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Supplementary Methods 

Study design 

The PANTS study 

PANTS is a UK-wide, prospective, observational cohort study of response to anti-TNF 

therapy in CD patients, previously described in detail by Kennedy et al.1 and Sazonovs et 

al.27 The study is registered with ClinicalTrials.gov identifier NCT03088449, and the protocol 

is available at https://www.ibdresearch.co.uk/pants/. Total enrolment was 1610 patients, 

who were at least 6 years old, had active luminal CD, and were naive to anti-TNF therapy. 

 

The anti-TNF drugs evaluated were adalimumab (ADA), infliximab (IFX), and infliximab 

biosimilars. Patients received treatment according to standard dosing intervals (8 weeks for 

infliximab, 2 weeks for adalimumab), and were invited to attend up to ten major study visits 

over the course of the study, or until anti-TNF drug withdrawal. These visits were timed to 

allow sampling immediately prior to drug doses, and to allow the same visit structure to be 

used for all patients. Additional visits were scheduled in case of secondary LOR or 

premature study exit due to drug withdrawal, usually replacing the next scheduled major 

visit. 

 

The target timings for the four major visits in the first year of follow-up in the PANTS study 

were week 0, week 14, week 30, and week 54. The week 0 major visit is the visit prior to the 

first dose of drug. Week 0 to week 14 is the induction period. After week 14, patients 

continued to take their drug for maintenance according to the standard dosing interval. For 

RNA-seq, whole blood samples at these four major visits were taken prior to the scheduled 

drug doses that aligned with those visits, labelled with the visit name, and preserved in 

Tempus Blood RNA Tubes. 

https://www.ibdresearch.co.uk/pants/


Definition of primary response and primary non-response 

The definition of primary response and non-response was based on the clinical decision tree 

from Kennedy et al.1, as detailed in the main text (“RNA-seq sample selection”). Primary 

response and non-response could be assessed from week 12, with a final classification made 

by the scheduled week 14 visit. As PANTS was an observational study that continued until 

drug withdrawal, a patient’s clinician may have decided to continue anti-TNF therapy even if 

a patient demonstrated primary non-response, so it was possible for primary non-

responders to remain in the study past week 14. 

Selection of samples for RNA-seq 

Additional selection criteria were used to choose the subcohort of PANTS patients put 

forward for RNA-seq. Patients were required to be at least 16 years old, on either infliximab 

or adalimumab (not on an infliximab biosimilar), and to have an available baseline serum 

sample. Equal numbers of responders and non-responders to each drug were selected, 

excluding grey zone patients that only partially met the criteria for either primary non-

response or response. Within the patients on infliximab, there was propensity score 

matching between primary non-responders and other patients based on baseline 

immunomodulator use, baseline steroid use, age, sex, and body mass index (BMI). 

Furthermore, primary non-responders were selected excluding patients known to be in 

remission at week 54, and primary responders were selected from patients known to be in 

remission by week 30 or week 54. The primary non-responders and responders in the RNA-

seq subcohort thus represent phenotypic extremes of response. 

 

It could not be guaranteed that study visits occurred on the target day specified in the 

protocol, thus samples were mapped to timepoints using windows around major visits 

defined by Kennedy et al.1 Relative to the first dose of anti-TNF (day 0), these windows 

were: week 0 (week −4–0), week 14 (week 10–20), week 30 (week 22–38), and week 54 

(week 42–66). Only a small minority of labelled major visit samples fell outside their 

respective windows, mostly for later timepoints where there was more variation around the 

target day. Samples taken at additional (LOR or exit) visits falling within one of the windows 

were mapped to that timepoint. 



Library preparation and sequencing 

Total RNA was extracted following the Qiagen QIAsymphony instrument protocol (RNA 

Isolation PAX RNA CR22332 ID 2915). RNA was quantified with the ThermoFisher QuBit BR 

RNA (Q10211), and RNA integrity assessed with the Agilent RNA ScreenTape assay (5067-

5579, 5067-5577, 5067-5576) on the Agilent 4200 TapeStation. Library preparation was 

performed using the Kapa mRNA HyperPrep Kit, including enrichment for messenger RNA 

(mRNA) using magnetic oligo-dT beads, depletion of ribosomal RNA (rRNA) and globin 

mRNA using the QIAseq FastSelect RNA Removal Kit, and adapter ligation with IDT xGEN 

Dual Index UMI adapters. Libraries were sequenced on the Illumina HiSeq 4000 with 75 bp 

paired-end reads. 

RNA-seq quantification and preprocessing 

A total of 1141 samples from 396 patients were sequenced to a target minimum depth of 20 

million total read pairs before deduplication. Sequencing data was demultiplexed with 

Picard.2 Sequence quality, overrepresented sequences, adapter content, and sequence 

duplication rates were checked using FastQC.3 Reads were mapped to GRCh38 using STAR 

(v2.6.1d)4 and deduplicated to unique reads using UMI-tools.5 Gene expression was 

quantified against the Ensembl 96 gene annotation with featureCounts (v1.6.4).6 

 

Samples were filtered to remove outliers (>2 standard deviations from the mean) according 

to percentage of aligned reads in coding regions reported by Picard, percentage of unique 

reads, and number of unique reads. Samples that could not be mapped to a timepoint were 

removed. Samples with sex mismatch were removed. Samples from patients with grey zone 

primary response were removed. Samples for which there was missingness in the data 

matrix for clinical and cell proportion were removed. A total of 814 samples remained after 

filtering (Fig. S1a). The number of samples per patient ranged from one to four, with a 

median of three (Fig. S1b). 

 

The Ensembl 96 gene annotation contains 58 884 genes, many of which are not expressed in 

whole blood. Effective library sizes were computed using the trimmed mean of M-values 



(TMM) method in edgeR (v3.28.1),7 then between-sample normalisation for library size was 

performed using edgeR::cpm, converting counts to counts per million (CPM). Genes with 

low expression were filtered, requiring >1.25 CPM in >10% of samples (1.25 CPM being 

approximately 10 counts at the median library size of 8 million unique mapped read pairs) 

and non-zero expression in >90% of samples. Globin genes and short non-coding RNAs 

(ncRNAs) were removed. A total of 15 511 genes remained after filtering. Finally, CPMs were 

converted to the log2 scale, and precision weights to account for the expression mean-

variance relationship were computed for each gene and sample using 

variancePartition::voomWithDreamWeights.8 

Differential gene expression 

Variable selection by variance components analysis 

For each gene, the DGE model was a regression expressing the response variable (gene 

expression), as a linear function of predictor variables of interest (primary response status, 

drug, timepoint), and other selected predictor variables. Fig. S10 shows the correlation 

matrix of variables considered for selection. These included three variables from Kennedy et 

al.1 associated with primary response: baseline immunomodulator use, smoking, and BMI. 

Also available were proportions of six common cell types in whole blood (CD4+ T cells, CD8+ 

T cells, B cells, NK cells, monocytes, granulocytes), estimated from whole blood Illumina 

MethylationEPIC methylation array data collected from the same patients and timepoints.9 

Estimates were computed using the Houseman method, which uses differentially 

methylated regions between immune cell types as cell type markers,10 implemented in 

Minfi (minfi::estimateCellCounts).11 

 

A variance components analysis was performed to quantify the proportion of expression 

variance explained by each variable for each gene using variancePartition,8 as variables that 

do not explain much variation in the response would be unlikely to improve statistical 

efficiency if conditioned on in DGE models. The variance components analysis model was a 

linear mixed effects regression model with variables in Fig. S10 included as predictors. 

Additional categorical variables were included for patient and RNA-seq library preparation 



plate. An additional continuous variable consisting of random numbers drawn from the 

standard normal distribution was included as a null (random_numbers). Granulocyte 

proportion estimates were dropped to relieve perfect multicollinearity. Categorical variables 

were coded as random intercepts, and continuous variables as fixed effects—simulations 

from Hoffman et al.8 showed variance proportion estimates were unbiased even when 

coding categorical variables with as few as two categories as random effects, as long as 

model parameters were estimated using maximum likelihood (ML) rather than restricted 

maximum likelihood (REML). It was also shown this approach avoids overestimates of 

variance proportions that occur if categorical variables with many levels are treated as fixed. 

 

As downstream DGE methods required the same set of predictors for all genes, we aimed to 

select variables that explained substantial variance for many genes. Variables that explained 

the most variance on average were patient, cell proportions, and RNA-seq plate (Fig. S2). 

Some variables that did not explain more variance on average than the null nevertheless 

had high maximum values, indicating their importance for a relatively small number of 

genes. These included sex, library preparation protocol version (always the same within 

RNA-seq plates), and smoking status. However primary response status—a variable of 

interest—also fell into this group, so it was difficult to justify excluding all variables with 

lower median variance explained than the null. Consequently, all non-null variables in Fig. 

S2 were selected as predictors in downstream models apart from Ever_Immunomodulator 

(whether the patient had ever had immunomodulator treatment), as that variable had both 

low median variance explained and was correlated with baseline immunomodulator use. 

The sample size is large compared to the number of degrees of freedom (df) lost by 

including predictors that may not be relevant for some genes. 

 

As expected, cell proportions were among the biological factors that explained the most 

variance on average; they are one of the largest sources of variation in bulk blood 

expression data, and are a major driver of transcriptional response to immune 

perturbations.12 In DGE analyses, two sets of separate models were fit including and 

excluding cell proportions as predictors, but otherwise identical. In models without cell 

proportions included, differential expression after drug perturbation could represent up or 

downregulation on a per-cell basis, but could also come from differences in cell proportions 



induced by anti-TNF treatment. The estimates from models adjusted for cell proportions are 

more likely to reflect up or downregulation on a per-cell basis. 

Linear contrasts for pairwise group comparisons 

Per-gene DGE models were fit in dream.13 Like the variance components analysis models, 

these DGE models were linear mixed models: 
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where: 

• The response variable is normalised gene expression y. 

• 0 indicates a group means parameterisation, where the fixed intercept term is 

omitted to avoid over-parameterisation. 

• 𝐺"#$  is a fixed effect for experimental group defined by combinations of the 

predictors of interest: timepoint t (week 0, 14, 30, 54), response r (PR, PNR), and 

drug d (infliximab, adalimumab). This is equivalent to having an intercept term and a 

three-way interaction between visit, response, and drug, including all lower order 

terms, but is more convenient for testing pairwise expression differences between 

groups, as the coefficient for each term is the estimate of mean expression for that 

group. 

• ∑ 𝛽%𝑍&
	  are the nine non-cell proportion fixed effects from variable selection (Fig. 

S2): sex (Sex), age of disease onset (Age_of_Onset), disease duration 

(Disease_Duration), smoking history (Smoking_History: ex, current or never), 

whether the patient has had surgery for CD (Crohns_Surgery), whether the patient 

was on immunomodulator at baseline (On_Immunomodulator_At_Baseline), 

whether the patient was on steroids at baseline (On_Steroids_At_Baseline), BMI at 

baseline (Earliest_BMI), and library preparation protocol version 

(Library_Prep_Protocol). 

• (∑ 𝛽(𝐶)
	 ) are the five cell proportion fixed effects from variable selection for NK 

cells, monocytes, B cells, CD4+ T cells, and CD8+ T cells. 

• u is a random intercept for RNA-seq plate (RNA_Plate). 

• v is a random intercept for patient (PANTS.ID), nested inside RNA-seq plate. 



 

Four sets of per-gene models were fit, with or without the cell proportion terms (∑ 𝛽(𝐶)
	 ), 

and replacing 𝛽𝐺𝑡𝑟𝑑𝐺𝑡𝑟𝑑 (separate drug models) with 𝛽𝐺𝑡𝑟𝐺𝑡𝑟 + 𝛽𝑑𝑑 (pooled drug models) or 

not. Unlike with variance components analysis, to avoid small-sample bias in estimates of 

fixed effect standard errors, REML was used for estimation.14 Specific hypotheses were 

tested using sum-to-zero contrasts, which are linear combinations of model coefficients 

with weights summing to zero. For example, to test for DGE between responders and non-

responders to infliximab at baseline in the non-pooled model, we used a contrast where the 

weight for the week 0/responder/infliximab group coefficient was 1, the weight for the 

week 0/non-responder/infliximab group coefficient was -1, and all other coefficient weights 

were zero. To compute p-values, the contrast divided by its standard error was compared to 

the t-distribution using the Satterthwaite approximation for df. False discovery rate (FDR) 

was controlled with the Benjamini-Hochberg (BH) method,15 with threshold set at 0.05, 

computed separately for each contrast. 

Spline model comparing primary responders and non-responders over time 

The aim was to use expression data from all four timepoints to find genes associated with 

response, while avoiding a large number of pairwise comparisons. We fit a natural cubic 

spline (splines::ns, R v3.6.2)16 to the study day to allow for non-linear trajectories of 

expression over time. We set two inner knots at week 14 (day 98) and week 30 (day 210) 

representing the centre of the study day windows for those two visits, as expression was 

expected to change after each drug dose. To include all data within the boundaries, the two 

boundary knots were set at the minimum and maximum values of study day rather than 

week 0 and week 54. A basis matrix was computed with ns(Study_Day, knots = 7*c(14, 30)), 

giving a matrix with three columns, each column being a transformation of study day. The 

columns were fit in the regression model in place of study day to allow for non-linear effects 

of study day on expression. The model form used was the same as that used for pairwise 

contrasts, except with 𝛽𝐺𝑡𝑟𝑑𝐺𝑡𝑟𝑑 replaced by 𝛽#𝑟 + ∑ 𝛽.𝑏/
	 + ∑ 𝛽#.𝑟𝑏/

	 + 𝛽$𝑑, where r is 

response status, d is drug, ∑ 𝛽.𝑏/
	  are the three columns of the basis matrix, and ∑ 𝛽#.𝑟𝑏/

	  

are the second-order interaction terms between response status and the basis matrix 



columns. Separate sets of per-gene models were again fit with and without cell proportion 

terms (∑ 𝛽(𝐶)
	 ). 

 

When testing for response-associated differences in the spline parameters, the predictors of 

interest were the interaction terms ∑ 𝛽#.𝑟𝑏/
	 . The three terms were tested jointly using an 

F-test, with the FDR threshold set at 0.05 (BH method). A significant result indicates a 

significant difference in the trajectory of expression over study day between responders and 

non-responders. 

Clustering expression over all timepoints 

We clustered genes by their expression trajectories to define sets of genes with similar 

trajectories over time. This was done to aid the interpretation of significant genes from the 

cell proportion-adjusted spline model using gene set enrichment analysis. Expression data 

was converted to the CPM scale using TMM normalisation factors, then regressed against 

cell proportions. Residuals were centred and scaled per gene. A distance matrix was 

computed using 1 − r as the distance metric, where r is the Pearson correlation. Hierarchical 

clustering was performed with complete agglomeration for inter-cluster distance 

(fastcluster::hclust(method = “complete”)).17 The optimal number of clusters was assessed 

by the gap statistic (factoextra::fviz_nbclust(method = “gap_stat”, nboot = 500)), which 

determines when the change in within-cluster dispersions are no longer significantly 

improved by increasing the number of clusters.18 The default “firstSEmax” criteria was used 

to choose the optimal number of clusters k, which finds the first local maximum at m 

clusters where 𝐺𝑎𝑝(𝑚) 	≥ 	𝐺𝑎𝑝(𝑚 + 1), then finds the smallest 𝑘:	1 ≤ 	𝑘 ≤ 	𝑚 such that 

Gap(k) is not less than Gap(m) minus the bootstrapped standard error of Gap(m). The 

hierarchical clustering tree was then cut into k clusters. 

Gene set enrichment analyses 

Ranked gene set enrichment  

The gene sets used for ranked gene set enrichment analyses were blood transcription 

modules (BTMs) available in the tmod package.19 Modules are “specific to the context of 



immune responses in blood tissue”: sets of genes with transcriptional and functional 

similarities across a variety of healthy, diseased, and stimulated conditions.20 The 260 

modules from Chaussabel et al.21 (prefixed “DC”) were constructed by unsupervised 

clustering of 239 PBMC transcriptomes from multiple disease datasets, then annotated by 

data mining of gene names in PubMed abstracts. The 346 modules from Li et al.20 (prefixed 

“LI”) were constructed from coexpression analysis of approximately 30 000 blood 

transcriptomes, then annotated making use of Gene Ontology (GO) terms, cell type-specific 

markers, pathway databases, and manual literature searches. Li et al. modules are better 

annotated and were used as the default module set for gene set enrichment. 

 

Ranked gene set enrichment analyses were conducted using tmod::tmodCERNOtest, which 

is a non-parametric test for enrichment of small ranks within specific sets of genes 

compared to all genes, after the genes are ranked by some metric. The CERNO statistic for a 

gene set is: 
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where n is the number of genes in the set, N is the number of measured genes in the 

experiment, and ri is the rank of the ith gene in the set. For each contrast, as the t-statistics 

are not comparable between genes due to the use of approximate df, genes were ranked by 

the signed z-score reported by dream, which is a monotonic transformation of the p-value. 

Similarly, moderated F-statistics from the spline model are not comparable between genes, 

so we used the signed F-statistics computed by dream from the transformation of the p-

value. FDR control for the number of gene sets tested was performed using the BH 

procedure, separately for each tested contrast. tmod::tmodCERNOtest is one-sided and only 

considers enrichment of small ranks when computing significance. As genes can be down or 

upregulated, separate tests were performed sorting genes in ascending and descending 

order, and the more significant result was used to determine the overall direction of effect 

for each gene set. The effect size of gene set enrichments can be quantified with the area 

under the curve (AUC), computed from U, the test statistic from a Mann-Whitney U test 

(a.k.a. Wilcoxon rank-sum test): 



𝑈 = 𝑛(𝑁 − 𝑛) +
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Then 𝐴𝑈𝐶 = 𝑈/(𝑛(𝑁 − 𝑛)) ∈ [0, 1], with significant results from the one-sided 

tmod::tmodCERNOtest having AUC > 0.5. 

Gene set overrepresentation 

Gene set overrepresentation analyses for BTMs were run with tmod::tmodHGtest, which 

implements the hypergeometric test for enrichment of a query gene set within a gene 

module, controlling the FDR at 0.05 using the BH method. The 15 511 genes assayed by 

RNA-seq were used as a custom background set. 

 

Gene set overrepresentation analyses were also run using gprofiler2::gost, which 

implements a similar test using publicly-available gene set databases including Gene 

Ontology, KEGG Reactome, WikiPathways, miRNA targets from miRTarBase, and regulatory 

motif matches from TRANSFAC. Multiple testing was controlled at alpha = 0.05 using the 

g:SCS method (correction_method = “g_SCS”), with genes assayed by RNA-seq provided as a 

custom background (domain_scope = “custom_annotated”).22 

Prediction of primary response status from expression 

Computing module scores by single-sample GSEA 

The single-sample gene set enrichment analysis method (ssGSEA 2.0, 

https://github.com/broadinstitute/ssGSEA2.0/, commit 

b3d035ed31043b277512fd4f08e90f4c1728beec) was used to compute an expression score 

for each module in each RNA-seq sample. This module score is a measure of coordinate up 

or downregulation of the genes in the module in a particular sample as compared to other 

samples based on expression ranks. Combining the Li et al.20 and Chaussabel et al.21 

datasets, 427 modules had sufficient overlap with the 15 511 genes in the filtered 

expression matrix for ssGSEA scores to be calculated. 

https://github.com/broadinstitute/ssGSEA2.0/


Model training and internal validation 

Models were built to predict binary primary response status based on baseline expression 

and clinical variables. The predictors included the 427 module expression scores, as well as 

clinical variables (drug, sex, age of onset, disease duration, smoking status, previous CD 

surgery, immunomodulator use at baseline, steroid use at baseline, BMI) and cell 

proportions (CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes). At the week 0 

timepoint, complete data was available for 152 responders and 116 non-responders; at 

week 14, complete data was available for 142 responders and 104 non-responders. 

 

Model training and evaluation was performed using caret (v6.0-8).23 Pre-processing was 

performed to remove zero variance predictors, then predictors were centred and scaled. To 

avoid lack of power during model development, no data splitting was performed (TRIPOD 

model type 1b).24 The predictive methods used were: penalised and regularised logistic 

regression methods (plr, regLogistic, glmnet), parallel random forest (parRF), eXtreme 

Gradient Boosting (xgbTree), support vector machines with a radial basis (svmRadial), k-

nearest neighbours (knn), naive Bayes (naive_bayes), and Gaussian process models (

gaussprLinear). To evaluate the incremental advantage of adding gene expression 

information, each method was trained with each of three sets of predictors. Initially only 

clinical variables were used as predictors, then cell proportions were added the the 

predictor set, and finally ssGSEA module scores were added. Model parameters were tuned 

by resampling (50 bootstraps per method, predictor set, and parameter combination; 

trainControl(method = “boot”)), optimising using the AUC metric (train(method = “ROC”). 

Each bootstrap involves resampling the dataset with replacement to obtain a bootstrap 

dataset of the same size (on average 63.2% of observations will be sampled one or more 

times), training a predictive model on the bootstrap dataset, then evaluating the model AUC 

on the observations that were not sampled (the “out-of-bag” observations, on average 

36.8% of observations). The parameter combination with the highest mean AUC over 50 

bootstraps was selected for the final model. The resampling metrics (AUCs) from the final 

model per method and predictor set were compared to identify the best performing 

models. Bootstrapping provides internal estimates of model performance without data 

splitting, which is undesirable given the relatively small sample size.25 



 

A single AUC for each final tuned model was computed after merging all 50 bootstraps. ROC 

curves were plotted with pROC (v1.18.0).26 Pairwise tests for differences in AUC between 

ROC curves were performed with pROC::roc.test(method = “bootstrap”, boot.n = 2000), 

which uses bootstrapping to estimate the standard deviation of the difference in AUCs. 

Supplementary Results 

Evaluating possible contributors to heterogeneity of effects between 

drug subgroups 

 

We considered factors that may contribute to the heterogeneity observed for baseline 

models unadjusted for cell composition: 859 differentially expressed genes for infliximab 

patients versus only one for adalimumab patients. Power differences related to sample size 

were not the sole contributor. Although there was a greater sample size for the infliximab 

subgroup (Fig. S1a), heterogeneity remained after randomly downsampling the infliximab 

subgroup to the same size as the adalimumab subgroup (Fig. S5). To examine the effect of 

adjusting for clinical variables on the association between response and expression, a set of 

models was run excluding all clinical covariates, such that the only predictor terms in the 

model were grouping variables (timepoint, response status, drug), technical terms (library 

preparation protocol and plate), and the random intercept for patient. A set of models was 

run including additional two-way interaction terms between drug and components of the 

propensity score used to match IFX patients during RNA-seq sample selection: sex, age, 

immunomodulator usage at baseline, steroid usage at baseline, and BMI. This allows 

coefficient estimates for the propensity score terms to vary between drugs. These two sets 

of models were run per drug subgroup, adjusted or unadjusted for cell composition. 

Heterogeneity remained regardless of model form, with a high number of single-gene 

associations uniquely observed in the IFX subgroup unadjusted for cell composition (Fig. S4). 

We also considered adjusting for week 14 drug level due to its association with PNR,1 but 

this was precluded by substantial missingness in week 14 drug level data (196/814 samples 

with missing data). Inclusion of post-treatment variables in the model is also undesirable 



when testing for baseline associations with response. Finally, we directly tested for 

differences in cell composition at baseline between study groups. Infliximab responders had 

significantly lower proportions of CD4+ and CD8+ T cells, and higher proportions of 

granulocytes compared to infliximab non-responders at baseline (Mann-Whitney test, 

Bonferroni-corrected p = 0.028). These differences were not observed in adalimumab 

patients (Fig. S11). Thus associations between baseline expression of immune gene modules 

and post-induction primary response may be partially mediated by baseline differences in 

cell composition, and particularly in the infliximab subgroup. In the main manuscript, we 

focus on models adjusting for cell composition, which allows a more sensible interpretation 

for analyses where expression data for both drugs are pooled to increase sample size. 
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Supplementary Figure Captions 

See accompanying files for Supplementary Figures. 

Figure S1. Distribution of PANTS RNA-seq samples over study timepoints. (a) RNA-seq samples 

stratified by timepoint and study group. Windows from Kennedy et al. for the four major PANTS 

visits are coloured in grey. Samples mostly come from major visits, but a small number of LOR and 

exit visit samples were also included. (b) Numbers of patients with samples at multiple timepoints. 

Filled circles indicate the presence of at least one sample at the corresponding timepoint. 

 

Figure S2. Distributions of per-gene percentage of variance in expression explained by study 

variables. 

Variables are ordered by the median of per-gene variance explained estimates from variance 

components analysis. PANTS.ID = patient ID, NK = NK cell, Gran = granulocyte, Mono = monocyte, 

Bcell = B cell, CD4T = CD4+ T cell, CD8 = CD8+ T cell. random_numbers is a null drawn from the 

standard normal distribution. Variables other than random_numbers and Ever_Immunomodulator 

were retained for use in downstream DGE and prediction models. 

 

Figure S3. Baseline expression associated with primary response, unadjusted for cell composition. 

(a) Volcano plots of DGE between responders (PR) and non-responders (PNR) at week 0; for 

infliximab (IFX), adalimumab (ADA), or with drug subgroups pooled. Annotated genes show 

significant associations from this study, and previously reported associations from the literature in 

both blood and gut biopsies. Dashed line shows significance threshold at FDR = 0.05. (b) Top gene 

modules differentially expressed between PR and PNR at week 0. Columns correspond to results for 

infliximab (IFX), adalimumab (ADA), difference between IFX and ADA (IFX – ADA, i.e. drug-by-

response interaction), and pooled drug analyses. The top 30 modules ranked by minimum FDR in any 

column are shown. Dashed lines show significance thresholds at FDR = 0.05. 

 

Figure S4. Baseline gene expression differences between responders and non-responders with 

varying model specification. 



Volcano plots of DGE between responders (PR) and non-responders (PNR) at week 0; for 

adalimumab (ADA) and infliximab (IFX) subgroups. Columns correspond to cell proportion adjusted 

and cell proportion unadjusted models with either clinical variables excluded, or additional 

interaction terms between drug and variables used in propensity score matching during RNA-seq 

sample selection. Annotated genes show significant associations from this study, and previously 

reported associations from the literature in both blood and gut biopsies. Dashed line shows 

significance threshold at FDR = 0.05. 

 

Figure S5. Baseline gene expression differences between responders and non-responders, with 

downsampling to match baseline IFX and ADA subgroup sample sizes. 

Volcano plots of DGE between responders (PR) and non-responders (PNR) at week 0; for infliximab 

(IFX), adalimumab (ADA), or with drug subgroups pooled. Downsampling was performed, randomly 

selecting 66/86 IFX PR baseline samples and 57/59 IFX PNR baseline samples to match the 

corresponding ADA group sizes. Annotated genes show significant associations from this study, and 

previously reported associations from the literature in both blood and gut biopsies. Dashed line 

shows significance threshold at FDR = 0.05. 

 

Figure S6. Barcode plots showing selected gene modules with greater expression at baseline in 

primary responders compared to primary non-responders. Genes were ranked in descending order 

by DGE z-statistic, with coloured bars indicating the rank of genes in a module. Curves show the 

cumulative fraction of genes in a module at a particular rank threshold. The area under the curve 

(AUC) reflects the effect size of the module association. Diagonal line shows the null of randomly-

distributed ranks. 

 

Figure S7. Top modules differentially expressed between week 14 and week 0 in a) responders 

(PR) and b) non-responders (PNR), adjusted for cell composition. 

Columns correspond to results for infliximab (IFX), adalimumab (ADA), difference between IFX and 

ADA (IFX – ADA, i.e. drug-by-response interaction), and pooled drug analyses. The top 30 modules 

ranked by minimum FDR in any column are shown. Dashed lines show significance thresholds at FDR 

= 0.05. 

 

Figure S8. Distributions of model specificity, sensitivity and AUC (ROC) from resampling (50 

bootstraps) for each combination of algorithm and predictor set at baseline (week 0). 



Metrics shown are the resampling metrics from the final tuned models. The prefixes “clinical”, 

“cellProps”, and “moduleScores” correspond to the inclusion of clinical variables, cell proportion 

estimates, and expression module scores in the predictor datasets respectively. 

Suffixes indicate the method used (R 3.6, caret package). 

 

Figure S9. Distributions of model specificity, sensitivity and AUC (ROC) from resampling (50 

bootstraps) for each combination of algorithm and predictor set at week 14. 

Metrics shown are the resampling metrics from the final tuned models. The prefixes “clinical”, 

“cellProps”, and “moduleScores” correspond to the inclusion of clinical variables, cell proportion 

estimates, and expression module scores in the predictor datasets respectively. 

Suffixes indicate the method used (R 3.6, caret package). 

 

Figure S10. Correlation matrix of variables considered as potential predictor variables for DGE 

models. 

NK = NK cell, Gran = granulocyte, Mono = monocyte, Bcell = B cell, CD4T = CD4+ T cell, CD8 = CD8+ T 

cell. 

 

Figure S11. Differences in baseline cell proportion estimates between study groups. 

NK = NK cell, Gran = granulocyte, Mono = monocyte, Bcell = B cell, CD4T = CD4+ T cell, CD8 = CD8+ T 

cell. Nominal significance of pairwise comparisons using the Mann-Whitney test (R 3.6, 

wilcox.test(paired=F)) is shown: ns 0.05-1, * 0.01-0.05, ** 0.001-0.01, *** 0.0001-0.001, **** 

<0.0001. 

Supplementary Tables 

Table S1. The UK Inflammatory Bowel Disease Pharmacogenetics Study Group. All UK 

gastroenterologists were invited to participate in the PANTS study, which was promoted through the 

UK National Institute for Health Research and the British Society of Gastroenterology. 

 

Hospital or Trust name  City  Name  Job Title  

Tameside Hospital NHS 
Foundation Trust  

Ashton U Lyne  Dr Vinod Patel  Consultant Gastroenterologist  

Basildon and Thurrock 
University Hospitals NHS 
Foundation Trust  

Basildon  Dr Zia Mazhar  Consultant Gastroenterologist  

Hampshire Hospitals NHS 
Foundation Trust  

Basingstoke  Dr Rebecca Saich  Consultant Gastroenterologist  



Royal United Hospital  Bath  Dr Ben Colleypriest  Consultant Gastroenterologist  

Ulster Hospital  Belfast  Dr Tony C Tham  Consultant Gastroenterologist  

University Hospital's 
Birmingham NHS Foundation 
Trust  

Birmingham  Dr Tariq H Iqbal  Consultant Gastroenterologist  

East Lancashire NHS Teaching 
Trust  

Blackburn  Dr Vishal Kaushik  Consultant Gastroenterologist  

Blackpool Teaching Hospitals 
NHS Foundation Trust  

Blackpool  Dr Senthil Murugesan  Consultant Gastroenterologist  

Bolton NHS Trust  Bolton  Dr Salil Singh  Consultant Gastroenterologist  

Royal Bournemouth Hospital  Bournemouth  Dr Sean Weaver  Consultant Gastroenterologist  

Bradford Teaching Hospitals 
Foundation Trust - (St Lukes 
Hospital &Bradford Royal 
Infirmary)  

Bradford  Dr Cathryn Preston  Consultant Gastroenterologist  

Brighton and Sussex University 
Hospitals NHS Trust  

Brighton  Dr Assad Butt  Paediatric Consultant 
Gastroenterologist  

Brighton and Sussex University 
Hospitals NHS Trust  

Brighton  Dr Melissa Smith  Consultant Gastroenterologist  

University Hospitals Bristol NHS 
Foundation Trust  

Bristol  Dr Dharamveer Basude  Consultant Paediatric 
Gastroenterologist  

University Hospitals Bristol NHS 
Foundation Trust  

Bristol  Dr Amanda Beale  Consultant Gastroenterologist  

Frimley Park Hospital NHS 
Foundation Trust  

Camberley  Dr Sarah Langlands  Consultant Gastroenterologist  

Frimley Park Hospital NHS 
Foundation Trust  

Camberley  Dr Natalie Direkze  Consultant gastroenterologist  

Cambridge University Hospitals 
NHS Foundation Trust  

Cambridge  Dr Miles Parkes  Consultant Gastroenterologist  

Cambridge University Hospitals 
NHS Foundation Trust  

Cambridge  Dr Franco Torrente  Consultant Paediatric 
Gastroenterologist  

Cambridge University Hospitals 
NHS Foundation Trust  

Cambridge  Dr Juan De La Revella Negro  Research fellow  

North Cumbria University 
Hospitals NHS Trust  

Carlisle  Dr Chris Ewen MacDonald  Consultant Gastroenterologist  

Ashford & St Peter's Hospitals 
NHS Foundation Trust  

Chertsey  Dr Stephen M Evans  Consultant Gastroenterologist  

St Peter's Hospital  Chertsey  Dr Anton V J Gunasekera  Consultant Gastroenterologist  

Ashford & St Peter's Hospitals 
NHS Foundation Trust  

Chertsey  Dr Alka Thakur  Paediatric Consultant  

Chesterfield Royal NHS 
Foundation Trust  

Chesterfield  Dr David Elphick  Consultant Gastroenterologist  

Colchester Hospital University 
NHS Foundation Trust  

Colchester  Dr Achuth Shenoy  Consultant Gastroenterologist  

University Hospitals Coventry 
and Warwickshire NHS Trust  

Coventry  Prof Chuka U Nwokolo  Consultant Gastroenterologist  

County Durham and Darlington 
NHS Foundation Trust  

Darlington  Dr Anjan Dhar  Consultant Gastroenterologist & 
Hon. Clinical Lecturer  

Derby Hospital NHS Foundation 
NHS Trust  

Derby  Dr Andrew T Cole  Consultant Gastroenterologist  

Doncaster and Bassetlaw 
Hospitals NHS Foundation Trust  

Doncaster  Dr Anurag Agrawal  Consultant Gastroenterologist  

Dorset County Hospital NHS 
Foundation Trust  

Dorchester  Dr Stephen Bridger  Consultant Gastroenterologist  

Dorset County Hospitals 
Foundation Trust  

Dorchester  Dr Julie Doherty  Paediatric Consultant  

Dudley Group NHS Foundation 
Trust  

Dudley  Dr Sheldon C Cooper  Consultant Gastroenterologist  



Russells Hall Hospital, The 
Dudley Group NHS Foundation 
Trust  

Dudley  Dr Shanika de Silva  Consultant Gastroenterologist  

Ninewells Hospital & Medical 
School  

Dundee  Dr Craig Mowat  Consultant Gastroenterologist  

East Sussex Healthcare Trust  Eastborne  Dr Phillip Mayhead  Consultant Gastroenterologist  

NHS Lothian  Edinburgh  Dr Charlie Lees  Consultant Gastroenterologist 
and Honorary Senior Lecturer  

NHS Lothian  Edinburgh  Dr Gareth Jones  Research fellow  

Royal Devon and Exeter NHS 
Foundation Trust  

Exeter  Dr Tariq Ahmad  Consultant Gastroenterologist  

Royal Devon and Exeter NHS 
Foundation Trust  

Exeter  Dr James W Hart  Consultant Paediatrician  

Glasgow Royal Infirmary  Glasgow  Dr Daniel R Gaya  Consultant Gastroenterologist  

Royal Hospital for Children  Glasgow  Prof Richard K Russell  Consultant Paediatric 
Gastroenterologist  

Royal Hospital for Children  Glasgow  Dr Lisa Gervais  Research fellow  

Gloucestershire Hospitals NHS 
Trust  

Gloucester  Dr Paul Dunckley  Consultant Gastroneterologist  

United Lincolnshire Hospitals 
NHS Trust  

Grantham  Dr Tariq Mahmood  Consultant Gastroenterologist  

James Paget University 
Hospitals NHS Foundation Trust  

Great Yarmouth  Dr Paul J R Banim  Consultant Gastroneterologist  

Calderdale and Huddersfield 
NHS Trust  

Halifax  Dr Sunil Sonwalkar  Consultant Gastroenterologist  

Princess Alexandra Hospital 
NHS Trust  

Harlow  Dr Deb Ghosh  Consultant Gastroenterologist  

Princess Alexandra Hospital 
NHS Trust  

Harlow  Dr Rosemary H Phillips  Consultant Gastroenterologist  

Hull and East Yorkshire NHS 
Trust  

Hull  Dr Amer Azaz  Paediatric Consultant 
Gastroenterologist  

Hull and East Yorkshire NHS 
Trust  

Hull  Dr Shaji Sebastian  Consultant Gastroenterologist  

Airedale NHS Foundation Trust  Keighley  Dr Richard Shenderey  Consultant Gastroenterologist  

Crosshouse Hospital  Kilmarnock  Dr Lawrence Armstrong  Consultant Paediatrician  

Crosshouse Hospital  Kilmarnock  Dr Claire Bell  Research fellow  

The Queen Elizabeth Hospital 
NHS Foundation Trust  

Kings Lynn  Dr Radhakrishnan Hariraj  Consultant Gastroenterologist  

Kingston Hospital NHS Trust  Kingston upon 
Thames  

Dr Helen Matthews  Consultant Gastroenterologist  

NHS Fife  Kirkcaldy  Dr Hasnain Jafferbhoy  Consultant Gastroenterologist  

Leeds Teaching Hospitals NHS 
Trust  

Leeds  Dr Christian P Selinger  Consultant Gastroenterologist  

Leeds Teaching Hospitals NHS 
Trust  

Leeds  Dr Veena Zamvar  Paediatric Consultant 
Gastroenteorlogist  

University Hospitals of 
Leicester NHS Trust  

Leicester  Prof John S De Caestecker  Consultant Gastroenterologist  

University Hospitals of 
Leicester NHS Trust  

Leicester  Dr Anne Willmott  Paediatric Consultant 
Gastroenterologist  

Mid Cheshire Hospitals NHS 
Foundation Trust  

Leighton  Mr Richard Miller  Research Nurse  

United Lincolnshire Hospitals 
NHS Trust  

Lincoln  Dr Palani Sathish Babu  Consultant Gastroenterologist  

Alder Hey Childrens Hospital  Liverpool  Dr Christos Tzivinikos  Consultant Paediatric 
Gastroenterologist  

University College London 
Hospitals NHS Foundation Trust  

London  Dr Stuart L Bloom  Consultant Gastroenterologist  



Kings College Hospital NHS 
Foundation Trust  

London  Dr Guy Chung-Faye  Consultant Gastroenterologist  

Royal London Childrens 
Hospital, Barts Health NHS 
Trust  

London  Prof Nicholas M Croft  Paediatric Consultant 
Gastroenterologist  

Chelsea & Westminster 
Hospital  

London  Dr John ME Fell  Consultant Paediatric 
Gastroenterologist  

Chelsea and Westminster 
Hospital NHS Foundation  

London  Dr Marcus Harbord  Consultant Gastroenterologist  

North West London Hospitals 
NHS Trust  

London  Dr Ailsa Hart  Consultant Gastroenterologist  

Kings College Hospital NHS 
Foundation Trust  

London  Dr Ben Hope  Consultant Paediatrician  

Guys & St Thomas' NHS 
Foundation Trust  

London  Dr Peter M Irving  Consultant Gastroenterologist  

Barts and The London NHS 
Trust  

London  Prof James O Lindsay  Consultant Gastroenterologist  

Guy's and St Thomas' NHS trust  London  Dr Joel E Mawdsley  Gastroenterology Consultant  

Lewisham and Greenwich 
Healthcare NHS Trust  

London  Dr Alistair McNair  Consultant Gastroenterologist  

Chelsea and Westminster 
Hospital NHS Foundation  

London  Dr Kevin J Monahan  Consultant Gastroenterologist  

Royal Free London NHS 
Foundation Trust  

London  Dr Charles D Murray  Consultant Gastroenterologist  

Imperial College Healthcare 
NHS Trust  

London  Prof Timothy Orchard  Consultant Gastroenterologist  

St George's Healthcare NHS 
Trust  

London  Dr Thankam Paul  Paediatric Consultant 
Gastroenterologist  

St George's Healthcare NHS 
Trust  

London  Dr Richard Pollok  Reader and Consultant 
Gastroenterologist  

Great Ormond Street Hospital 
for Children NHS Foundation 
Trust  

London  Dr Neil Shah  Consultant Gastroenterologist  

North West London Hospitals 
NHS Trust  

London  Dr Sonia Bouri  Research fellow  

The Luton & Dunstable 
University Hospital  

Luton  Dr Matt W Johnson  Consultant Gastroenterologist  

Luton and Dunstable Hospital 
Foundation Trust  

Luton  Dr Anita Modi  Paediatric Consultant with 
Allergy and Gastroenterology 
interest  

The Luton & Dunstable 
University Hospital  

Luton  Dr Kasamu Dawa Kabiru  Research fellow  

Maidstone and Tunbridge Wells 
NHS Trust  

Maidstone  Dr B K Baburajan  Consultant Gastroenterologist  

Maidstone and Tunbridge Wells 
NHS Trust  

Maidstone  Prof Bim Bhaduri  Paediatric Consultant 
Gastroenterologist  

Manchester University 
Hospitals NHS Foundation Trust  

Manchester  Dr Andrew Adebayo 
Fagbemi  

Consultant Gastroenterologist  

Central Manchester University 
Hospitals NHS Foundation Trust  

Manchester  Dr Scott Levison  Consultant Gastroenterologist  

The Pennine Acute Hospitals 
NHS Trust  

Manchester  Dr Jimmy K Limdi  Consultant Gastroenterologist  

Manchester University NHS 
Foundation Trust, 
Wythenshawe Hospital  

Manchester  Dr Gill Watts  Consultant Gastroenterologist  

Sherwood Forest Hospitals NHS 
Foundation Trust  

Mansfield  Dr Stephen Foley  Consultant Gastroenterologist  

South Tees Hospital NHS 
Foundation Trust  

Middlesbrough  Dr Arvind Ramadas  Consultant Gastroenterologist  

Milton Keynes Hospital NHS 
Foundation Trust  

Milton Keynes  Dr George MacFaul  Consultant Gastroenterologist  



Newcastle Upon Tyne Hospital 
Trust  

Newcastle  Dr John Mansfield  Consultant Gastroenterologist  

Isle of Wight NHS Foundation 
Trust  

Newport  Dr Leonie Grellier  Consultant Gastroenterologist  

Norfolk & Norwich University 
Hospital NHS Foundation Trust  

Norwich  Dr Mary-Anne Morris  Consultant Paediatric 
Gastroenterologist  

Norfolk & Norwich University 
Hospital NHS Foundation Trust  

Norwich  Dr Mark Tremelling  Consultant Gastroenterologist  

Nottingham University 
Hospitals NHS Trust  

Nottingham  Prof Chris Hawkey  Consultant Gastroenterologist  

Nottingham University 
Hospitals NHS Trust  

Nottingham  Dr Sian Kirkham  Consultant Paediatric 
Gastroenterologist  

Nottingham University 
Hospitals NHS Trust  

Nottingham  Dr Charles PJ Charlton  Consultant gastroenterologist  

Oxford University Hospitals 
NHS Foundation Trust  

Oxford  Dr Astor Rodrigues  Paediatric Consultant 
Gastroenterologist  

Oxford University Hospitals 
NHS Trust  

Oxford  Prof Alison Simmons  Consultant Gastroenterologist  

Plymouth Hospitals NHS Trust  Plymouth  Dr Stephen J Lewis  Consultant Gastroenterologist  

Poole Hospital NHS Foundation 
Trust  

Poole  Dr Jonathon Snook  Consultant Gastroenterologist  

Poole Hospital NHS Foundation 
Trust  

Poole  Dr Mark Tighe  Paediatric Consultant with 
interest in Oncology and 
Gastroenterology  

Portsmouth Hospitals NHS 
Trust  

Portsmouth  Dr Patrick M Goggin  Consultant Gastroenterologist  

Royal Berkshire NHS 
Foundation Trust  

Reading  Dr Aminda N De Silva  Consultant Gastroenterologist  

Salford Royal NHS Foundation 
Trust  

Salford  Prof Simon Lal  Consultant Gastroenterologist  

Shrewsbury and Telford 
Hospital NHS Trust  

Shrewsbury  Dr Mark S Smith  Consultant Gastroenterologist  

South Tyneside NHS 
Foundation Trust  

South Shields  Dr Simon Panter  Consultant Gastroenterologist  

Southampton University 
Hospitals NHS Trust  

Southampton  Dr Fraser Cummings  Consultant Gastroenterologist  

Southampton University 
Hospitals NHS Trust  

Southampton  Dr Suranga Dharmisari  Research fellow  

East and North Herts NHS Trust  Stevenage  Dr Martyn Carter  Consultant Gastroenterologist  

NHS Forth Valley  Stirling  Dr David Watts  Consultant Gastroenterologist  

Stockport NHS foundation Trust  Stockport  Dr Zahid Mahmood  Consultant Gastroenterologist  

North Tees and Hartlepool NHS 
Foundation Trust  

Stockton  Dr Bruce McLain  Paediatric Consultant 
Gastroenterologist  

University Hospitals of North 
Staffordshire  

Stoke-on Trent  Dr Sandip Sen  Consultant Gastroenterologist  

University Hospitals of North 
Midlands NHS Trust  

Stoke-on-Trent  Dr Anna J Pigott  Consultant Paediatric 
Gastroenterologist  

City Hospitals Sunderland NHS 
Foundation Trust  

Sunderland  Dr David Hobday  Consultant Gastroenterologist  

Taunton and Somerset NHS 
Foundation Trust  

Taunton  Dr Emma Wesley  Consultant Gastroenterologist  

South Devon Healthcare NHS 
Foundation Trust  

Torquay  Dr Richard Johnston  Consultant Gastroenterologist  

South Devon Healthcare NHS 
Foundation Trust  

Torquay  Dr Cathryn Edwards  Consultant gastroenterologist  

Royal Cornwall Hospitals NHS 
Trust  

Truro  Dr John Beckly  Consultant Gastroenterologist  

Mid Yorkshire Hospitals NHS 
Trust  

Wakefield  Dr Deven Vani  Consultant Physician & 
Gastroenterologist  



Warrington& Halton NHS 
Foundation  

Warrington  Dr Subramaniam 
Ramakrishnan  

Consultant Gastroenterologist  

West Hertfordshire Hospitals 
NHS Trust  

Watford  Dr Rakesh Chaudhary  Consultant Gastroenterologist  

Sandwell and West Birmingham 
Hospitals NHS Trust  

West Bromwich  Dr Nigel J Trudgill  Consultant Gastroenterologist  

Sandwell and West Birmingham 
Hospitals NHS Trust  

West Bromwich  Dr Rachel Cooney  Consultant gastroenterologist  

Weston Area Health NHS Trust  Weston-Super-
Mare  

Dr Andy Bell  Consultant Gastroenterologist  

Royal Albert Edward Infirmary, 
Wrightington, Wigan & Leigh 
NHS Foundation Trust  

Wigan  Dr Neeraj Prasad  Consultant Gastroenterologist  

Hampshire Hospitals NHS 
Foundation Trust  

Winchester  Dr John N Gordon  Consultant Gastroenterologist  

Royal Wolverhampton 
Hospitals NHS Trust  

Wolverhampton  Prof Matthew J Brookes  Consultant Gastroenterologist  

Western Sussex Hospitals NHS 
Trust  

Worthing  Dr Andy Li  Consultant Gastroenterologist  

Yeovil District Hospital NHS 
Foundation Trust  

Yeovil  Dr Stephen Gore  Consultant Gastroenterologist  

 


