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Extended Results

Co-evolution between target genes and their cognate TR

As was noted in previous studies, we observed that the positioning of the adenines in the TR is tightly
constrained both to maximize diversification and avoid stop codons in the target protein (SI Appendix
Fig. S1, SI Dataset S2) (1-4). This highlights the strong coevolution between the target genes and their
cognate TR (5). Indeed, to ensure that the DGR target gene stays functional while being diversified,
selection must act on TR sequences to maintain several features: 1) An A at 1% and 2" positions of
codons that can be diversified without compromising the target protein integrity, 2) non-A and non-G
nucleotides at the 3" position of targeted codons to avoid nonsense codons, and 3) non-As for codons
that are essential and cannot be diversified. Arguably, these features could be used to recognize DGR
systems under active selection.

The fact that the mutation process in DGR is not fully random but directed to the first and second
positions of target codons to maximize protein diversity also explains the enrichment in non-synonymous
variants in VVRs reported from metagenomics analyses (6). As a consequence of this non-randomness,
classical measures of selection based on dN/dS or pN/pS cannot be used to estimate the strength of the
selection affecting DGR targets.

Diversity of organisms with clade 5 DGRs

Clade 5D, which includes RTs from Thiohalocapsa PB-PSB1’s DGR3 and DGR6 loci, was composed
of entirely of multicellular bacteria and a large proportion of the organisms with multiple DGR loci (SI
Appendix Table S1 and Sl Dataset S3). Basal members of this clade, most closely related to DGR3, are
filamentous chloroflexi (7—9). Derived members of this clade, more closely related to DGR®6, are
predominantly Betaproteobacteria including numerous Accumulibacter species from freshwater
wastewater treatment reactors and marine Nitrosomonas that form dense microcolonies in biofiltration
biofilms (10-12). Other members include the mat-forming purple sulfur bacterium Thioflavicoccus
mobilis and a multicellular magnetotactic bacterial species from the Deltaproteobacteria (Candidatus
Magnetomorum HK-1) (13, 14).

In several cases, we found organisms encoding both clade 5D and clade 5A RTs, like Thiohalocapsa PB-
PSB1 (Fig. 3, SI Appendix Table S1). 77% of the Clade 5A sequences from described species were from
multicellular organisms. This clade, like 5D, includes mostly beta- and gammaproteobacterial species
from the Accumulibacter, Nitrosomonas and purple sulfur bacteria. PB-PSB1’s clade 5A RT (DGRS) is
most closely related to the mat-forming Thiorhodococcus drewsii, which was isolated from the
neighboring Great Sippewissett salt marsh (15) and the purple sulfur bacterium Ca. Thiodicyton
syntrophicum, which, like PB-PSB1, forms multicellular consortia with a sulfate reducing symbiont (16).

In Clade 5B, the relatives of the DGR2 and DGR4 RTs are found in the genomes of known or putative
sulfur oxidizing bacteria and, of those that have been visually characterized, all are either filamentous or
aggregate forming (Fig. 3, (17-22)). The closest cultured relative to the DGR 2-4 RTs is the purple sulfur
bacterium Marichromatium purpuratum (also from the family Chromatiales). Other close relatives from
metagenomic data include a 40 kb Chromatiales-like contig from a meromictic lake (Lake La Cruz,
Spain).

PB-PSB1’s DGR 7 and 9 RTs belonged to clade 5C and had few close relatives amongst cultured or
high-quality MAGs in the IMG genomes database, except for Ca. Accumulibacter phosphatis BA-91,
which also encodes a type 5D DGR (Fig. 3). Close RT relatives from unbinned metagenomic contigs (6)
came from other aquatic and wastewater treatment habitats. Unlike PB-PSB1 and Ca. Accumulibacter
phosphatis BA-91, the DGRs from the unicellular members of clade 5C were located within predicted
prophage regions and targeted genes without CLec domains (or, often, any known domains, Fig. 3).



Extended Methods

DNA extraction and sequencing

To analyze the diversity of PB-PSB1 in its natural environment, 187 pink berry aggregates were sampled
from 6 ponds across 3 salt marshes near Woods Hole, MA (Figure 1, Supplemental Data 5). 184
metagenomes from individual aggregates sampled between 2015 and 2017 were sequenced with short-
read sequencing technology. DNA was extracted from all samples with the Agencourt DNAdvance
Genomic DNA Isolation Kit (Beckman Coulter, Indianapolis, USA). Metagenomic libraries were
prepared with the Nextera XT DNA Library Prep Kit and Illumina index primers (lllumina, San Diego,
USA). Libraries were quantified on an Agilent 4200 TapeStation system with High Sensitivity D5000
ScreenTapes (Agilent Technologies, Santa Clara, USA) and pooled by equimolar amounts. Sequencing
was performed on an Illumina HiSeq 2500 machine (250bp paired-end reads) at the Whitehead Institute
for Biomedical Research (Cambridge, MA). The resulting lllumina reads were cleaned with bbduk.sh in
bbmap v38.92 (https://sourceforge.net/projects/bbmap/) in two steps. First, the last 30bp at the 5’ end of
reads were removed with option forcetrimright2=30. Then read ends were trimmed based on quality
(Q20) and only reads longer than 50 bp with an average quality above Q20 were kept (options gtrim=rl
trimg=20 mag=20 minlen=50).

Three additional aggregates sampled in 2021 were sequenced with PacBio HiFi long-read technology.
After sampling, aggregates were rinsed with 0.22 pm-filtered seawater and frozen at -80 °C until DNA
extraction. In order to maintain DNA integrity for long-read sequencing, a DNA extraction protocol was
adapted from (23) and (24). Briefly, a single frozen aggregate was ground in a 1.5 mL tube and incubated
at 37 °C for 1h with 125 uL of Tris Lysis Buffer with extra EDTA (100 mM NacCl, 10 mM Tris HCI at
pH 8, 100 mM EDTA at pH 8, 0.5% w/v SDS) and 10 uL of lysozyme at 100 mg/mL. After addition of
125 pL of warm 4% high-salt CTAB (4% w/v CTAB, 10 mM Tris HCI pH 8, 100 mM EDTA pH 8, 2.8
M NaCl), 6 pL of proteinase K (20 mg/mL, New England Biolabs, Ipswich, MA, USA) and 0.8 pL
RNAse A (New England Biolabs, Ipswich, MA, USA), the tube was incubated at 55 °C for 3 hours. After
cooling down, 250 pL of chloroform:isoamyl alcohol (24:1) were added before mixing for 15 min on a
rotator mixed. The aqueous and organic phases were then separated by spinning for 15 min at 6000 g,
and the aqueous phase was carefully transferred to a fresh 1.5 mL tube. This cleaning step was repeated
a second time to remove any trace of proteins. Then, 450 pL of warm CTAB precipitation buffer (2%
w/v CTAB, 50 mM Tris HCI pH 8, 100 mM EDTA pH 8) were added. After overnight incubation at 55
°C, the precipitated DNA was harvested by centrifugation at 16000g for 15 min. The DNA pellet was
rinsed twice with cold 80% ethanol before elution in 10 mM Tris HCI, pH 8.

To prepare PacBio HiFi libraries, an input of 50 ng of genomic DNA was sheared to 6 kb - 10 kb using
the Megaruptor 3 (Diagenode). The sheared DNA was treated with an exonuclease to remove single-
stranded ends, a DNA damage repair enzyme mix, and an end-repair/A-tailing mix, and then ligated with
amplification adapters using SMRTbell Express Template Prep Kit 2.0 (PacBio). Templates were
purified with ProNex Size-Selective Purification System (Promega). The purified ligation product was
split into two reactions and enriched using 10 cycles of PCR using the SMRTbell gDNA Sample
Amplification Kit (PacBio). The amplified product was combined and treated with a DNA damage repair
enzyme mix and an end-repair/A-tailing mix and ligated with barcoded overhang adapters. Libraries
were size-selected using the 0.75% agarose gel cassettes with Marker S1 and High Pass protocol on the
BluePippin (Sage Science). The PacBio Sequencing primer was then annealed to the SMRTbell template
library and sequencing polymerase was bound to them using Sequel Il Binding kit 2.0. The prepared
SMRThbell template libraries were sequenced on a Pacific Biosystem Sequel lle sequencer using SMRT
Link 10.2, thd-sample dependent sequencing primer, 8M v1 SMRT cells, and Version 2.0 sequencing
chemistry with 1x1800 sequencing movie run times. CCS reads were processed with the JGI QC pipeline
to remove artifacts. Briefly, reads were filtered for duplicates using pbmarkdup, analyzed using the
icecreamfinder.sh script in BBMap to filter potential chimeric reads, and adapter trimmed using bbduk.

Details on the annotation of PB-PSB1 DGR loci

Manual inspection of DGR loci revealed that, while myDGR correctly predicted the DGR7 locus based
on the presence of the RT gene, the target genes and VR/TR regions were misidentified. As DGR7 and
9 had closely related RT sequences, we aligned the CLec domains from their adjacent genes with the
predicted TR from DGR to identify the target genes and VR at DGR7. ISEScan (25) predicted an IS
elements within each of these three target genes of the DGR7 locus; however, a careful inspection
revealed that these IS elements contained a lone 3',5'-cyclic AMP phosphodiesterase domain rather than
a transposase domain and had poorly matched or absent terminal inverted repeats. They represented an
overprediction by ISEscan, caused by the repetitive nature of the region and their proximity to a



downstream transposase fragment, and were removed from the annotation presented in supplemental
figures S3 and S8.

Calculation of the number of possible protein sequence combinations

The custom python script (available at https://github.com/hdore/PB-PSB1_DGR_variation) developed
to calculate all possible protein sequence combinations for each VR of each DGR works as follows. The
script uses the coordinates of the target protein and VR, and the sequence of the TR to identify the codons
(and the positions within each codon) targeted by DGR. It counts all the potential amino acids that can
be generated by changing nucleotides at all targeted positions of the codon. To be more accurate for
DGRY7 locus we used the TR sequence identified in a long-read structural variant (SI Dataset S8).

Annotation of MITE-like sequences

Regions of short direct and inverted repeats at the DGR loci were identified by manual inspection of dot
plots and their annotation was refined using Find Repeats with Geneious Prime 2022.1.1
(https://www.geneious.com). These repeats were searched against a database of terminal inverted repeats
from the intact IS elements detected with ISEScan using BLASTn with parameters adjusted for short
search sequence and to maximize hits covering the entire repeat length (-word_size 7 -gapopen 3 -
gapextend 2 -reward 1 -penalty -1). Short inverted repeats matching existing IS-elements were analyzed
with RNA Fold (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) (26). Stable hairpin-
forming inverted repeats were characterized as Miniature Inverted-repeat Transposable Elements
(MITE)-like sequences.

Calculation of genome-level nucleotide diversity

The mean nucleotide diversity across Thiochalocapsa PB-PSB1’s genome was calculated for each of the
184 short-read metagenomes using inStrain v1.8.0 (27), with default parameters except --min_cov 5 and
--rarefied_coverage 5. inStrain was run on the bam files generated by bwa-mem (see main Methods).
Aggregates with less than 5x mean coverage to PB-PSB1’s genome were discarded.

In order to verify whether the diversity was higher within an aggregate that between aggregates in a pond,
a selection of aggregates was made: first, aggregates with less than 5x mean coverage were filtered out.
As only 8 aggregates had more than 5x mean coverage in pond F, and to allow a fair comparison between
ponds, 8 aggregates were then randomly chosen from each pond. To avoid any bias when pooling reads
from different aggregates of a given pond, the exact same number of read pairs (260 000 pairs,
corresponding to the number of pairs mapped in the aggregate with the lowest coverage) was extracted
from each of the selected aggregates. Reads were extracted randomly from the bam files among those
mapped (with correct pair mapping) to the PB-PSBL1 reference genome. The subsampled reads from each
aggregate were then re-mapped to the PB-PSB1 genome with bwa-mem and the resulting bam files were
used an input for inStrain (--min_cov 5 and --rarefied_coverage 5), to calculate the nucleotide diversity.
The same approach was applied to reads pooled by pond. To compare the diversity of individual
aggregates to the diversity of the pool, the rarefied nucleotide diversity was used (inStrain option --
rarefied_coverage 5).

Calculation of pink berry volume and correlation to nucleotide diversity

The diameters of aggregates were measured from photographs of aggregates in multiwell plates. The
volume was then calculated by approximating the aggregates as spheres, and used as a proxy for the
number of cells. We performed regression analyses to test for a linear relationship between the volume
of the aggregate and the nucleotide diversity of each VR.
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Legends for Datasets S1 to S8

Dataset S1 (separate file).

Coordinates of PB-PSB1 DGR elements. Note that when the element is on the minus strand, the end
coordinate is greater than the start coordinate. When multiple VVRs are present in a target, they are
numbered from the N-terminal end to the C-terminal end. All VR to TR coordinates were verified
manually based on VR/TR alignment.

Dataset S2 (separate file).

Calculation of diversification potential for each VR of each DGR target in PB-PSB1. The codons that
are targeted by DGR were identified based on the TR/VR alignment (corresponding to positions were
the TR has an A). Then the number of potential amino acids (or stop codons) that can be generated by
DGR-induced mutation from each codon was calculated using the standard bacterial genetic code. Note
that while the codons are identified on the target genes, the codon reference sequence is based on the
aligned TR sequence, as the DGR mechanism replaces the whole VR with the TR sequence, including
non-variable positions. The table includes the sequence of targeted codons and the positions that are
targeted by DGR within each codon. The smaller table on the right-hand side summarizes the results by
VR, target and DGR locus. For DGR7 the TR sequence extracted from the long read presenting a
structural variant with the intact TR was used for more accuracy.

Dataset S3 (separate file).

Description of all clade 5 DGR-encoding organisms. The metadata available in the IMG Genome
database was manually curated, and additional characteristics such as the cell morphology and the
multicellular status were added based on the literature cited in the column "Morphology_citation”. The
IMG accession numbers of the genome and the reverse transcriptase gene are indicated.

Dataset S4 (separate file).
Results of ISEScan detection of insertion sequences (IS) elements. This table corresponds to the raw
output from ISEScan. TIR: Terminal Inverted Repeat. Tpase: transposase.

Dataset S5 (separate file).
Single-aggregate metagenomes metadata and accession numbers.

Dataset S6 (separate file).

Annotation of a selection of conflict system-associated domains in clade 5 RTs neighborhood. The first
tab indicates the domains that were searched for and their abbreviations used in Fig. 3 and in the main
text. These domains were searched for within 20 kb of the DGR clade 5 RTs. For each domain, a separate
tab indicates the domain hits in the organisms represented on Fig. 3. The IMG accession number of the
genome, the RT gene and the gene with a domain hit are indicated.

Dataset S7 (separate file).

Amino-acid alignment of the VWA domains, including VWA sequences from ternary conflict systems,
as used by (28) to build a hmm profile. The hmm profile was used to search for VWA domains in DGR
neighborhoods.

Dataset S8 (separate file).
Genbank file containing the MyDGR annotation of a long read presenting a structural variant of
Thiohalocapsa PB-PSB1’s DGR7 locus with an intact template repeat.



Table S1. Distribution and multicellular status of organisms containing more than one clade 5 error-prone reverse transcriptase gene. Cyanobacteria are shaded in green
and CPR are shaded in brown. Average phylogenetic distance is the mean of pairwise phylogenetic distance for all clade 5 RT genes in a genome.

Average RT Number of RTs within each clade 5 subclade
Nb of full- | Phylogenetic Multicellular or
length RTs Distance 5A 5B 5C 5D 5E 5F |Other| Species aggregate-associated | IMG Genome ID
5 3.45 DGR8 | DGR2-4 | DGR7-9 | DGR3-6 Thiohalocapsa sp. PB-PSB1 (all RTs included yes 2867970272
4 1.79 1 3 |Ca. Magnetomorum sp. HK-1 yes 2648501189
3 2.85 1 2 Ca. Accumulibacter appositus BA-92 yes 2556921088
3 2.75 1 2 |Ca. Accumulibacter sp. SK-01 * 2 RTs @ 1 locus yes 2556921083
3 1.24 3 Achromatium Bin 0 no - highly polyploid 2642422597
3 0.64 3 Calothrix sp. PCC 7103 yes 2507262048
3 0.51 3 Scytonema hofmanni PCC 7110 yes 2551306141
2 4.10 1 1 |Ca. Thiodictyon syntrophicum Cad16 yes 2773857920
2 3.81 1 1 Ca. Accumulibacter phosphatis UW-1 yes CP001715.1
2 3.37 1 1 Verrucomicrobiaceae EBPR_Bin_208 yes 2619618930
2 3.33 1 1 Ca. Accumulibacter sp. SK-11 yes 2556921085
2 3.25 1 1 Ca. Accumulibacter sp. BA-91 yes 2556921087
2 2.74 2 Bdellovibrionaceae NAT178 unknown 2802429364
2 2.54 2 |Pelodictyon phaeoclathratiforme BU-1 yes 642555146
2 2.21 2 |Thermoflexibacter ruber DSM 9560 yes 2636415974
2 1.93 2 |Phaeodactylibacter xiamenensis KD52 yes 2617271238
2 1.69 1 1 Thiomargarita nelsonii bud S10 yes 2600255314
2 1.35 2 Parcubacteria GW2011_GWA2_45_13 unknown 2626541992
2 1.26 2 Viridilinea mediisalina Kir15-3F yes 2751186036
2 1.06 2 Trichodesmium erythraeum IMS101 yes 637000329
2 1.00 2 Crocosphaera chwakensis CCY0110 yes 640612201
2 0.99 2 Levilinea saccharolytica DSM 16555 yes 2740892510
2 0.95 2 Ca. Woesearchaeota CG10_big_fil_rev_8 21 14 _0_10_30_7 |unknown 2785511156
2 0.91 2 Ca. Staskawiczbacteria RIFOXYB1_FULL_32_11 unknown 2711768669
2 0.75 2 Nostoc sp. PCC 7120 yes 637000199
2 0.67 2 Merismopedia glauca CCAP 1448/3 yes 2802429465
2 0.65 2 Lake Mendota Epilimnion MEint.metabat.2353 unknown 2582580551
2 0.63 2 Nodularia spumigena CCY9414 yes 2562617131
2 0.63 2 Lake Mendota Epilimnion MEint.metabat.4498 unknown 2582580576
2 0.51 2 Fischerella sp. PCC 9431 yes 2512875027
2 0.48 2 Ca. Pacearchaeota CG10_big_fil_rev_8 21 _14_0_10_34 12 |unknown 2785510794
2 0.42 2 Armatimonadetes CG0O6_land_8_20_14 3_00_66_21 unknown 2786546208
2 0.35 2 Ca. Pacearchaeota CG10_big_fil_rev_8 21 _14_0_10_30_48 |unknown 2785510795
2 0.33 2 Leptolyngbya sp. PCC 7375 yes 2509601039
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Fig. S1. Alignment of VRs-TR from DGR2-4-5, DGR1-3-6 and DGR7-9.

(A) Nucleotide alignment of the TR from DGR2 (top, highlighted in yellow), and the VRs from DGR2/4/5. The predicted
TR/VR region is indicated above the sequences, and the positions that are As in the TR are shown in red. Only the
mismatches to the TR are colored. (B) Amino-acid alignment of the TR from DGR2 and VRs from DGR2/4/5. Although the
TR is not translated, the theoretical sequence is shown for comparison to the VRs. (C) Nucleotide alignment of the TR of
DGR3 and the VRs of DGR1 and DGR3. The location of the predicted TR region is indicated below the sequences, and
the positions that are As in the TR are shown in red. Only the mismatches to the TR are colored. (D) Amino acid
alignment of the TR of DGR3 and the VRs from DGR1 and DGRS3. Although the TR is not translated, the theoretical
sequence is shown for comparison to the VRs. (E) Nucleotide alignment of the TR and VRs of DGR6. The location of the
predicted TR region is indicated below the sequences, and the positions that are As in the TR are shown in red. Only the
mismatches to the TR are colored. (F) Amino acid alignment of the TR and VRs from DGRG6. Although the TR is not
translated, the theoretical sequence is shown for comparison to the VRs. (G) Nucleotide alignment of DGR3 TR and
DGR6 TR. Differences between the two sequences are highlighted. (H) Amino-acid alignment of DGR3 TR and DGR6
TR. Although the TR is not translated, the theoretical sequence is shown to show the effect of substitutions. (I) Nucleotide
alignment of the TR from DGR9 (bottom, highlighted in yellow), and the VRs from DGR7/9. The predicted TR/VR region is
indicated below the sequences, and the positions that are As in the TR are shown in red. Only the mismatches to the TR
are colored. (J) Amino-acid alignment of the TR from DGR9 and VRs from DGR7/9. Although the TR is not translated, the
theoretical sequence is shown for comparison to the VRs.
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Fig. S2. Sequence similarity of the C-terminal lectin domains from Thiohalocapsa sp. PB-PSB1’'s 15 DGR target
proteins.

(A) Maximum likelihood phylogeny of the CLec domains from the 15 target proteins. The variable region of each
CLec domain has been removed prior to alignment. Bootstrap support is shown at each node (n=100). Each
domain is identified by the DGR locus, target gene name, and for targets with multiple CLec domains they have
been numbered from 5 to 3’ (R1, R2, R3). (B) Amino acid similarity (BLOSUM 62) distance matrix for the CLec
domain alignment used for the phylogeny in panel A (the variable region of each CLec domain has been removed
prior to alignment).
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A Thiohalocapsa PB-PSB1 (CP050890.1)

B
S C—p—
N838_19970
N838_19955 RT
B RT deletion Thiohalocapsa PB-PSB1 (CP050890.1)

s w wwmwen

4k 3k 2k 1k 0
Read / Query

C Inversion, intact TR Thiohalocapsa PB-PSB1 (CP050890.1)

8k 6k 4k 2k 0
Read / Query

D Inversion, intact TR

> RT <. Nesa%0 < N83819955 |
B B R (=A%

Fig. S4. Structural variants observed at the DGRY locus.

Structural variants are shown as seen in the long-read alignments to the Thiohalocapsa sp. PB-PSB1 reference
genome visualized with Genome Ribbon (29). (A) Read mappings are shown in blue, with inversions shown in red,
short indels shown in black, and longer deletions shown with a thin blue connecting line. Ribbon plots of individual
reads show examples of variants with a deleted RT gene (B) and variants with inversions and an intact template
repeat region (TR) (C). Panel (D) shows the same read as in panel (C) with the intact DGR region annotated using
myDGR (30).
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Fig. S5. Thiohalocapsa PB-PSB1 nucleotide diversity within and between Pink Berry aggregates.
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(A) The distribution of whole genome, within-aggregate nucleotide diversity, calculated for every aggregates with
more than 5x mean coverage. (B) Comparison of within-aggregate and pond-pooled rarefied nucleotide diversity in
a selection of aggregates. Eight aggregates where randomly chosen from each pond and subsampled to the exact
same number of reads. To allow for a fair comparison, the nucleotide diversity shown in panel B is rarefied to 5x,
which explains the lower values compared to panel A.
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Fig. S6. /n situ diversification of VRs of all DGR loci in LS01_001 pink berry aggregate from long-reads

metagenomics data.
nucleotide diversity (11) and proportion of non-reference alleles (n-r.) at each position. Ref.: Reference nucleotide.

reference genome, while letters below bars indicate the reference sequence of the TR. Bottom rows show the
N: unknown nucleotide.

Only positions that correspond to an A in the TR are shown. Bar plots indicate the proportion of A, T, C and G at
each position, colored if they differ from the reference. Letters above bars indicate the VR sequence in the
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Fig. S7. Correlation between the volume of aggregates and the within-aggregate nucleotide diversity of

Thiohalocapsa PB-PSB1 DGRs.

The volume of each aggregate was calculated from its diameter by considering the aggregate as a sphere. For
each DGR VR, the nucleotide diversity was averaged over all positions that correspond to an A in the TR, which
are the targets of DGR diversification. The solid line corresponds to a linear regression, with the grey shading
indicating the 95% confidence interval. All regressions had a p-value > 0.05.
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Fig. $8. Proportion (A) and number (B) of aggregates showing diversification for each DGR target gene at each
sampling site. A DGR target was considered diversified if at least one of its VRs showed diversification at positions
targeted by the DGR mechanism based on the nucleotide diversity (upper panel) or the proportion of non-reference
alleles (lower panel). Only DGR loci with multiple targets are represented. Colors correspond to sampling sites, with
blue shades corresponding to Little Sippewissett salt marsh (LS), green to Great Sippewissett (GS) and red shades
to Penzance Point (PP).
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Fig. S9. Proportion (A) and number (B) of aggregates showing diversification for each VR of each DGR target
gene at each sampling site. Nucleotide diversity (upper panel) or the proportion of non-reference alleles (lower
panel) were used to determine if a VR was diversified. Only DGR targets with multiple VRs are represented. Colors
correspond to sampling sites, with blue shades corresponding to Little Sippewissett salt marsh (LS), green to Great
Sippewissett salt marsh (GS) and red shades to Penzance Point salt marsh (PP).
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