal tissues at p < 0.05. (C) 1322 
Bias on causal estimates of 𝜔!"($%)	for different values of ℎ234' . Dashed line indicates true value 1323 
of 𝜔!"($%). (D) Bias on non-causal estimates of 𝜔!"($%)	for different values of ℎ234' . In all panels, 1324 
we performed n = 1,000 independent simulated genetic architectures across different eQTL 1325 
sample sizes (n = 1000, 1500, 10K, 50K, 100K, Infinite (true eQTL effects)); we used a one-sided 1326 
z-test and the genomic block jackknife standard error to obtain p-values and data are presented 1327 
as mean values +/- 1.96 x SEM. The value of	𝐺$% is set to the total number of unique cis-1328 
heritable genes across all tissues. For these simulations, significantly cis-heritable genes were 1329 
determined using cross-validation adjusted-R2 > 0 rather than GCTA p < 0.01, due to the 1330 
computationally intensive nature of running GCTA on hundreds of thousands of samples across 1331 
thousands of simulations. 1332 
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Supplementary Figure 20. Robustness and power of TCSC regression in simulations with 1337 
different values of window size used to calculate gene-gene co-regulation. (A) Type I error per 1338 
window size. False positive event is defined as ℎ!"($%)

' 	> 0 for non-causal tissues at p < 0.05. (B) 1339 
Power to detect the causal tissue per window size. A true positive event is defined as ℎ!"($%)

'  > 0 1340 
for causal tissues at p < 0.05. (C) Bias on causal estimates of ℎ!"($%)

' 	for different window sizes. 1341 
Dashed lines indicate true values of ℎ!"($%)

' . (D) Bias on non-causal estimates of ℎ!"($%)
' 	for 1342 

different window sizes. In all panels, we performed n = 1,000 independent simulated genetic 1343 
architectures across different eQTL sample sizes (n = 100, 200, 300, 500, 1000, 1500); we used a 1344 
one-sided z-test and the genomic block jackknife standard error to obtain p-values and data are 1345 
presented as mean values +/- 1.96 x SEM. The value of	𝐺$% is set to the total number of unique 1346 
cis-heritable genes across all tissues. 1347 
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Supplementary Figure 21. Robustness and power of cross-trait TCSC regression in simulations 1350 
with different values of window size used to calculate gene-gene co-regulation. (A) Type I 1351 
error per window size. False positive event is defined as 𝜔!"($%)	> 0 for non-causal tissues at p < 1352 
0.05. (B) Power to detect the causal tissue per window size. A true positive event is defined as 1353 
𝜔!"($%) > 0 for causal tissues at p < 0.05. (C) Bias on causal estimates of 𝜔!"($%)	for different 1354 
window sizes. Dashed lines indicate true values of 𝜔!"($%). (D) Bias on non-causal estimates of 1355 
𝜔!"($%)	for different window sizes. In all panels, we performed n = 1,000 independent simulated 1356 
genetic architectures across different eQTL sample sizes (n = 100, 200, 300, 500, 1000, 1500); 1357 
we used a one-sided z-test and the genomic block jackknife standard error to obtain p-values 1358 
and data are presented as mean values +/- 1.96 x SEM. The value of	𝐺$% is set to the total 1359 
number of unique cis-heritable genes across all tissues. 1360 
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 1364 
Supplementary Figure 22. Visualization of TCSC regression. (A) In simulations, we visualize the 1365 
single-trait TCSC estimand (ℎ!"($%)

' ) as the line of best fit (slope) for one representative 1366 
simulation from each of three true values of ℎ!"($%)

'  using an intercept of 0. (B) In analysis of real 1367 
traits, we visualize the single-trait TCSC estimand (ℎ!"($%)

' ) as the line of best fit (slope) for each 1368 
of 21 significant tissue-trait pairs using an intercept of 0. In panels A and B, solid lines represent 1369 
the TCSC estimate; dashed lines represent the estimate +/- 1.96 x the jackknife standard error. 1370 
All slopes shown are significantly greater than zero at 5% FDR. 1371 
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