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1. Chemicals and reagents  

Chloroplatinic acid hexahydrate (H2PtCl6·6H2O, 37%), hydrochloric acid (HCl, 

36%~38%), sodium chloride (99.5%), methanol (99.8%), ethanol absolute (99.7%) and 

acetonitrile (99.5%) were ordered from Sinopharm Chemical Reagent Beijing Co., Ltd (Beijing, 

China). Pluronic F127, phenylalanine (98%), glucose (99.5%), proline (99.0%), asparagine 

(98.0%), arginine (99.5%) and sucrose (99.0%), alanine (98.0%), serine (99.0%), valine 

(98.0%), lysine (98.0%), threonine (98.0%), methionine (98.0%), histidine (99.0%), L-

tryptophan (99.0%), isoleucine, aspartic acid (99.0%), glutamine (99.0%), maltose (99.0%), 

arabinose (99.0%), lactose (99.0%), melamine (99.5%), niacinamide (99.5%), uracil (99.0%), 

adenine, guanine (99.0%), succinic acid (99.0%), adipic acid (99.5%), 2,5-dihydroxybenzoic 

acid (DHB), alpha-cyano-4-hydroxycinnamic acid (CHCA) and bovine serum albumin (BSA, 

98%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Sodium tetrachloropalladate 

(Na2PdCl4, 98%) and ascorbic acid (99%) were ordered from Aladdin Reagent Co., Ltd 

(Shanghai, China). Trifluoroacetic acid (TFA, 99.5%) was ordered from Macklin Biochemical 

Co., Ltd. (Shanghai, China). 

All aqueous solutions throughout the experiments were prepared with deionized water 

(18.2 MΩ·cm, Milli-Q, Millipore, GmbH). 

2. Experimental procedures 

Preparation of mesoporous PdPt nanoparticles 

Mesoporous PdPt alloys were synthesized via a modified surfactant-directed method1. 

Briefly, 3 mL of Na2PdCl4 solution (20 mM), 15 mL of H2PtCl6·6H2O (20 mM), HCl (with 

concentrations of 3 M (250 μL), 6.0 M (250 μL), 12.0 M (250 μL), and 12 M (500 μL), 

respectively and the corresponding PdPt alloys were denoted as PdPt-1/2/3/4), and 300 mg of 

Pluronic F127 were mixed to a homogeneous solution, following the addition of 15 mL of 

ascorbic acid solution (0.1 M). After that, the mixed solution was continuously sonicated in a 

water bath at 45℃ for 4 hours to obtain different particle sizes of PdPt micelles. The products 

were collected by centrifugation at 10,000 rpm for 10 min and the residual Pluronic F127 

template was removed by three consecutive washing/centrifugation cycles with ethanol and 

water. Finally, the porous PdPt nanoparticles were dried at 50℃ for 12 hours before use. 

Material characterization 
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Scanning electron microscope (SEM) images and energy-dispersive X-ray (EDX) spectra 

were conducted by using an S-4800 (Hitachi, Japan), by dropping ~2 μL of water suspension 

of materials on the aluminum foil. Transmission electron microscope (TEM) images, high-

resolution TEM (HRTEM) images, selected-area electron diffraction (SAED) pattern, 

elemental mapping images, and line-scan EDX analysis were carried out using a JEM-2100F 

instrument (JEOL, Japan), by depositing the diluted colloidal suspension on a copper grid. Low-

angle XRD pattern was recorded on a Pert3 Powder5 (PANalytical, Holland) with Cu Kα 

radiation (λ = 0.154 nm). Wide-angle powder X-ray diffraction (XRD) pattern was performed 

on a D8 Advanced X-Ray Diffractometer (Bruker, Germany) with Cu Kα radiation. X-ray 

photoelectron spectroscopy (XPS) was performed with the Thermo Scientific K-Alpha XPS 

system. Zeta potential measurements were recorded on a Nano-ZS90 instrument (Malvern, 

Worcestershire, UK) in water at room temperature. Ultraviolet-visible (UV-Vis) absorption 

spectra were measured by a UV1900 spectrophotometer (AuCy, China). The photocurrents 

were recorded in a standard three-electrode system with platinum wire as a counter electrode, 

Ag/AgCl as a reference electrode, and 0.5 M Na2SO4 as electrolyte solution in a CHI 660E 

electrochemistry workstation (Beijing Chinese science days Technology Co., Ltd). The 

nitrogen adsorption-desorption analysis was performed by Autosorb IQ-MP. 

Theoretical simulation 

To study the differences in the optical response of the synthesized nanoparticles, especially 

the influence of the porous structure and particle size, the finite element method (FEM) 

provided by the Wave Optical Module of COMSOL Multiphysics is used to solve the 

Holmholtz equation about time-harmonic electric field (E): 

∇×(μ
r
-1∇×E)-k0

2
εrE=0    (1) 

Where μ
r
=1 was the relative permeability, k0  was the wave vector, εr=(n+ik)2  was the 

relative permittivity2. The refractive index of Pt and Pd is modeled using the experimental data 

of Werner et al. with linear interpolation3. The particle size, pore size, and composition of 

nanoparticles refer to SEM, TEM and EDS results. The refractive index of the air is set as 1. 

The wavelength of incident light was set at 355 nm matched with the wavelength of laser source 

equipped in laser desorption/ionization mass spectrometry (LDI MS). The calculated region is 

surrounded by a spherical PML layer. 
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The relationship between electric field intensity (𝐼) and electric field (𝐸) is: 

𝐼 = |𝐸|2,           (2) 

The equation for calculating the dissipated power density (𝑄) is: 

𝑄 =
1

2
𝑅𝑒(𝐽∗ ∙ 𝐸),       (3) 

where 𝐽 is the current density. 

The temperature caused by photothermal conversion was calculated based on the equation: 

ρCp

∂T

∂t
+ (−𝑘∇T) = 𝑄 

where ρ  is the density, Cp  is the heat capacity at constant pressure, 𝑘  is the thermal 

conductivity, ∇T is the temperature variation, and t is the time. The initial temperature was 

set at 293.15 K.  

Study cohort 

In this study, 431 individuals were recruited from Zhongshan Hospital, Fudan University 

and Shanghai Pudong Hospital, Fudan University, including 185 healthy controls and 246 

chronic obstructive pulmonary disease (COPD) patients (122 stable COPD (SCOPD) and 124 

acute exacerbation of COPD (AECOPD) individuals). The healthy controls were verified by 

spirometry with normal lung function, and all patients were diagnosed with persistent airflow 

limitation based on the clinic criteria4. The study was approved by the Ethics Committee of 

Zhongshan Hospital (approval number B2020-428R) and Shanghai Pudong Hospital (approval 

number 2021-SKWXZ-01). All participants gave their informed written consent before entering 

the study, and kept an overnight fasting (more than 8 hours) before the plasma collection. The 

peripheral blood of each participant was collected with centrifugation at 3000 × g for 10 min to 

obtain plasma, and stored at -80°C before further analysis. All experiments were performed 

following institutional guidelines, in compliance with relevant laws.  

For the distinction between healthy controls and COPD patients, we randomly assigned 

431 subjects to a discovery cohort (143 healthy controls and 166 patients) and an independent 

validation cohort (42 healthy controls and 80 patients). For the distinction between healthy 

controls and SCOPD patients, we also randomly grouped the 273 subjects into a discovery 

cohort (105 healthy controls and 103 SCOPD patients) and an independent validation cohort 

(46 healthy controls and 19 SCOPD patients). For the distinction between healthy controls and 
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AECOPD patients, we randomly assigned 275 subjects to a discovery cohort (105 healthy 

controls and 102 AECOPD patients) and an independent validation cohort (46 healthy controls 

and 22 AECOPD patients). Moreover, for the distinction between SCOPD and AECOPD, we 

also randomly grouped the 246 subjects into (1) a discovery cohort of 103 SCOPD patients and 

102 AECOPD patients, and an independent validation cohort of 19 SCOPD patients and 22 

AECOPD patients. No significant differences existed in age and gender in all discovery cohorts. 

LDI MS detection 

For the detection of standard small metabolites, proline (Pro), asparagine (Asn), 

phenylalanine (Phe), arginine (Arg), glucose (Glc), and sucrose (Suc) were co-dissolved in 

deionized water. These molecules were also mixed with salts (NaCl, 0.5 M) and proteins (BSA, 

5 mg mL-1) to explore the detection efficiency of PdPt alloys in high concentrations of salt and 

protein. 

For the detection of metabolites in plasma, plasma was first pretreated with organic 

solvents to precipitate some protein. Briefly, 10 μL of plasma was mixed with 10 μL of organic 

solvents (methanol/acetonitrile, v/v=1:1), and incubated for 10 minutes on an orbital shaker. 

After that, the sample was centrifuged at 10,000 rpm for 10 minutes, removing the sediment 

and retaining the supernatant for further analysis. 

In a typical LDI MS experiment, 1 μL of analyte solution (standard small metabolites or 

plasma samples) was spotted on the polish plate and dried in air at room temperature, followed 

by adding 1 μL of matrix suspension and dried for LDI MS analysis. For PdPt alloys, they were 

dispersed in water at a concentration of 1 mg mL-1 for use as a matrix. For the organic matrix 

(CHCA and DHB), they were dissolved in 0.1% TFA solution (water/acetonitrile=7/3, v/v) to 

prepare a saturated and 10 mg/mL solution, respectively. Mass spectra were recorded on an 

AutoFlex TOF/TOF mass spectrometer (Bruker, Germany) equipped with a Nd:YAG laser (2 

kHz, 355 nm) at a positive model. The pulse frequency and number of laser shots for each 

detection were set as 1000 Hz and 2000, respectively. The acceleration voltage was set as 20 

kV and the delay time was optimized to 200 ns. 

Machine-learning analysis 

For a typical machine-learning classification, five mass spectra obtained for each sample 

were used to build molecular databases. The raw mass spectra data was pre-processed with 
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baseline correction, peak detection, extraction, alignment, normalization, and standardization 

in MATLAB (R2016a, The MathWorks, Natick, MA). Then, the MS data matrix with sample 

label ('0' for healthy control and '1' for COPD patient) was analyzed by sparse learning (Elastic 

Net), using a "home-built" code by MATLAB. The classification was set with 5-fold cross-

validation to estimate the performance of the predictor, with 20 rounds for each fold yielding 

100 models in total. The performance of the classifier was evaluated by the area under the curve 

(AUC) of the receiver operation curve (ROC), calculating the proportions of concordant pairs 

among all pairs of observations, with 1 indicating perfect prediction accuracy. To identify the 

metabolic signature that contributed the most to the classifier, we chose m/z features according 

to (1) the model selected frequency with repeat occurrence ≥ 90% in 100 models; (2) p < 0.05 

according to two-sided t-test; (3) AUC > 0.7 of a single feature, and (4) the abundance of the 

feature is over 500. The potential metabolic biomarkers were identified based on accurate mass 

from online database (HMDB) and the Fourier Transform-Ion Cyclotron Resonance-Mass 

Spectrometry (FT-ICR-MS) results. 

FT-ICR-MS analysis 

To further validate the screening metabolic features, the accurate MS for potential 

biomarkers was measured on the Fourier Transform-Ion Cyclotron Resonance-Mass 

Spectrometry (FT-ICR-MS). For each group (healthy control, SCOPD and AECOPD), we 

randomly selected 50 plasma samples from 50 different subjects and took 10 μL plasma from 

each sample to mix them. Then 10 μL of mixed plasma was mixed with 10 μL of organic 

solvents (methanol/acetonitrile, v/v=1:1), and incubated for 10 minutes on an orbital shaker. 

After that, the sample was centrifuged at 10,000 rpm for 10 minutes, removing the sediment 

and retaining the supernatant. Then, 1 μL of plasma extracts was spotted on the polish plate and 

dried in air at room temperature, followed by adding 1 μL of matrix suspension (PdPt alloys 

with 1 mg mL-1) and dried for FT-ICR-MS analysis. 

UHPLC-MS analysis 

To identify the screening metabolic biomarkers, the plasma was further performed for 

ultra-performance liquid chromatography-MS (UHPLC-MS) analysis. For each group (healthy 

control, SCOPD and AECOPD), we also randomly selected 50 plasma samples from 50 

different subjects and took 10 μL plasma from each sample to mix them. For each group, we 
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took 100 μL mixed plasma for UHPLC-MS analysis. The sample was treated with 400 μL 

solvents of methanol:acetonitrile (1:1, v/v), full vortex oscillation for 30 s. The solution was 

incubated at -20℃ for 2 h to allow for protein precipitation. After that, the supernatant was 

collected by centrifugation at 12,000 rpm and 4℃ for 15 min. The supernatant was dried in a 

vacuum centrifuge for 4 hours, following re-dissolved in 100 μL of solvents (methanol/water, 

v/v=3:7) and centrifuged at 12,000 rpm and 4°C for 15 min to remove insoluble debris. The 

supernatant was transferred to vials for further analysis. Chromatographic analysis was 

performed on a Vanquish UHPLC/Q Exactive plus (Thermo Scientific, USA) with an 

ACQUITY UPLC HSS T3 column (100×2.1 mm, 1.7 μm, Waters). The mobile phases are A 

(water with 0.1% formic acid) and B (acetonitrile with 0.1% formic acid), with the gradient of 

A/B 99/1~0/100 in 12min and holding in 0/100 for 12-13min.  

Data were acquired by software Xcalibur 3.0 (Thermofisher) and processed by Progenesis 

QI v2.3 data analysis software (Waters, UK) for peak picking, alignment, and normalization. 

The metabolites were identified by accurate mass (mass error < 5 ppm), MS/MS spectra and 

human metabolome database.  

Statistical analysis 

All the univariate analyses in this work were performed to calculate the p value for 

statistical demonstration, based on the SPSS software (version 24.0, SPSS Inc., Chicago). 

Power analysis was conducted on the Metaboanalyst 5.0 (https://www.metaboanalyst.ca/). 

Figures were plotted using GraphPad Prism (GraphPad) and Origin software (OriginLab). 

Principal component analyses (PCA) were performed using the SIMCA software package 

(version 14.1, Umetrics, Sweden)5. Before analysis, all mass spectra were scaled to Pareto (par) 

by dividing variables using the square root of the standard deviation when centering was 

completed.  
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Figure S1. Nitrogen adsorption analysis of PdPt alloys. The nitrogen adsorption-desorption 

isotherm (a) and pore size distribution (b) of PdPt alloys. The specific surface area was 

calculated by the Brunauer-Emmett-Teller (BET) model to be ∼23.29 m2 g-1. 
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Figure S2. X-ray photoelectronic spectroscopy (XPS) spectra of porous PdPt alloys. XPS 

spectra of porous PdPt alloys on (a) Pt 4f and (b) Pd 3d. 
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Figure S3. Transmission electron microscopy (TEM) images of porous PdPt alloys with 

different particle sizes. TEM images of (a) PdPt-1, (b) PdPt-2, (c) PdPt-3 and (d) PdPt-4 alloys. 

Scale bar: (ⅰ) 100 nm and (ⅱ) 50 nm. 
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Figure S4. Typical energy-dispersive X-ray (EDX) spectra of porous PdPt alloys. EDX 

spectra of (a) PdPt-1, (b) PdPt-2, (c) PdPt-3, and (d) PdPt-4 alloys.  
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Figure S5. Typical zeta potential distributions of porous PdPt alloys. Zeta potential of (a) 

PdPt-1, (b) PdPt-2, (c) PdPt-3, and (d) PdPt-4 alloys with three independent measurements, 

respectively. 
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Figure S6. Light absorption of PdPt nanomaterials. Typical ultraviolet-visible (UV-Vis) 

spectra of PdPt-1/2/3/4 alloys. 
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Figure S7. LDI MS detection of plasma extracts by different alloys. Typical mass spectra 

for 0.5 μL of plasma extracts analyzed by (a) PdPt-1, (b) PdPt-2, (c) PdPt-3, and (d) PdPt-4 

alloys assisted LDI MS. The insets were sodium-adducted peaks of typical glucose (Glc) 

metabolite. (e) Mean intensities of glucose signals were obtained using different alloys as 

matrices. For each metabolite, 9 replicates were conducted. **** represented p < 0.0001. 

  



S15 

 

 
Figure S8. Preference for desorption/ionization of metabolites. All the metabolites 

including nonpolar amino acids (isoleucine, alanine, proline, phenylalanine, methionine, 

tryptophan and valine), polar amino acids (serine, threonine, glutamine, asparagine, lysine, 

histidine, arginine, aspartic acid and glutamate), carbohydrates (arabinose, glucose, maltose, 

sucrose and lactose), alkaloids (melamine and nicotinamide), nucleotides (adenine, guanine and 

uracil), fatty acids (decanoic acid and lauric acid) and organic acids (adipic acid and succinic 

acid) were prepared with a concentration of 1 mg mL-1. The mass spectra were collected in 

positive ion mode, using PdPt-2 alloys as the matrix. For each metabolite, 7 mass spectra were 

collected for the heat map. 
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Figure S9. Three-dimensional distributions of electric field and thermal field. Contour 

plots of (a) electric field amplitudes and (b) thermal field distribution displayed on color scale 

for (i) porous Pd, (ii) nonporous Pd, (iii) porous Pt, and (iv) nonporous Pt, for 355 nm laser 

beam polarized along Y-axis. Laser light was injected along Z-axis. Both the electric field 

amplitudes and thermal field distribution were calculated by the finite element method. 
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Figure S10. Laser ablation of PdPt-2 alloys. Scanning electron microscopy (SEM) images 

of PdPt-2 alloys (a) before and after irradiation by 10,000 laser shots at laser fluence of (b) 20%, 

(c) 40%, (d) 60%, (e) 80%, and (f) 100%. The scale bars were 200 nm. 
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Figure S11. Pore size and theoretical simulation of different PdPt alloys. (a) Comparison 

of pore size of PdPt-1/2/3/4 alloys. Error bars represent mean ± SD (calculation of 20 pore sizes 

for each alloy). The average pore sizes of PdPt-1/2/3/4 were about 20.2 nm, 19.9 nm, 20.7 nm 

and 16 nm, respectively, calculated based on the SEM images (Figure 3d). **** represented p 

< 0.0001. Contour plots of (b) electric field amplitudes and (c) thermal field distribution 

displayed on the color scale for PdPt-4 alloys with a pore size of 20 nm, for 355 nm laser beam 

polarized along Y-axis. Laser light was injected along Z-axis.  
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Figure S12. Photocurrent response of PdPt alloys. Typical photocurrent response spectra of 

PdPt-1/2/3/4 alloys. 
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Figure S13. Intensity coefficient of variations (CVs) for metabolites and matrix-analyte 

co-crystals by different matrix assisted LDI MS. Coefficient of variances (CVs) distribution 

of different metabolites (proline (Pro), asparagine (Asn), phenylalanine (Phe), arginine (Arg), 

glucose (Glc) and sucrose (Suc)) detected by (a) CHCA and (b) DHB assisted LDI MS. We 

can’t observe the Glc and Suc adducted peaks when CHCA and DHB as matrix. The results 

come from 9 independent experiments. Micrographs of matrix-analyte co-crystals using (c) 

PdPt nanoparticles, (d) CHCA and (e) DHB as matrix. The scale bars were 500 μm. 

  



S21 

 

 

Figure S14. Linear regression of intensity and concentration data of metabolites detected 

by PdPt alloys. Linear regression of intensity and concentration data of metabolites including 

(a) proline (Pro), (b) asparagine (Asn), (c) phenylalanine (Phe), (d) arginine (Arg), (e) glucose 

(Glc), and (f) sucrose (Suc) detected by PdPt alloys. Error bars represent mean ± SD (n=3). 
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Figure S15. Linear regression and mass spectra of metabolites detected by organic matrix. 

Linear regression of intensity and concentration data of metabolites including (a) Pro, (b) Asn, 

(c) Phe, and (d) Arg, and mass spectra of (e) Glc and (f) Suc detected by CHCA. Mass spectra 

of (g) Pro, (h) Asn, (i) Phe, (k) Glc, and (l) Suc, and (j) linear regression of intensity and 

concentration data of Arg detected by DHB. The concentration of metabolites for the mass 

spectra is 100 μg mL-1. Error bars represent mean ± SD (n=3). 
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Figure S16. Elemental mapping results. Elemental mappings of Pd, Pt, and C for (a) alloy-

glucose and (b) alloy-BSA hybrids. The scale bars were 50 nm. 
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Figure S17. Inorganic matrix and organic matrix for metabolite detection in clinical 

samples. Mass spectra of metabolites in plasma, serum and urine measured by (a) PdPt alloys, 

(b) CHCA, and (c) DHB assisted LDI MS. 
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Figure S18. Optimization of sample preparation methods. Typical mass spectra for 0.5 μL 

of plasma using (a) sample-first method, (b) matrix-first method, and (c) pre-mix method. The 

insets were sodium-adducted peaks of typical glucose metabolite. (d) Mean intensities of 

glucose signals were obtained using different sample preparation methods. For each method, 9 

replicates were conducted. **** represented p < 0.0001. 
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Figure S19. Power analysis. Power analysis based on plasma metabolic fingerprints, including 

12 samples (6/6, healthy controls/COPD patients) for calculating the required minimal sample 

number for machine learning. A power of 0.92 could be obtained with the sample number of 48 

(24/24, healthy controls/COPD patients) at a false discovery rate of 0.10. 
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Figure S20. Permutation test in machine learning. The distributions of AUC were calculated 

by 1000 random permutations. There was no overfitting of the machine learning model as built 

(p <0.001) 
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Figure S21. Characterization of significant metabolic biomarkers for COPD diagnosis. (a) 

Venn diagram of 4 m/z features selected as the metabolic biomarkers based on the frequency ≥ 

90%, p < 0.05, abundance > 500 and AUC > 0.65. Scatter diagram of 4 significant metabolic 

biomarkers for COPD diagnosis, including (b) glucose (Glc), (c) lactic acid (Laa), (d) uric acid 

(Ura) and (e) malondialdehyde (Mal). The **** represented p < 0.0001. (f) The ROC curve 

produced by 4 significant metabolic biomarkers for COPD diagnosis in the discovery cohort. 
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Figure S22. Metabolite difference in males and females. The box diagram demonstrated the 

expression of 4 metabolites including glucose (Glc), lactic acid (Laa), uric acid (Ura) and 

malondialdehyde (Mal) in males and females. The samples come from COPD disease group in 

the discovery cohort, including 106 males and 60 females. The p values were calculated by t-

test.  
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Figure S23. The distinction between SCOPD and AECOPD. (a) PCA analysis based on all 

912 m/z metabolic signals extracted in plasma. (b) ROC curves produced by machine learning 

based on 8 metabolic biomarkers in the discovery cohort and validation cohort. 
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Figure S24. Scatter diagrams of metabolic features between SCOPD and AECOPD. 

Scatter diagrams of metabolic features, including (a) creatine, (b) dimethylglycine, (c) 3-

hydroxybutyric acid, (d) threonine and (e) fucose, were plotted to demonstrate the metabolic 

difference between SCOPD and AECOPD. 
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Figure S25. Metabolism pathway enrichment analysis based on 8 metabolic biomarkers 

for the discrimination AECOPD from COPD. The pathway analysis was based on the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway and drawn by Chiplot 

(https://www.chiplot.online/). There were 2 metabolic pathways related to AECOPD with a 

pathway impact > 0 and hit number (the number of matched metabolites in the pathway) ≥ 1, 

including 1) glycine, serine and threonine metabolism and 2) arginine and proline metabolism 

(Table S10). 
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Table S1. Elementary composition analysis of porous PdPt with different particle size. 

Materials Weight (%) Atomic (%) 

 Pd Pt Pd Pt 

PdPt-1 11.42 88.58 19.12 80.88 

PdPt-2 10.35 89.65 17.47 82.53 

PdPt-3 12.30 87.70 20.46 79.54 

PdPt-4 12.95 87.05 21.43 78.57 
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Table S2. Apparent zeta potentials of porous PdPt alloys with different particle size. 

Materials Apparent zeta potentiala) 

PdPt-1 -44.07 0.65 

PdPt-2 -36.30 0.89 

PdPt-3 -34.33 0.72 

PdPt-4 -22.77±0.60 

a) Three independent experiments were performed for each material to calculate the standard 

deviation (s.d.). 
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Table S3. Regression equations and limits of detection (LOD) for metabolites detected by 

different matrices. 

Metabolite 

Regression equation R2 LOD (pmol) 

PdPt  CHCA DHB PdPt  CHCA DHB PdPt  CHCA DHB 

Pro y=1627x-3641 y=600x+3036 / 0.990 0.697 / 25.9 33.2 / 

Asn y=2019x+1274 y=437x+818 / 0.983 0.922 / 3.3  3.8  756.9 

Phe y=1249x-5034 y=325x+15 / 0.988 0.975 / 28.1  13.7  / 

Arg y=784x-3268 y=368x+15983 y=16x+138 0.998 0.866 0.752 28.5  31.5 15.0  

Glc y=610x-2535 / / 0.996 / / 26.9  / / 

Suc y=1020x+19 / / 0.993 / / 0.3  / / 
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Table S4. Clinical characteristics of healthy controls and COPD patients for discovery and 

validation cohorts. 

Characteristics Discovery cohort Validation cohort 

Healthy control 

n=143 

COPD 

n=166 

p value Healthy control 

n=42 

COPD 

n=80 

Sex   0.43a)   

Male 85 106 - 3 75 

Female 58 60 - 39 5 

Age (median(range)) 67 (39-82) 67.5 (37-87) 0.42b) 63 (32-85) 81 (69-87) 

a) p value was calculated by 𝜒2 test; b) p value was calculated by two-sided Student's t-test. 
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Table S5. Metabolic biomarkers screened by machine learning and identified through FT-ICR-

MS to distinguish COPD from healthy controls. 

Metabolite HMDB ID Molecular 

formula 

Frequencya) Coefficientb) p 

valuec) 

AUCd) 

Glucose HMDB0000122 C6H12O6 100 -0.23 **** 0.69 

Lactic acid HMDB0000190 C3H6O3 100 0.87 **** 0.78 

Malondialdehyde HMDB0006112 C4H8O3 96 0.11 **** 0.75 

Uric acid HMDB0000289 C5H4N4O3 100 0.48 **** 0.67 

a) Frequency referring to selection probability by optimized classifier for diagnosis in 100 

models; b) Coefficient referring to the statistical weight calculated as the sparsity constraints of 

the diagnostic classifier; c) p value was acquired for COPD and healthy controls through two-

sided Student's t-test (**** p < 0.0001); d) AUC was acquired by univariate ROC curve analysis 

for the individual biomarker. 
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Table S6. Clinical characteristics of healthy controls and stable COPD (SCOPD) patients for 

discovery and validation cohorts. 

Characteristics Discovery cohort Validation cohort 

Healthy control 

n=105 

SCOPD 

n=103 

p value Healthy control 

n=46 

SCOPD 

n=19 

Sex   0.84a)   

Male 70 70 - 6 8 

Female 35 33 - 40 11 

Age (median(range)) 69 (42-86) 68 (45-82) 0.52b) 61 (32-88) 72 (70-97) 

a) p value was calculated by 𝜒2 test; b) p value was calculated by two-sided Student's t-test. 
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Table S7. Clinical characteristics of healthy controls and exacerbations of COPD (AECOPD) 

patients for discovery and validation cohorts. 

Characteristics Discovery cohort Validation cohort 

Healthy control 

n=105 

AECOPD 

n=102 

p value Healthy control 

n=46 

AECOPD 

n=22 

Sex   0.23a)   

Male 77 82 - 6 21 

Female 28 20 - 40 1 

Age (median(range)) 68 (45-82) 70.5 (37-83) 0.79b) 61 (32-88) 87 (83-93) 

a) p value was calculated by 𝜒2 test; b) p value was calculated by two-sided Student's t-test. 
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Table S8. Clinical characteristics of SCOPD and AECOPD patients for discovery and 

validation cohorts. 

Characteristics Discovery cohort Validation cohort 

SCOPD 

n=103 

AECOPD 

n=102 

p value SCOPD 

n=19 

AECOPD 

n=22 

Sex   0.21a)   

Male 73 82 - 5 21 

Female 30 20 - 14 1 

Age (median(range)) 69 (42-86) 70.5 (37-83) 0.49b) 72 (57-97) 87 (83-93) 

a) p value was calculated by 𝜒2 test; b) p value was calculated by two-sided Student's t-test. 
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Table S9. Metabolic biomarkers screened by machine learning and identified through FT-ICR-

MS to distinguish AECOPD from COPD. 

Metabolite HMDB ID Molecular 

formula 

Frequencya) Coefficientb) p 

valuec) 

AUCd) 

Creatine HMDB0000064 C4H9N3O2 100 -0.40 **** 0.79 

Lactic acid HMDB0000190 C3H6O3 100 0.65 **** 0.86 

Dimethylglycine HMDB0000092 C4H9NO2 100 -0.64 **** 0.83 

3-Hydroxybutyric acid HMDB0000011 C4H8O3 95 0.12 **** 0.75 

Uric acid HMDB0000289 C5H4N4O3 100 0.40 **** 0.85 

Threonine HMDB0000167 C4H9NO3 100 -0.29 **** 0.75 

Malondialdehyde HMDB0006112 C3H4O2 100 0.18 **** 0.83 

Fucose HMDB0000174 C6H12O5 97 -0.09 **** 0.72 

a) Frequency referring to selection probability by optimized classifier for diagnosis in 100 

models; b) Coefficient referring to the statistical weight calculated as the sparsity constraints of 

the diagnostic classifier; c) p value was acquired for SCOPD and AECOPD through two-sided 

Student's t-test (**** p < 0.0001); d) AUC was acquired by univariate ROC curve analysis for 

the individual biomarker. 
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Table S10. Summary of pathways regulated in AECOPD. 

Metabolite Hitsa) p valueb) Impact factorc) 

Glycine, serine and threonine metabolism 3 0.0003 0.0726 

Synthesis and degradation of ketone bodies 1 0.0224 0 

Valine, leucine and isoleucine biosynthesis 1 0.0356 0 

Butanoate metabolism 1 0.0659 0 

Fructose and mannose metabolism 1 0.0870 0 

Pyruvate metabolism 1 0.0954 0 

Glycolysis / Gluconeogenesis 1 0.1119 0 

Amino sugar and nucleotide sugar metabolism 1 0.1559 0 

Arginine and proline metabolism 1 0.1598 0.0121 

Aminoacyl-tRNA biosynthesis 1 0.1980 0 

Purine metabolism 1 0.2595 0 

a) Hits mean that the number of matched metabolites in the pathway models; b) The p value was 

calculated by the pathway enrichment analysis of the hypergeometric test; c) The pathway 

impact factor was calculated by pathway topology analysis of relative betweenness centrality. 
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