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I. SI Methods  

Study cohorts and participants 
 
HCP. We leveraged multisession neuroimaging and behavioral data from the Human 
Connectome Project (HCP; http://www.humanconnectomeproject.org/) (1). For each individual 
in the HCP cohort, the resting state functional magnetic resonance imaging (rsfMRI) data were 
acquired in four runs of approximately 15 minutes each, two runs in one session and two in 
another session. The two sessions were collected within 1-3 days of each other. Within each 
session, oblique axial acquisitions alternated between phase encoding in a left-to-right (LR) 
direction in one run and phase encoding in a right-to-left (RL) direction in the other run. In the 
current study, we refer to the first run with LR encoding direction as “HCP Session 1”, the 
second run with LR encoding direction as “HCP Session 2”, the first run with RL encoding 
direction as “HCP Session 3”, and the second run with RL encoding direction as “HCP Session 
4” (see also Table S2). Participant selection procedure is illustrated in Fig. S9. 499 males and 
589 females were included in this study and did not differ in head movement (Table S17). Table 
S2 shows the demographic information.  
 
NKI-RS. An independent cohort from the Nathan Kline Institute-Rockland Sample (NKI-RS) (2) 
was used to investigate the replicability and generalizability of our findings from the HCP cohort. 
Participant selection procedure is illustrated in Fig. S9. 97 males and 108 females were 
included in this study and did not differ in head movement (Table S17). Table S2 shows the 
demographic information.  
 
MPI Leipzig. An independent cohort from the publicly available Max Planck Institut (MPI) 
Leipzig Mind-Brain-Body Dataset (https://openneuro.org/datasets/ds000221/versions/1.0.0) (3) 
was used to investigate the replicability and generalizability of our findings from the HCP cohort. 
Participant selection procedure is illustrated in Fig. S9. 137 males and 78 females were 
included in this study and did not differ in head movement (Table S17). Table S2 shows the 
demographic information.  
 
fMRI preprocessing  

All functional MRI data were preprocessed by using SPM12 software package, as well as in-
house MATLAB scripts. Structural MRI images were segmented into grey matter, white matter 
(WM), and cerebrospinal fluid (CSF). Prior to preprocessing, QA of functional and structural MRI 
was performed and subjects with poor quality imaging data were excluded from analysis. 
Resting-state functional MRI (fMRI) data were realigned to the averaged time frame to correct 
for head motion, slice-time corrected to the first slice, and co-registered to each participant’s T1-
weighted images. The functional images were then normalized to the standard Montreal 

Neurological Institute (MNI152) template at 2mm3. A 6-mm Gaussian kernel was used to 
spatially smooth the functional images and a band-pass filter ranging from 0.01 to 0.1 Hz was 
applied. Band-pass filtering of fMRI timeseries was used to remove low frequency artifacts such 
as scanner drifts and high frequency components, which do not contain useful information. 
Critically, band-pass filtering does not remove non-stationarities in the data, and non-
stationarities such as time-varying means and covariances can still exist in a band pass filtered 
signal. To account for artifacts from motion and nonneural sources, the mean timeseries from 
each of the CSF and WM masks as well as 6 motion parameters, obtained by rigid body 
registration, were regressed out from the fMRI data. We used the binarized WM and CSF tissue 
probability maps provided by FSL. 

http://www.humanconnectomeproject.org/
https://openneuro.org/datasets/ds000221/versions/1.0.0
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Data input into the stDNN 
  

We used the Brainnetome Atlas (246 regions) (4) and computed the average resting-state fMRI 
timeseries across the voxels in a given region of interest (ROI). Each participant’s timeseries 
data was represented by a matrix of size NC × NT, where NC is the number of channels or ROIs 
and NT is the number of time points. We trained our stDNN models on the HCP cohort which 

has a TR of 0.72 seconds. While the NKI-RS cohort has a TR of 0.645 seconds which is close 
to that of HCP, the MPI Leipzig cohort has a much slower TR which is 1.4 seconds. Thus, we 
linearly interpolated timeseries of the MPI Leipzig cohort using interp1d function from the python 
SciPy package to match the TR of HCP when evaluating performance and generating individual 
brain fingerprints for the MPI Leipzig cohort. We used Brainnetome as it provides fine-grained 
brain-wide parcellations of both cortical and subcortical areas with better anatomical and 
functional interpretability than most other atlases. Critically, the Brainnetome Atlas is one of the 
most extensively used atlases, with over 1000 studies using it (4), enabling the comparison of 
our method/findings with those from extant related research work as well as those under 
development elsewhere.  
 
To demonstrate that our stDNN findings are robust to atlas selection, we additionally examined 
eight commonly used atlases (covering a broad range of number of cortical and subcortical 
ROIs), including Automated anatomical labeling (AAL) Atlas (90 regions) (5), Craddock 
Cameron Atlases (200 regions for CC200 and 392 regions for CC400) (6), Dosenbach Atlas 
(160 regions) (7), Eickhoff-Zilles Atlas (116 regions) (8), Glasser Atlas (360 regions) (9), 
Harvard-Oxford Atlas (112 regions) (10-13), and Shen Atlas (268 regions) (14).  

 
Technical innovations of stDNN 
 
Our stDNN model incorporates several technical innovations. First, we used data augmentation 
(15), which enabled us to increase the size of the training dataset by a factor of 15 that allowed 
us to train a deeper stDNN model with the potential for more accurate and generalizable models 
(16). Briefly, for each subject in the HCP training dataset, we divided their fMRI timeseries into 
multiple segments and then assigned each of the resulting segment the same label (male or 
female) as the original timeseries, effectively increasing the training dataset from ~800 to 
12,000 -  a nearly 15-fold increase (see “Data augmentation” section for details). Second, unlike 
fully connected networks, stDNN has comparatively fewer parameters to train, as it shares 
parameters across inputs in a given layer. Third, stDNN has a fully convolutional architecture 
which can predict class labels on test datasets having different lengths, which is typically the 
case with open-source rsfMRI data. Fourth, one-dimensional convolution used in stDNN exploits 
both spatial and temporal correlations between brain regions (see “The use of 1D convolutions 
as the basis for modeling 4D data” section for details). Critically, extant approaches do not 
exploit the dynamic spatiotemporal characteristics of brain activity which are thought to be more 
reliable features that distinguish between groups of individuals (17-19). The convolutional 
architecture of our stDNN model is also particularly well suited to brain imaging applications, 
which have a limited number of labelled training data of varying lengths. 
 

The use of 1D convolutions as the basis for modeling 4D data 
 
2D and 3D convolutional neural networks (CNNs) have traditionally been used to model spatial 
correlations in 2D and 3D (volumetric) images, whereas 1D CNNs, LSTMs and, more recently, 
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transformer models have been used to model temporal correlations in timeseries data. fMRI, 
which is a 4D dataset, has both spatial and temporal correlations that can be modeled using a 
combination of 2D or 3D CNNs along the spatial dimension and LSTMs, or transformers, or 1D 
CNNs along the temporal dimension. However, training such models is very challenging due to 
the large number of model parameters associated with such a model, especially when using a 
small number of labelled datasets, as is typical with fMRI datasets. Additionally, fMRI datasets 
have long range spatial correlations that are not modeled by either 2D or 3D CNNs.  
 
To address these challenges, we developed a novel architecture which exploits the spatial 
smoothness in a 4D fMRI dataset and represents it as a multivariate timeseries thereby 
reducing the number of free parameters that need to be learned in the model. The resulting 
multivariate timeseries can be modelled by either LSTMs or transformers or 1D CNN models. 
However, LSTMs are difficult to train because of vanishing and exploding gradients, whereas 
transformers require a large number of labelled data due to the large number of model 
parameters. Furthermore, previous studies have shown that fMRI timeseries exhibit strong 
short-term temporal correlations but weak long-term temporal correlations. Therefore, we chose 
to use 1D CNNs because they effectively model short-term temporal correlations and they are 
very easy to train using a small number of labelled data. As noted earlier, fMRI datasets exhibit 
long range spatial correlations in addition to strong short-term temporal correlations. 1D CNNs 
model these long range spatial correlations because, in 1D CNNs, the kernel size of K is a 
matrix of size  𝑁 ×  𝐾 weights, where N is the number of ROIs. Therefore, with multiple 1D CNN 

filters, the spatial dimension also gets transformed which accounts for spatial correlations. 
Importantly, the high classification accuracies we obtained in cross-validation as well as in 
multiple independent cohorts using this model suggest that our parsimonious 1D CNN approach 
effectively models the spatiotemporal characteristics without losing spatial information in the 4D 
fMRI data. 
 
 
Data augmentation 
 

We used a data augmentation strategy that allowed us to increase the number of layers in the 
stDNN model (see section stDNN model below for details). Deep learning models, in general, 
require a large number of labelled data to be effectively trained. Here we have about 800 
subjects to train the model, which is not sufficient to train a deep model. Data augmentation is 
typically used to address this issue and increase the number of labelled data. In computer vision 
applications, data augmentation consists of operations such as rotation, shift, and blurring of 
images and all of these operations are given the same label, thereby increasing the size of the 
training dataset. In our stDNN model, the data is a multivariate fMRI timeseries for which we 
cannot use the same operations as in the case of images. fMRI timeseries exhibit strong local 
temporal correlations and weak long term correlations. Taking advantage of this, we used a 
sliding window approach to create additional labelled datasets for training. More specifically, we 
apply a window size of 256 (184 secs) with an overlap of 64 (46.08 secs) to each of the 
multivariate timeseries. Data from each of these windows would get the same label (male or 
female) as the original timeseries. This data augmentation procedure was only applied to 
participants in the training dataset, not to the participants in the test dataset. Thus the training 
dataset grew from 800 to 12,000, a nearly 15-fold increase, which is critical for training the deep 
and generalizable stDNN model used in our study. Furthermore, we were able to train the model 
with 256 time samples and test it on the full timeseries (1200 samples for HCP) on the left out 
test and independent cohorts using our fully convolutional model. 
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stDNN model 
  
We developed an innovative stDNN model to extract informative brain dynamics features that 
accurately distinguish between males and females. A key advantage of our approach is that it 
provides a novel technique to capture latent dynamics without the need for explicit feature 
engineering (20). Our stDNN model consists of two 1D CNN blocks, a “temporal averaging” 
operation, and then a sigmoid layer for binary classification (Fig. S2). The first 1D CNN block 
consists of two 1D CNN layers and the second 1D CNN block consists of one 1D CNN layer, 
and each CNN layer followed by a ReLU activation. In the first 1D CNN block, the sizes of the 
1D CNN layers were 256× 246 and 256× 256 respectively with a kernel size of 7. In the second 
1D CNN block, the size of the 1D CNN layers were 512× 256 with a kernel size of 5. We 
included a “maxpool” layer with a kernel size of 4 and a stride of 2 after each of the two 
convolutional block layers.  
 
The input to the stDNN was each subject’s NC × NT ROI timeseries matrix where NC = 246 for 

Brainnetome Atlas. The first CNN block layer transforms the input spatiotemporally to 256 × NT 
with a temporal kernel of size 𝐹 = 7 and with 256 number of filters. In other words, the input was 

convolved with a filter of size 246 × 7 and this was repeated 256 times to produce an output of 
256 × NT.  The 246 dimensional input was transformed to a 256 dimensional vector by a 

convolutional weight matrix. Therefore, our CNN not only exploits the temporal correlations in 
the data but also the spatial correlations across the input ROIs. The convolution operation is 
mathematically defined as: 

𝒙̃𝑙+1(𝑛) = ∑ 𝐻𝑙(𝑘)𝒙𝑙(𝑛 − 𝑘)

𝐾

𝑘=0

 

 
Where, the output of the convolution 𝒙̃𝑙+1 at the 𝑙-th layer is defined as a linear combination of 

the convolutional kernel weights 𝐻𝑙(𝑘)′𝑠 and the output of the previous maxpool layer 𝒙𝑙 . 

This convolution operation projects the input data into multiple frequency bands. This 1D 
convolution layer is followed by a ReLU nonlinear operator defined as below: 
 

𝒙̃𝑙+1(𝑛) − max (0, 𝒙̃𝑙+1(𝑛)) 
 
which results in an output of size 256 × NT. This nonlinear operation helps in extracting 
nonlinear features in the data. In modern deep learning architectures, ReLU is preferred over 
other nonlinear operators such as sigmoid and tanh functions. This is because ReLU, as 
opposed to the sigmoid and tanh functions, does not saturate the gradients and therefore the 
backpropagation algorithm can effectively learn the model weights. The ReLU nonlinear 
operation of the second 1D CNN block layer is followed by a maxpool layer with a kernel size of 
4, which produces an output data of size 256 × NT. The “maxpool” layers help in (a) reducing 

the temporal dimension of the data, (b) hierarchical representation of the features, and (c) 
increasing the receptive field of the filter to capture the long-term correlations in the timeseries. 
The output of this maxpool layer is an input to the second 1D convolution block. The processing 
of this block is similar to the first block with a difference that the number of filters used in the 1D 
CNN layers is 512 with a temporal kernel size of 5. The output of this block after ReLU and the 
maxpool layer is 512 × NT.  The output of the second maxpool layer is to a “temporal averaging 

layer”. Conventionally, after the last convolutional block, the data is flattened and a fully 
connected layer is connected to the output sigmoid layer. The fully connected layers typically 
have the maximum number of parameters to be trained compared to the convolutional layers. In 
our model, instead of the normal flattening operation, we use a “temporal averaging layer” 



 

 

6 

where we average the temporal features for each filter and therefore the number of inputs to the 
fully connected layer is just the number of output channels of the second convolution block 
layer. The advantages of averaging layer over the flattening layer are (a) the number of 
parameters reduced from 𝑁𝐶2 × 𝑁𝑇2 to 𝑁𝐶2 where 𝑁𝐶2  is the number of output channels of the 

second convolutional block layer which is 512 and 𝑁𝑇2 is the temporal dimension of the output 

of the second “maxpool” layer, (b) with averaging layer, we can train and test fMRI timeseries 
with varying time lengths. Temporal averaging layer is a dimensionality reduction step in the 
latent space and not in the original timeseries space, so is unlikely to cause loss of significant 
temporal information. Varying time length is common with open-source data where the data is 
acquired with different data acquisition protocols. We introduce a dropout layer (= 0.5) before 
the linear layer to avoid overfitting during the model training process. In addition to dropout, we 
also use a small L2-norm regularization with a weight of 0.0001 for an additional regularization. 
stDNN classified participants in the two groups by minimizing the binary cross-entropy cost 
function. We train the model for up to 15 epochs with a stopping criterion and a learning rate of 
0.0001 with a batch size of 32. An Adam optimizer starting with a running average between 0.9 
and 0.999, and zero weight decay was used to estimate the stDNN model parameters (21).  

 
Identifying brain features underlying sex classification 
  
We used an integrated gradients (IG)-based feature attribution approach (22-26) to identify brain 
features that discriminated between males and females. A major problem in developing and 
evaluating feature attribution methods is that it is difficult to distinguish errors from the DNN 
model and those from feature attribution procedures. IG solves this problem by taking an 
approach that satisfies two fundamental axioms – sensitivity and implementation invariance(22-
26). Another advantage of IG is that the gradients can be computed easily for any given network 
architecture. IG estimates the integral of gradients with respect to the i-th dimension of the input 
x along the straight-line path from a given (or random) baseline to the input as follows: 
 

𝐼𝐺𝑖 = (𝑥 − 𝑥′) ∫ (𝑥𝑖 − 𝑥′𝑖)
𝜕𝐹(𝑥′ +  𝛼(𝑥 − 𝑥′))

𝜕𝑥𝑖

1

0

𝜕𝛼 

 
where,  𝐼𝐺𝑖 is the integrated gradient for the i-th component of the input x and 𝑥′ is the baseline 

input for which the neural network F results in a neutral output.  IG provides a score of how 
important each feature contributes to the final prediction. This approach provides insights about 
important features that predict the sex class label. Conventional gradient-based approaches 
wrongly assign zero attributions for inputs where the function is flat, even when the output of F 
for such an input is different from the baseline. IG avoids this problem by computing an average 
gradient along a linear path. Our IG implementation is based on the “Captum” 
(https://captum.ai/docs/introduction.html) module of Pytorch. The IG-derived feature 
importance/weights are computed at an individual level and relative to a baseline that is 
common across individuals, and therefore were not normalized. 
 
 
Five-fold cross-validation classification analysis in the HCP cohort 
 
To prevent bias and account for low variance, for each of the four HCP sessions, we conducted 
a five-fold cross-validation to evaluate the performance of our stDNN model. In the five-fold 
cross-validation approach, we divided the whole dataset into five different parts. We used four 
parts for training and validation and the fifth part as the test set. We then rotate through the 
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whole dataset five times to select a different section as the test set during each iteration (Fig. 
S3A). For each of the five subsets, we evaluate the performance of our stDNN model 
individually and report the mean and standard deviation values of the key performance metrics 
(accuracy, macro-precision, macro-recall, macro-F1, AUC). Using the five-fold cross-validation 
approach, the performance for every sample from the HCP data gets accounted, which helps in 
assessing the effectiveness of the model more robustly instead of just reporting the 
performance on one-time random split of the data. 
 
Moreover, to test the replicability and generalizability of our stDNN models, we applied each of 
the five stDNN models trained on different subsets of a specific HCP session to the data from 
another HCP session without any additional training. We evaluated each model’s performance 
independently (Fig. S3A) and reported the mean and standard deviation values of the key 
performance metrics (accuracy, macro-precision, macro-recall, macro-F1, AUC). We repeated 
this procedure for all pairs of HCP sessions with one as the model session and the other as the 
testing session.    
 
 
Distinctiveness of brain features underlying sex differences in the HCP cohort 
 
We evaluated the validity of brain features distinguishing females and males by measuring the 
similarity between integrated gradients-derived dynamic brain features in HCP Session 1, which 
showed the best cross-session replicability. Specifically, we first identified individual fingerprints 
of predictive brain features in each individual using an integrated gradients (IG) procedure (Fig. 
S5; See Supplementary Methods for details). Next, for each individual, we computed the 
Pearson correlation between their fingerprint and the group-level fingerprint of the same sex 
(r12), the Pearson correlation between their fingerprint and the group-level fingerprint of the 
opposite sex (r13), and the Pearson correlation between the group-level male fingerprint and 
the group-level female fingerprint (r23). Finally, we transformed the correlations into Fisher-Z 
scores and used the R function diffcor.dep to determine whether the correlation between two 
variables (r12) differs from the correlation between the first and a third one (r13), given the 
intercorrelation of the compared constructs (r23). 
 
 
Consensus analysis of brain features underlying sex differences in the HCP cohort 
 
Next, we sought to identify brain features that most consistently discriminated between female 
and male brains. To address this, we conducted a consensus analysis using multiple five-fold 
cross-validation iterations in each of the four HCP sessions. This analysis was designed to 
identify features unbiased by any single cross-validation split of the data. Specifically, for each 
HCP session, we repeated the five-fold cross-validation process 100 times, resulting in 500 
stDNN models (5 folds x 100 iterations). For each of the 500 models trained on different subsets 
of a specific HCP session (model session), we used the IG approach to estimate feature 
attributions at each brain region and time point for all subjects in a specific HCP session (testing 
session), then computed the median of feature attributions across time points, averaged the 
absolute values of medians across subjects for each sex, and thresholded them to get the top 
20% features for each sex. Thus, we got 500 sets of top 20% features for each sex in the HCP 
testing session. Finally, we counted the occurrence of each feature in the 500 sets of top 20% 
features for each sex, averaged the occurrences, and then thresholded them using a binomial 
distribution (total number of trials = 500; probability = 0.5) at p = 0.05 (Bonferroni corrected). 
These procedures were repeated for all pairs of HCP sessions, resulting in 16 consensus maps 
(4 HCP model sessions x 4 HCP testing sessions; Fig. 4). 
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Stability analysis of intra-individual brain features underlying sex differences in the HCP 
cohort  
 
We further investigated the stability of brain features underlying sex differences within 
individuals. Specifically, for each individual, we computed the Pearson correlation between their 
fingerprint in Session 1 and that in Session 2 (i.e., cross-session intra-individual similarity; r12), 
as well as the Pearson correlations between their fingerprint in Session 1 and all other 
individuals’ fingerprints in Session 2, which were then averaged across individuals to derive 
cross-session inter-individual similarity (r13). We also computed the Pearson correlations 
between their fingerprint in Session 2 and all other individuals’ fingerprints in Session 2, which 
were further averaged across individuals to derive within-session inter-individual similarity (r23). 
Next, we transformed the correlations into Fisher-Z scores and used the R function diffcor.dep 
to determine whether the correlation between two variables (r12) differs from the correlation 
between the first and a third one (r13), given the intercorrelation of the compared constructs 
(r23). Finally, we conducted the same stability analysis using HCP Sessions 3 and 4 to examine 
the replicability of our findings. We paired HCP Session 1 with Session 2 and HCP Session 3 
with Session 4 based on phase encoding direction. The sessions with the same phase encoding 
direction were paired for analysis. 
 
 
Classification analysis of independent NKI-RS and MPI Leipzig cohorts using five-fold 
HCP Session 1 models  
 
As we showed the robustness of classification results within the HCP cohort (Figs. 2 and S4), 
we used only HCP Session 1, which achieved the best cross-session generalizability, to further 
examine the generalizability of stDNN models to independent cohorts. We applied each of the 
five stDNN models trained on different subsets of HCP Session 1 to the data from independent 
NKI-RS and MPI Leipzig cohorts without any additional training. We evaluated each model’s 
performance on each independent cohort independently (Fig. S3A) and reported the mean and 
standard deviation values of the key performance metrics (accuracy, macro-precision, macro-
recall, macro-F1, AUC) for each independent cohort. 
 
 
Generalization of brain features underlying sex differences from the HCP to independent 
NKI-RS and MPI Leipzig cohorts  
 
We next sought to examine the generalizability of discriminating features identified in HCP data 
to independent NKI-RS and MPI Leipzig cohorts using consensus analysis. Specifically, for 
each of the 500 models trained on different subsets of the HCP Session 1 data, we used the IG 
approach to estimate feature attributions at each brain region and time point for all subjects in 
NKI-RS and MPI Leipzig cohorts. Next, for each cohort we computed the median of feature 
attributions across time points, averaged the absolute values of medians across subjects for 
each sex, thresholded them to get the top 20% features for each sex, counted the occurrence of 
each feature in the 500 sets of top 20% features for each sex, averaged the occurrences, and 
finally thresholded them using a binomial distribution (total number of trials = 500; probability = 
0.5) at p = 0.05 (Bonferroni corrected). 
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Distinctiveness of brain features underlying sex differences in NKI-RS and MPI Leipzig 
cohorts 
 
We evaluated the validity of brain features distinguishing females and males in NKI-RS and MPI 
Leipzig cohorts by measuring the similarity between integrated gradients-derived dynamic brain 
features. For each cohort, we conducted the same analysis. Specifically, we first identified 
individual fingerprints of predictive brain features in each individual using an integrated 
gradients (IG) procedure (Fig. S6; See Supplementary Methods for details). Next, for each 
individual, we computed the Pearson correlation between their fingerprint and the group-level 
fingerprint of the same sex (r12), the Pearson correlation between their fingerprint and the 
group-level fingerprint of the opposite sex (r13), and the Pearson correlation between the group-
level male fingerprint and the group-level female fingerprint (r23). Finally, we transformed the 
correlations into Fisher-Z scores and used the R function diffcor.dep to determine whether the 
correlation between two variables (r12) differs from the correlation between the first and a third 
one (r13), given the intercorrelation of the compared constructs (r23). 
 
 
Control analyses with different brain atlases, artifact reduction methods and head 
movement in the HCP, NKI-RS, and MPI Leipzig cohorts 
 
We used HCP Session 1 based models, which showed the best cross-session generalizability, 
to further examine if our classification results are robust to the selection of atlases and motion-
related artifacts reduction methods, and head movement. 
 
First, to examine the robustness of sex classification with respect to several alternative atlases, 
including Automated anatomical labeling (AAL) Atlas (5), Craddock Cameron Atlases (CC200 
and CC400) (6), Dosenbach Atlas (DOS160) (7), Eickhoff-Zilles Atlas (EZ) (8), Glasser Atlas 
(9), Harvard-Oxford Atlas (HO) (10-13), and Shen Atlas (Shen268) (14), we extracted resting-
state fMRI timeseries based on each atlas and examined the classification accuracy using 
stDNN and cross-validation analysis. 
 
Next, to test for the effects of nuisance variables such as head motion and sources of 
physiological noise, we applied an alternative pipeline that, in addition to the steps used in the 
main pipeline, applied motion scrubbing (27) and aCompCor (28). Motion scrubbing was done 
using a 0.5mm DVARS threshold, where frames exceeding the threshold were replaced with a 
linear interpolation of the prior and proceeding time points. To account for additional sources of 
physiological noise, 5 PCA components from the white matter and CSF timeseries were 
regressed out from the timeseries during nuisance regression.  
 
Finally, to test for the effect of head motion on feature weights derived from the Brainnetome 
atlas and main pipeline, we computed the squared distance correlation (dcor2) (29) between the 
strength of features and the mean framewise displacement (FD) in males and females 
separately for each of the four HCP sessions and the NKI-RS and MPI Leipzig cohorts. Briefly, 
dcor2 is a measure of the nonlinear relationship between multidimensional variables, making it a 
better measure than conventional metrics like Pearson correlation, which only capture univariate 
linear relationships. dcor2 has a range from 0 to 1, with dcor2 = 0 denoting statistical 
independence.  
 
 
Sex-specific neurobiological predictors of cognition and its replicability 
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We investigated whether stDNN identified brain features (that discriminated females from 
males) could predict cognitive function in males and females. An evaluation on the behavioral 
data demonstrates its suitability for factor analysis (i.e., Kaiser-Meyer-Olkin Measure of 
Sampling Adequacy = 0.78, and 𝜒2(91) = 3480.04, p < 0.001 for Bartlett’s test for sphericity) 

whose objective is to represent a set of variables in terms of a smaller number of hypothetical 
variables, which would facilitate the understanding and interpretation of the data.  
 
Principal component analysis (PCA) and exploratory factor analysis (EFA) are often referred to 
collectively as factor analysis. The key difference between PCA and EFA is that all of the 
variance (including variance unique to each variable, variance common among variables, and 
error variance) in the matrix is to be accounted for in PCA whereas only the variance shared 
with other variables (i.e., excluding variance unique to each variable and error variance) is to be 
accounted for in EFA. Thus, we determined that PCA is more appropriate in our situation as we 
do not have a hypothesis regarding the relationships among the 14 cognitive variables.  
 
Specifically, we applied PCA with varimax rotation to the 14 HCP cognition measures, including 
measures of episodic memory, executive function/flexibility, executive function/inhibition, fluid 
intelligence, language/reading decoding, language/vocabulary comprehension, processing 
speed, self-regulation/impulsivity, spatial orientation, sustained attention, verbal episodic 
memory, and working memory. We identified three principal components and used scores on 
these three components to derive a cognitive profile in each individual. We then examined sex-
specific neurobiological predictors of individual cognitive profiles using canonical correlation 
analysis (CCA). Specifically, we conducted CCA for males and females separately using brain 
features (i.e., feature attribution weights) from HCP session 1 as predictors of cognitive profiles 
to evaluate the multivariate shared relationship between the two variables sets (Fig. S3B). To 
examine the replicability of our findings, we applied the same CCA procedure using brain 
features from HCP session 3 as predictors of cognitive profiles. To assess the significance of 
CCA modes, in addition to the use of dimensional reduction analysis, we performed a 
permutation test by shuffling the rows (subjects) of the behavioral dataset 5000 times and re-run 
CCA after each permutation. 
 
Finally, we examined whether the CCA model from males could predict cognitive profiles in 
females, and, conversely, whether the CCA model from females could predict cognitive profiles 
in males. Specifically, we applied the trained model from males to data from females, calculated 
the canonical correlation for mode 1 (Fig. S3B), and assessed its significance using 
permutation test by permuting the rows of behavioral canonical variate and re-computing 
canonical correlation for mode 1 for 5000 times. We then repeated this procedure using model 
from females and data from males. 
 
 
Control analyses examining sex-specific neurobiological predictors of cognition using 
static connectivity measures 
 
Using the same CCA procedures described above, we used functional connectivity, which is 
widely used in resting-state fMRI studies (30-35), as brain variables to examine brain-behavioral 
relations in each sex and whether the CCA model from one sex could predict the cognitive 
profile in the opposite sex in HCP cohort. Because the 246 brain regions involve 30,135 
functional connectivity pairs, which was far higher than the number of samples, we reduced the 
dimensionality by applying a PCA to functional connectivity and used the first 246 principal 
components to keep the number of brain variables comparable to that in CCA using stDNN 
features.  
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II. SI Results  

 
Stability analysis of intra-individual brain features underlying sex differences in the HCP 
cohort  
 
We sought to determine the intra-individual stability of brain features underlying sex differences 
by leveraging four sessions of the HCP data. We found that for 99.5% of the individuals, brain 
features derived using HCP Session 1 data were most similar to features of the same individual 
than other individuals in HCP Session 2 (3.80 < Zs < 14.01, ps < 1e-4). Similarly, for 99.6% of 
the individuals, brain features derived using HCP Session 3 data were most similar to features 
of the same individual than other individuals in HCP Session 4 (3.57 < Zs < 12.52, ps < 1e-4). 
These results demonstrate that brain features underlying sex differences are stable and 
replicable at the individual participant level. 
 
 
Control analyses with different brain atlases, artifact reduction methods and head 
movement in the HCP cohort  
 
Across multiple atlases (4-14) and motion artifacts reduction techniques (27, 28), we achieved 

high classification accuracies (89.34  1.88%), macro-precision (0.89  0.02), macro-recall (0.89 

 0.02), macro-F1 scores (0.89  0.02), and AUC (0.96  0.01) (Table S4), demonstrating that 
our findings are robust to the selection of atlases and motion-related artifacts reduction 
methods.  
 
Additional analysis confirmed that the our findings were robust against potential confounds such 
as head motion. Specifically, we computed squared distance correlation (dcor2) (29) between 
the strength of features and mean framewise displacement (FD, a measure of head motion) for 
males and females in each HCP session, and found no significant effect of head motion on the 
features (HCP Session 1: males: dcor2 = 0.125 ± 0.004; female: dcor2 = 0.103 ± 0.002; HCP 
Session 2: males: dcor2 = 0.010 ± 0.003; female: dcor2 = 0.097 ± 0.004; HCP Session 3: males: 
dcor2 = 0.107 ± 0.005; female: dcor2 = 0.094 ± 0.004; HCP Session 4: males: dcor2 = 0.127 ± 
0.008; female: dcor2 = 0.098 ± 0.002). Briefly, dcor2 captures non-linear relationship between 
multidimensional variables and ranges between 0 and 1, with 0 indicating statistical 
independence. 
 
 
Control analyses with different brain atlases, artifact reduction methods and head 
movement in independent NKI-RS and MPI Leipzig cohorts  
 
Across all atlases (4-14) and motion artifacts reduction techniques (27, 28), we achieved high 

classification accuracies (NKI-RS: 76.92  2.70%; Leipzig: 77.78  4.24%), macro-precision 

(NKI-RS: 0.78  0.03; Leipzig: 0.78  0.04), macro-recall (NKI-RS: 0.76  0.03; Leipzig: 0.79  

0.04), macro-F1 scores (NKI-RS: 0.76  0.03; Leipzig: 0.77  0.04), and AUC (NKI-RS: 0.87  

0.04; Leipzig: 0.89  0.03) in both NKI-RS (Table S9) and MPI Leipzig (Table S10) cohorts. 
These results demonstrated that our findings of generalization are robust to the selection of 
atlases and motion-related artifacts reduction methods.   
 
Additional analysis confirmed that the our findings were robust against potential confounds such 
as head motion. Specifically, we computed squared distance correlation (dcor2) (29) between 
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the strength of features and mean framewise displacement for males and females in the NKI-RS 
and MPI Leipzig cohorts, and found no significant effect of head motion on the features (NKI-
RS: males: dcor2 = 0.206 ± 0.006; female: dcor2 = 0.164 ± 0.005; MPI Leipzig: males: dcor2 = 
0.144 ± 0.002; female: dcor2 = 0.174 ± 0.002).  
 
 
Generalization of sex differences to independent cohorts with conventional machine 
learning methods 
 
We examined the generalizability of conventional functional connectivity approaches using K-
Nearest Neighbor, Decision Tree, linear SVM, Logistic Regression, Ridge Classifier, LASSO, 
and Random Forest (36). Consistent with many prior rsfMRI studies, we used pre-computed 
functional connectivity between the 246 brain regions as features. We trained and tested 
models on HCP Session 1 data using a 5-fold cross-validation procedure, and then evaluated 
generalization on independent NKI-RS and MPI Leipzig cohorts without any additional training.  
 

Within HCP Session 1, conventional approaches on average achieved an accuracy of 77.91  

13.72%, macro-precision of 0.78  0.14, macro-recall of 0.78  0.14, macro-F1 score of 0.77  

0.14, and AUC of 0.84  0.16 (Table S11). With unseen data from an independent NKI-RS 

cohort, conventional approaches on average achieved an accuracy of 70.79  8.68%, macro-

precision of 0.72  0.09, macro-recall of 0.70  0.08, macro-F1 score of 0.70  0.08, and AUC of 

0.78  0.12 (Table S12). With unseen data from an independent MPI Leipzig cohort, 

conventional approaches on average achieved an accuracy of 68.60  11.37%, macro-precision 

of 0.69  0.10, macro-recall of 0.70  0.11, macro-F1 score of 0.68  0.11, and AUC of 0.75  
0.14 (Table S13).These results suggest that conventional approaches did not generalize as well 
to untrained data from independent cohorts as our stDNN-based approach, highlighting the 
novelty of our stDNN approach, which revealed replicable and generalizable sex differences 
without the need for ad hoc feature engineering procedures. 
 
 
Conventional approaches fail to uncover sex-specific neurobiological predictors of 
cognition 
 
We next used static functional connectivity measures as brain variables to examine brain-
behavioral relations in each sex and whether CCA model from males or females could predict 
cognitive profile in the opposite sex in HCP sessions 1 and 3 separately. To reduce the 
dimensionality of the functional connectivity matrix we used the first 246 principal components to 
examine brain-behavior relations using procedures similar to the ones described in the Section 
Sex-specific neurobiological predictors of cognition and its replicability. In both HCP 
sessions 1 and 3, the first 246 principal components explained about 80% (80.4% and 79.7%, 
respectively) of the total variance. 
 

In HCP session1, CCA yielded three modes with squared canonical correlations (𝑅𝑐
2) of 0.68, 

0.56, and 0.48 in males (Fig. S8A). The CCA model was statistically significant (Pillai’s trace = 
1.716, p = 4e-4, 95% CI: 1.405 – 1.620, permutation test) and explained about 92% of the 
variance. We then performed a dimension reduction analysis to determine the significant modes 
(37). The full model (modes 1 to 3) was statistically significant (F(738, 720.96) = 1.35, p = 2e-5, 
95% CI: 0.86 – 1.16) whereas modes 2 to 3 (F(490, 482) = 1.06, p = 0.25, 95% CI: 0.84 – 1.19) 
and mode 3 (F(244, 242) = 0.90, p = 0.79, 95% CI: 0.78 – 1.29) did not explain significant 
additional shared variance between brain and cognitive measures, suggesting that only mode 1 
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was relevant (37). Permutation test with FDR correction further confirmed a significant mode 1 
(p < 0.001, permutation test, 95% CI of mode 1 𝑅𝑐

2: 0.50 – 0.60). In females, CCA yielded three 

modes with 𝑅𝑐
2 of 0.62, 0.48, and 0.40 (Fig. S8B). Collectively, the full model across all modes 

was statistically significant (Pillai’s trace = 1.505, p = 2e-4, 95% CI: 1.186 – 1.385, permutation 
test) and explained 88% of the variance shared between the variable sets. Dimension reduction 
analysis showed that the full model (modes 1 to 3) was statistically significant (F(738, 978.95) = 
1.38, p = 1e-6, 95% CI: 0.87 – 1.14) whereas modes 2 to 3 (F(490, 654) = 1.06, p = 0.23, 95% 
CI: 0.85 – 1.18) and mode 3 (F(244, 328) = 0.91, p = 0.78, 95% CI: 0.79 – 1.26) did not explain 
statistically significant shared variance between brain and behavioral measures, suggesting that 
only mode 1 was relevant (37). Permutation test with FDR correction further confirmed a 
significant mode 1 (p < 0.001, permutation test, 95% CI of mode 1 𝑅𝑐

2: 0.43 – 0.52).  

 
We then applied the trained model from males to data from females and found a significant 
mode 1 with a 𝑅𝑐

2 of 0.06 (p = 2e-5, 95% CI: 1.6e-6 – 9.0e-3, permutation test; Fig. S8A). 

Similarly, when we applied the trained model from females to data from males, we found a 
significant mode 1 with 𝑅𝑐

2 of 0.02 (p = 8e-4, 95% CI: 1.7e-6 – 1.0e-2; Fig. S8B). These results 

indicate that the CCA model from males or females predicts the cognitive profile in the opposite 
sex. 
 
To examine the replicability of our findings, we performed similar analyses in HCP session 3. In 
males, CCA yielded three modes with squared canonical correlations (𝑅𝑐

2) of 0.69, 0.54, and 

0.51 (Fig. S8C). The CCA model was statistically significant (Pillai’s trace = 1.738, p =2e-4, 
95% CI: 1.402 – 1.623, permutation test) and explained about 93% of the variance. We then 
performed a dimension reduction analysis to determine significant modes (37). The full model 
(modes 1 to 3) was statistically significant (F(738, 720.96) = 1.39, p = 4e-6, 95% CI: 0.86 – 
1.16) whereas modes 2 to 3 (F(490, 482) = 1.08, p = 0.19, 95% CI: 0.84 – 1.19) and mode 3 
(F(244, 242) = 1.03, p = 0.41, 95% CI: 0.78 – 1.29) did not explain significant additional shared 
variance between brain and cognitive measures, suggesting that only mode 1 was relevant (37). 
Permutation test with FDR correction further confirmed a significant mode 1 (p < 0.001, 95% CI 

of mode 1 𝑅𝑐
2: 0.51 – 0.60). In females, CCA yielded three modes with 𝑅𝑐

2 of 0.62, 0.50, and 
0.43 (Fig. S8D). Collectively, the full model across all modes was statistically significant (Pillai’s 
trace = 1.547, p = 2e-4, 95% CI: 1.203 – 1.398, permutation test) and explained 89% of the 
variance shared between the variable sets. Dimension reduction analysis showed that the full 
model (modes 1 to 3) was statistically significant (F(738, 978.95) = 1.42, p = 2e-7, 95% CI: 0.87 
– 1.14) whereas modes 2 to 3 (F(490, 654) = 1.14, p = 0.07, 95% CI: 0.85 – 1.18) and mode 3 
(F(244, 328) = 0.97, p = 0.59, 95% CI: 0.79 – 1.26) did not explain statistically significant shared 
variance between brain and behavioral measures, suggesting that only mode 1 was relevant 
(37). Permutation test with FDR correction further confirmed a significant mode 1 (p < 0.001, 

95% CI of mode 1 𝑅𝑐
2: 0.43 – 0.52).  

 
When applying the trained model from males to data from females, we found a significant mode 

1 with a 𝑅𝑐
2 of 0.03 (p = 4e-4, permutation test, 95% CI of mode 1 𝑅𝑐

2: 1.4e-6 – 8.4e-3; Fig. 
S8C). Similarly, when applying the trained model from females to data from males, we found a 

significant mode 1 with 𝑅𝑐
2 of 0.08 (p = 2e-4, permutation test, 95% CI of mode 1 𝑅𝑐

2: 2.2e-6 – 

1.0e-2; Fig. S8D). These results indicate that the CCA model from males or females predicts 
the cognitive profile in the opposite sex. 
 
Taken together, these results demonstrate that static functional connectivity fails to uncover 
sex-specific neurobiological predictors of cognition, but instead identifies sex-invariant brain 
features that are predictive of cognitive profiles in both sexes.   
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III. SI Discussion  

 
Limitations and directions for future work  

While our study presents significant insights, it is important to acknowledge limitations and 
suggest directions for future research. First, the potential biases in our training data, influenced 
by factors like ethnicity or socio-economic status, may limit the generalizability of our stDNN 
model's findings. However, the replication of our main findings across three independent 
cohorts with diverse demographic profiles and multiple geographical locations provides a 
degree of confidence in the robustness of our results against these potential biases. 

Second, our model does not encompass the entire spectrum of biological sex-related factors, 
such as hormonal influences, nor does it account for the complexities of gender identity. Future 
research could expand upon this by integrating these variables to provide a more 
comprehensive understanding of sex differences in brain organization. 

Third, future studies should aim to delineate the precise roles of the sex-specific associations 
we identified between functional brain organization and cognitive profiles. This should include a 
focus on cognitive areas exhibiting sex differences as well as those that are consistent across 
sexes. Moreover, it is crucial to investigate how various factors — such as learning strategies, 
genetics, developmental processes, hormonal changes, and psychosocial influences — 
differentially shape brain organization in females and males (38-40). Understanding these 
aspects is key to unraveling the complex interplay between sex-specific brain organization and 
behavior, as highlighted in our study.  
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IV. SI Figures  

 

 

Fig. S1. Current study contrasted with previous studies (30-35) which have used machine 
learning and functional brain imaging data to distinguish functional organization in male 
and female brains. Each colored circle refers to an individual study, with size proportional to 
sample size. Information about each the study (i.e., authors, published year, cohort used in the 
study) is shown beside each circle. Studies are arranged in terms of whether independent 
cohort testing and whether cognitive profile prediction were examined. HCP = Human 
Connectome Project; PNC = Philadelphia Neurodevelopmental Cohort; NKI-RS = Nathan Kline 
Institute-Rockland Sample; Leipzig refers to Max Planck Institut Leipzig Mind-Brain-Body 
Dataset. Note that the PNC and UK Biobank datasets span wide age ranges across 
development, aging and psychiatric and neurological disorders (ages 8-21 and 37-73, 
respectively). The HCP, NKI-RS and Leipzig datasets used in our study focus on a narrow age 
range of young adults (ages 20-35). The current study is depicted on the top right.  
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Fig. S2. Spatiotemporal deep neural network (stDNN) model for classification and 
integrated gradients method for feature identification. A spatiotemporal stDNN model uses 
raw fMRI timeseries from 246 brain regions as input to predict sex (male or female). The model 
predicts the class label (male or female) of each individual using spatiotemporal convolutions of 
the fMRI timeseries. An integrated gradients method is used to identify “black-box” brain 
features underlying sex classification.  
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Fig. S3. Data analysis strategy. (A) Five-fold cross-validation procedures for testing and 
validation of sex classification using data from the HCP, NKI-RS and MPI Leipzig cohorts. The 
five models from a specific HCP session were then used to independently test male vs. female 
classification in HCP, NKI-RS and MPI Leipzig data without additional training. (B) The 
behavioral relevance of individual-specific brain features was examined using canonical 
correlation analysis (CCA), with separate models in males and females. Brain measures 
consisted of fingerprints (feature attribution maps) reflecting individual contributions to sex 
classification based on functional brain organization. Behavioral measures were derived from 14 
cognitive tests from the NIH Toolbox.  
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Fig. S4. Standard deviation of five-fold cross-validation classification performance within 
the HCP cohort. For each of the five performance metrics (accuracy, macro-precision, macro-
recall, macro-F1 score, and AUC), we showed all pairwise results of standard deviation across 
the five folds in a matrix, with rows referring to the HCP training sessions (i.e., which session the 
stDNN models were trained on) and columns referring to the HCP testing sessions (i.e., which 
session the stDNN models were tested on). 
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Fig. S5. Individual brain fingerprints (feature attribution maps) in the HCP cohort. stDNN-
derived individual brain fingerprints in two randomly selected males and two females from HCP 
Sessions 1 data. 
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Fig. S6. Individual brain fingerprints (feature attribution maps) in the NKI-RS and MPI 
Leipzig cohorts. (A) stDNN-derived individual fingerprints from NKI-RS data. stDNN was 
trained with HCP Session 1 data, which generalized to NKI-RS data without any additional 
training. (B) stDNN-derived individual fingerprints from MPI Leipzig data. stDNN was trained 
with HCP Session 1 data, which generalized to MPI Leipzig data without any additional training. 
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Fig. S7. Principal component analysis of cognition measures. Loadings of the three 
principal components on each of the 14 cognition measures from HCP are shown, which 
demonstrates that the first component is primarily associated with IQ, the second component is 
primarily associated with behavioral inhibition, and the third component is primarily associated 
with reward-related self-regulation. See also Table S14 for details of these cognition measures.  
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Fig. S8. Canonical correlation analysis (CCA) reveals significant sex-invariant 
associations between functional connectivity features and behavior. (A) CCA model from 
males in HCP Session 1 data predicted cognitive profiles in males and females. (B) CCA model 
from females in HCP Session 1 data predicted cognitive profiles in females and males. (C) CCA 
model from males in HCP Session 3 data predicted cognitive profiles in males and females. (D) 
CCA model from females in HCP Session 3 data predicted cognitive profiles in females and 
males. Line plots show squared canonical correlations, indicating the variance explained by 
each CCA mode. Grey area displays the 5th and 95th percentiles of the null distribution 
estimated via permutation testing.  
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Fig. S9. Participant selection procedure for the HCP, NKI-RS, and MPI Leipzig cohorts. 
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V. SI Tables  

 

Table S1. Summary of previous studies that have used machine learning and functional 
brain imaging data to distinguish between males from females. HCP = Human 
Connectome Project ; PNC = Philadelphia Neurodevelopmental Cohort.   
 

Study Method Primary 
Cohort 

Primary 
Cohort 
Result 

Independent 
Cohort 
Testing 

Cognitive 
Profile 

Prediction 

Sex-specific 
relation to 
behavior 

Weis et 
al. (2020) 
(34) 

Precompute
d features + 
SVM  

HCP (ages: 
22-37 years; 
n1 = 434, n2 = 
310) 

75.1% 60%  
(dataset: 

1000Brains) 

No No 

Satterth
waite et 
al. (2015) 
(32)* 

Precompute
d features + 
SVM 

PNC  (ages: 
8-21 years; n 
= 674) 

71% No Masculinity of 
cognitive 

profile 
associated 

with 
masculinity of 

brain 
connectivity 

No 

Leming 
& 
Suckling 
(2021) 
(31)* 

Precompute
d features + 
CNN 

UK Biobank 
(ages: 37-73 
years; n 
=16,970) 

84.78% No No No 

Zhang et 
al. (2018) 
(35) 

Precompute
d features + 
Partial least 
square 
regression 

HCP (ages: 
22-37 years; n 
= 820) 

85% No No No 

Smith et 
al. (2013) 
(33) 

Precompute
d features + 
multivariate 
classifier 

HCP (ages: 
22-37 years; n 
= 131) 

87% No No No 

Casanov
a et al. 
(2012) 
(30)  

Precompute
d features + 
ensemble 
classifier 

HCP (ages: 
22-37 years; n 
= 148) 

62.3% No No No 

*PNC and UK Biobank include samples of psychiatric and neurological disorders.  
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Table S2. Demographic information for females and males in the HCP, NKI-RS, and MPI 
Leipzig cohorts. LR = Left-Right; RL = Right-Left; AP = Anterior-Posterior. 
 

Cohort fMRI 
encoding 
direction  

Sample Size Age Sex 
(female/male) 

HCP Session 1 LR 1073 22-35 years 583/490 
HCP Session 2 LR 1017 22-35 years 545/472 
HCP Session 3 RL 1088 22-35 years 589/499 
HCP Session 4 RL 1013 22-35 years 542/471 
NKI-RS AP 205 22-35 years 108/97 
MPI Leipzig AP 215 20-35 years 78/137 

Note that statistical comparisons of age differences between sessions or cohorts cannot be conducted 
because only the age range was provided for each participant in the three cohorts.  
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Table S3. Brain regions whose dynamic brain connectivity features most consistently 
contributed to sex differences within the HCP cohort. Results from consensus analysis 
across 16 pairs of HCP Sessions (4 training sessions x 4 testing sessions) and 100 five-folds 
per paired session. Top 20% of the features whose total occurrence across all 16 paired 
sessions is above 4158 (i.e., Bonferroni corrected p < 0.05) are shown. See also Fig. 4. ATC = 
Anterior temporal cortex.  
 

Brain Regions Subdivision (ID) Region Label Count 

R DLPFC A9l (6), SFG_R_7_3 4282.5 

R DLPFC A9/46d (16) MFG_R_7_1 7709.5 

L DLPFC A46 (19) MFG_L_7_3 7335 

L VLPFC A8vl (23), MFG_L_7_5 7413 

R VLPFC A45r (36), IFG_R_6_4 5781 

vmPFC A14m (42), OrG_R_6_1 4665 

vmPFC A12/47o (44), OrG_R_6_2 4487 

L ATC (STG) A38l (77), STG_L_6_5 4614.5 

PCC, Precuneus A31 (Lc1) (153), Pcun_L_4_4 4620.5 

PCC, Precuneus A31 (Lc1) (154), Pcun_R_4_4 5959.5 

L Insula vId/vIg (169), INS_L_6_4 4979.5 

Thalamus cTtha (244), Tha_R_8_7 4452 
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Table S4. Classification accuracy, macro-precision, macro-recall, macro-F1 score, and 

AUC averaged across five-folds (mean  standardized deviation) in HCP Session 1 data 
for each combination of motion correction pipeline and brain atlas that were used for 
fMRI timeseries extraction.  
 

Atlas Pipeline Accuracy 
Macro-
precision 

Macro-
recall 

Macro-F1 
score 

AUC 

AAL default 88.90  1.18% 0.89  0.01 0.89  0.01 0.89  0.01 0.96  0.01 

 acompcor 88.01  2.29% 0.88  0.02 0.88  0.03 0.88  0.02 0.96  0.01 

Brainnetome default 90.21  1.21% 0.91  0.01  0.90  0.01 0.90  0.01 0.97  0.01 

 acompcor 88.91  1.56% 0.89  0.02 0.89  0.02 0.89  0.02 0.96  0.01 

CC200 default 89.64  1.74% 0.90  0.02 0.90  0.02 0.90  0.02 0.97  0.01 

 acompcor 90.30  2.03% 0.90  0.02 0.90  0.02 0.90  0.02 0.97  0.01 

CC400 default 91.71  1.48% 0.92  0.02 0.92  0.02 0.92  0.02 0.98  0.00 

 acompcor 91.98  1.28% 0.92  0.01 0.92  0.01 0.92  0.01 0.98  0.01 

DOS160 default 86.82  1.71% 0.87  0.02 0.87  0.02 0.87  0.02 0.94  0.01 

 acompcor 87.51  2.00% 0.88  0.02 0.88  0.02 0.87  0.02 0.94  0.02 

EZ default 88.72  1.68% 0.89  0.01 0.89  0.02 0.89  0.02 0.96  0.00 

 acompcor 87.98  2.66% 0.88  0.03 0.88  0.03 0.88  0.03 0.96  0.01 

Glasser default 91.24  0.34% 0.91  0.00 0.91  0.01 0.91  0.00 0.97  0.00 

 acompcor 90.12  1.25% 0.90  0.01 0.90  0.01 0.90  0.01 0.97  0.01 

HO default 86.39  3.13% 0.86  0.03 0.87  0.03 0.86  0.03 0.94  0.01 

 acompcor 86.54  3.71% 0.86  0.04 0.87  0.04 0.86  0.04 0.94  0.02 

Shen268 default 92.17  0.80% 0.92  0.01 0.92  0.01 0.92  0.01 0.98  0.00 

 acompcor 90.95  1.71% 0.91  0.02 0.91  0.02 0.91  0.02 0.97  0.01 
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Table S5. Five-fold cross-validation classification accuracy, macro-precision, macro-
recall, macro-F1 score, and AUC in NKI-RS and MPI Leipzig cohorts, showing 
generalization of HCP Session 1 models to independent cohorts without any additional 
training. 
 

Test data 
Fold 
Number 

Accuracy 
Macro-
precision 

Macro-
recall 

Macro-F1 
score 

AUC 

NKI-RS  1 83.01% 0.83 0.83 0.82 0.90 

 2 79.13% 0.81 0.79 0.78 0.88 

 3 83.01% 0.83 0.83 0.83 0.91 

 4 82.04% 0.82 0.82 0.82 0.89 

 5 82.04% 0.83 0.81 0.81 0.90 

 Avg  Std 81.84  1.43% 0.83  0.01 0.82  0.02 0.81  0.02 0.90  0.01 

MPI 
Leipzig 

1 84.65% 0.83 0.83 0.83 0.89 

 2 80.00% 0.79 0.81 0.79 0.87 

 3 84.19% 0.84 0.81 0.82 0.89 

 4 82.33% 0.81 0.81 0.81 0.88 

 5 81.86% 0.81 0.83 0.81 0.90 

 Avg  Std 82.60  1.68% 0.82  0.02 0.82  0.01 0.81  0.01 0.89  0.01 
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Table S6. Brain regions whose dynamic brain connectivity features most consistently 
contributed to sex differences in NKI-RS cohort. Results from consensus analysis of NKI-RS 
cohort using 500 HCP Session 1 models. Top 20% of the features whose occurrence is above 
289 (i.e., Bonferroni corrected p < 0.05) are shown. See also Fig. 5A.  
 

Brain Regions Subdivision (ID) Region Label Count 

R DLPFC A9l (6), SFG_R_7_3 479.5 

R DLPFC A9/46d (16), MFG_R_7_1 487.5 

R VLPFC IFJ (18), MFG_R_7_2 325 

L DLPFC A46 (19), MFG_L_7_3 500 

L VLPFC A8vl (23), MFG_L_7_5 487.5 

R VLPFC A45r (36), IFG_R_6_4 456 

R VLPFC A44v (40), IFG_R_6_6 488.5 

vmPFC A14m (42), OrG_R_6_1 443.5 

vmPFC A12/47o (44), OrG_R_6_2 489 

L STG A41/42 (71), STG_L_6_2 379 

L STG A38l (77), STG_L_6_5 370.5 

R MTG A21c (82), MTG_R_4_1 394.5 

R MTG A37dl (86), MTG_R_4_3 390 

L ITG A20cv (101), ITG_L_7_7 480.5 

L PhG A28/34 (EC) (115), PhG_L_6_4 473.5 

R PhG 
TI (temporal agranular insular 
cortex) 

(118), PhG_R_6_5 314.5 

L PhG TH (medial PPHC) (119), PhG_L_6_6 359 

PCC, Precuneus A7m (PEp) (147), Pcun_L_4_1 350 

PCC, Precuneus A5m (PEm) (150), Pcun_R_4_2 453 

PCC, Precuneus dmPOS (PEr) (151), Pcun_L_4_3 496.5 

Postcentral Gyrus A1/2/3 (158), PoG_R_4_2 312.5 

L Insula vId/vIg (169), INS_L_6_4 445.5 

R Insula vId/vIg (170), INS_R_6_4 327.5 

L Insula dIg (171), INS_L_6_5 460.5 

PCC A23v (181), CG_L_7_4 347.5 

Occipital Gyrus lsOccG (209), sOcG_L_2_2 301 

Striatum dCa, dorsal caudate (228), Str_R_6_5 464 

Thalamus cTtha (244), Tha_R_8_7 357 
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Table S7. Brain regions whose dynamic brain connectivity features most consistently 
contributed to sex differences in MPI Leipzig cohort. Results from consensus analysis of 
MPI Leipzig cohort using 500 HCP Session 1 models. Top 20% of the features whose 
occurrence is above 289 (i.e., Bonferroni corrected p < 0.05) are shown. See also Fig. 5B. ATC 
= Anterior temporal cortex.  
 

Brain Regions Subdivision (ID) Region Label Count 

R DLPFC A9l (6), SFG_R_7_3 488.5 

R DLPFC A9/46d (16), MFG_R_7_1 479 

R VLPFC IFJ (18), MFG_R_7_2 296.5 

L DLPFC A46 (19), MFG_L_7_3 498.5 

L VLPFC A8vl (23), MFG_L_7_5 461 

R VLPFC A45r (36), IFG_R_6_4 403.5 

R VLPFC A44v (40), IFG_R_6_6 488 

vmPFC A14m (42), OrG_R_6_1 351.5 

vmPFC A12/47o (44), OrG_R_6_2 500 

vmPFC A13 (49), OrG_L_6_5 408 

R ATC (STG) A38m (70), STG_R_6_1 355 

L STG A41/42 (71), STG_L_6_2 347.5 

R MTG A21c (82), MTG_R_4_1 326.5 

R MTG A37dl (86), MTG_R_4_3 411.5 

L ITG A20cv (101), ITG_L_7_7 453 

L PhG A28/34 (EC) (115), PhG_L_6_4 378 

R PhG 
TI (temporal agranular insular 
cortex) 

(118), PhG_R_6_5 381.5 

L SPL A7pc (129), SPL_L_5_3 332.5 

PCC, Precuneus A5m (PEm) (149), Pcun_L_4_2 397.5 

PCC, Precuneus A5m, medial area 5(PEm) (150), Pcun_R_4_2 466 

PCC, Precuneus dmPOS (PEr) (151), Pcun_L_4_3 445.5 

Postcentral Gyrus A1/2/3 (158), PoG_R_4_2 390.5 

L Insula vId/vIg (169), INS_L_6_4 422 

R Insula vId/vIg (170), INS_R_6_4 366 

L Insula dIg  (171), INS_L_6_5 304 

PCC A23v (181), CG_L_7_4 374 

PCC A23c (185), CG_L_7_6 293.5 

PCC A23c (186), CG_R_7_6 352 

Occipital Gyrus OPC (204), OcG_R_4_3 363.5 

Striatum dCa, dorsal caudate (228), Str_R_6_5 472 
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Table S8. Brain regions whose dynamic brain connectivity features most consistently 
contributed to sex differences across the HCP, NKI-RS, and MPI Leipzig cohorts. Top 
20% of the features whose occurrence is above 4332 (i.e., Bonferroni corrected p < 0.05) are 
shown. See also Fig. 5C. ATC = Anterior temporal cortex.  
 

Brain Regions Subdivision (ID) Region Label Count 

R DLPFC A9l (6), SFG_R_7_3 6493 

R DLPFC A9/46d (16), MFG_R_7_1 8497 

L DLPFC A46 (19), MFG_L_7_3 7990 

L VLPFC A8vl (23), MFG_L_7_5 7869 

R VLPFC A10l (28), MFG_R_7_7 4824 

R VLPFC A45r (36), IFG_R_6_4 6939 

R VLPFC A44v (40), IFG_R_6_6 5315 

vmPFC A14m (42), OrG_R_6_1 6861 

vmPFC A12/47o (44), OrG_R_6_2 6998 

R STG A38m (70), STG_R_6_1 4878 

L STG A38l (77), STG_L_6_5 5979 

R MTG A37dl (86), MTG_R_4_3 5747 

L IPL A39rv (143), IPL_L_6_5 5183 

PCC, Precuneus A5m (PEm) (150), Pcun_R_4_2 4612 

PCC, Precuneus dmPOS (PEr) (151), Pcun_L_4_3 7162 

PCC, Precuneus A31 (Lc1) (153), Pcun_L_4_4 6017 

PCC, Precuneus A31 (Lc1) (154), Pcun_R_4_4 7376 

Postcentral Gyrus A1/2/3 (158), PoG_R_4_2 4389 

L Insula vId/vIg (169), INS_L_6_4 5614 

PCC A23d (175), CG_L_7_1 5071 

PCC, Precuneus cLinG (190), Cun_R_5_1 4847 

Striatum dCa (228), Str_R_6_5 4629 

Thalamus cTtha (244), Tha_R_8_7 4881 
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Table S9. Generalization of HCP Session 1 models to NKI-RS data for each combination 

of motion correction pipeline and brain atlas that were used for fMRI timeseries 

extraction. Performance metrics include classification accuracy, macro-precision, macro-recall, 

macro-F1 scores, and AUC across five-folds (mean  standardized deviation). 

 

Atlas Pipeline Accuracy 
Macro-
precision 

Macro-
recall 

Macro-F1 
score 

AUC 

AAL default 73.84  2.00% 0.74  0.02 0.74  0.02 0.74  0.02 0.82  0.01 

 acompcor 76.75  1.10% 0.78  0.01 0.77  0.01 0.76  0.01 0.86  0.01 

Brainnetome default 81.84  1.43% 0.83  0.01 0.82  0.02 0.81  0.02 0.90  0.01 

 acompcor 79.13  1.47% 0.79  0.01 0.79  0.02 0.79  0.01 0.88  0.01 

CC200 default 79.22  3.23% 0.82  0.02 0.78  0.03 0.78  0.04 0.91  0.01 

 acompcor 78.06  3.35% 0.80  0.03 0.77  0.04 0.77  0.04 0.89  0.01 

CC400 default 78.74  3.25% 0.83  0.02 0.78  0.04 0.78  0.04 0.92  0.01 

 acompcor 78.34  2.42% 0.81  0.02 0.78  0.03 0.78  0.03 0.89  0.01 

DOS160 default 77.38  2.05% 0.78  0.02 0.77  0.02 0.77  0.02 0.84  0.01 

 acompcor 74.15  2.41% 0.74  0.02 0.74  0.02 0.74  0.02 0.83  0.01 

EZ default 72.62  3.17% 0.75  0.02 0.72  0.04 0.71  0.04 0.85  0.01 

 acompcor 78.54  2.29% 0.79  0.02 0.78  0.02 0.78  0.02 0.87  0.02 

Glasser default 77.38  1.78% 0.80  0.02 0.76  0.02 0.77  0.02 0.90  0.02 

 acompcor 79.71  1.33% 0.80  0.02 0.79  0.01 0.79  0.01 0.88  0.02 

HO default 73.01  3.37% 0.73  0.03 0.73  0.03 0.73  0.03 0.81  0.02 

 acompcor 72.88  3.05% 0.73  0.03 0.73  0.03 0.73  0.03 0.80  0.02 

Shen268 default 77.96  4.81% 0.82  0.02 0.77  0.05 0.77  0.06 0.91  0.00 

 acompcor 74.93  1.18% 0.76  0.02 0.74  0.01 0.74  0.01 0.86  0.01 
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Table S10. Generalization of HCP Session 1 models to MPI Leipzig data for each 
combination of motion correction pipeline and brain atlas that were used for fMRI 
timeseries extraction. Performance metrics include classification accuracy, macro-precision, 

macro-recall, macro-F1 scores, and AUC across five-folds (mean  standardized deviation). 
 

Atlas Pipeline Accuracy 
Macro-
precision 

Macro-recall 
Macro-F1 
score 

AUC 

AAL default 76.09  3.48% 0.75  0.03 0.77  0.03 0.75  0.03 0.87  0.01 

 acompcor 73.49  4.97% 0.75  0.03 0.76  0.03 0.73  0.04 0.88  0.01 

Brainnetome default 82.60  1.68% 0.82  0.02 0.82  0.01 0.81  0.01 0.89  0.01 

 acompcor 86.23  0.63% 0.86  0.01 0.85  0.01 0.85  0.01 0.92  0.01 

CC200 default 75.44  2.80% 0.78  0.02 0.79  0.03 0.75  0.03 0.92  0.01 

 acompcor 81.67  3.18% 0.82  0.02 0.84  0.02 0.81  0.03 0.93  0.00 

CC400 default 73.30  3.02% 0.76  0.02 0.77  0.02 0.73  0.03 0.91  0.00 

 acompcor 81.49  4.77% 0.82  0.03 0.84  0.03 0.81  0.04 0.94  0.00 

DOS160 default 76.00  1.80% 0.76  0.01 0.77  0.01 0.75  0.01 0.85  0.01 

 acompcor 77.02  3.95% 0.76  0.03 0.78  0.03 0.76  0.03 0.86  0.02 

EZ default 72.37  6.63% 0.75  0.03 0.75  0.04 0.72  0.06 0.88  0.01 

 acompcor 76.47  4.55% 0.77  0.02 0.79  0.03 0.76  0.04 0.89  0.01 

Glasser default 72.28  6.10% 0.75  0.03 0.76  0.04 0.72  0.06 0.88  0.01 

 acompcor 82.14  2.36% 0.81  0.03 0.82  0.02 0.81  0.02 0.90  0.01 

HO default 76.37  4.77% 0.75  0.04 0.74  0.05 0.74  0.05 0.83  0.03 

 acompcor 75.72  1.77% 0.76  0.02 0.71  0.03 0.71  0.03 0.83  0.02 

Shen268 default 76.93  3.70% 0.78  0.02 0.80  0.02 0.77  0.03 0.91  0.01 

 acompcor 84.47  1.99% 0.84  0.02 0.85  0.02 0.84  0.02 0.92  0.01 
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Table S11. Five-fold cross-validation classification accuracies, macro-precision, macro-
recall, macro-F1 scores, and AUC in HCP Session 1 data using conventional approaches 
with functional connectivity as features. 
 

Classifier Accuracy 
Macro-
precision 

Macro-
recall 

Macro-F1 
score 

AUC 

K-Nearest Neighbor 64.86  3.41% 0.64  0.03 0.64  0.03 0.64  0.03 0.68  0.03 

Decision Tree 56.85  2.18% 0.57  0.02 0.57  0.02 0.57  0.02 0.57  0.02 

Linear SVM 88.91  1.06% 0.89  0.01 0.89  0.01 0.89  0.01 0.96  0.01 

Logistic Regression 89.66  1.69% 0.90  0.02 0.90  0.02 0.89  0.02 0.96  0.01 

Ridge Classifier 89.47  1.51% 0.90  0.02 0.89  0.01 0.89  0.02 0.96  0.01 

LASSO 85.65  1.72% 0.86  0.02 0.85  0.01 0.85  0.02 0.94  0.01 

Random Forest 69.99  2.46% 0.70  0.02 0.69  0.02 0.69  0.03 0.78  0.03 

Average across 
conventional 
methods 

77.91  13.72%  0.78  0.14 0.78  0.14 0.77  0.14 
 

0.84  0.16 

Our stDNN model 
Average (see Figs. 2 
and S4) 

90.21  1.21% 0.91  0.01  0.90  0.01 0.90  0.01 0.97  0.01 
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Table S12. Generalizability of conventional models trained on HCP Session 1 data to an 
independent NKI-RS cohort, with functional connectivity as features. 
 

Classifier Accuracy 
Macro-
precision 

Macro-
recall 

Macro-F1 
score 

AUC 

K-Nearest Neighbor 65.05  1.47% 0.65  0.01 0.65  0.02 0.65  0.02 0.69  0.02 

Decision Tree 55.53  4.57% 0.56  0.05 0.55  0.04 0.55  0.05 0.56  0.05 

Linear SVM 76.12  1.32% 0.78  0.01 0.75  0.02 0.75  0.02 0.85  0.01 

Logistic Regression 77.77  0.84% 0.79  0.01 0.77  0.01 0.77  0.01 0.87  0.01 

Ridge Classifier 77.86  0.95% 0.79  0.01 0.77  0.01 0.77  0.01 0.87  0.01 

LASSO 76.99  1.36% 0.79  0.01 0.76  0.01 0.76  0.02 0.86  0.01 

Random Forest 66.21  0.85% 0.66  0.01 0.66  0.01 0.66  0.01 0.73  0.02 

Average across 
conventional 
methods 

70.79  8.68% 0.72  0.09 0.70  0.08 0.70  0.08 0.78  0.12 

Our stDNN model 
Average (see 
Supplementary Table 
S5) 

81.84  1.43% 0.83  0.01 0.82  0.02 0.81  0.02 0.90  0.01 
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Table S13. Generalizability of conventional models trained on HCP Session 1 data to an 
independent MPI Leipzig cohort, with functional connectivity as features. 
 

Classifier Accuracy 
Macro-
precision 

Macro-
recall 

Macro-F1 
score 

AUC 

K-Nearest Neighbor 56.56  1.37% 0.57  0.01 0.58  0.01 0.56  0.01 0.61  0.01 

Decision Tree 56.56  2.85% 0.56  0.02 0.56  0.02 0.55  0.02 0.56  0.02 

Linear SVM 77.86  1.73% 0.77  0.02 0.79  0.02 0.77  0.02 0.86  0.01 

Logistic Regression 78.60  1.21% 0.77  0.01 0.79  0.01 0.78  0.01 0.86  0.01 

Ridge Classifier 78.79  1.12% 0.78  0.01 0.80  0.01 0.78  0.01 0.86  0.01 

LASSO 75.44  1.70% 0.75  0.02 0.77  0.02 0.75  0.02 0.85  0.01 

Random Forest 56.37  3.68% 0.60  0.03 0.60  0.03 0.56  0.04 0.65  0.01 

Average across 
conventional 
methods 

68.60  11.37% 0.69  0.10 0.70  0.11 0.68  0.11 0.75  0.14 

Our stDNN model 
Average (see 
Supplementary Table 
S5) 

82.60  1.68% 0.82  0.02 0.82  0.01 0.81  0.01 0.89  0.01 
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Table S14. HCP cognitive function measures. 
 

Cognition Test Description 

Episodic Memory Picture Sequence Memory 

Participants are asked to recall increasingly 
lengthy series of illustrated objects and 
activities that are presented in a particular 
order on the computer screen, and are given 
credit for each adjacent pair of pictures they 
correctly place up to the maximum value for 
the sequence. 

Executive 
Function/Cognitive 
Flexibility 

Dimensional Change Card 
Sort 

Two target pictures are presented that vary 
along two dimensions (e.g., shape and color). 
Participants are asked to match a series of 
bivalent test pictures (e.g., yellow balls and 
blue trucks) to the target pictures, first 
according to one dimension (e.g., color) and 
then, after a number of trials, according to the 
other dimension (e.g., shape). "Switch" trials 
are also employed, in which the participant 
must change the dimension being 
matched. Scoring is based on a combination 
of accuracy and reaction time. 

Executive 
Function/Inhibition 

Flanker Task 

Participants are required to focus on a given 
stimulus while inhibiting attention to stimuli 
(fish for ages 3-7 or arrows for ages 8-85) 
flanking it. Sometimes the middle stimulus is 
pointing in the same direction as the 
"flankers" (congruent) and sometimes in the 
opposite direction (incongruent). Scoring is 
based on a combination of accuracy and 
reaction time. 

Fluid Intelligence Penn Progressive Matrices 

Participants are presented with patterns 
made up of 2x2, 3x3 or 1x5 arrangements of 
squares, with one of the squares missing. 
The participant must pick one of five 
response choices that best fits the missing 
square on the pattern. The task has 24 items 
and 3 bonus items, arranged in order of 
increasing difficulty. However, the task 
discontinues if the participant makes 5 
incorrect responses in a row. 

Language/Reading 
Decoding 

Oral Reading Recognition 
Participants are asked to read and pronounce 
letters and words as accurately as possible.  

Language/Vocabulary 
Comprehension 

Picture Vocabulary 

Participants are presented with an audio 
recording of a word and four photographic 
images on the computer screen and are 
asked to select the picture that most closely 
matches the meaning of the word. 

Processing Speed 
Pattern Completion 
Processing Speed 

Participants are asked to discern whether two 
side-by-side pictures are the same or not, 
and their raw score is the number of items 
correct in a 90-second period. 

Self-
regulation/Impulsivity 

Delay Discounting 
Delay discounting describes the undervaluing 
of rewards that are delayed in time. It is 
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illustrated by the fact that humans (and other 
animals) will often choose a smaller 
immediate reward over an objectively larger, 
but delayed reward. We use a version of the 
discounting task that identifies ‘indifference 
points’ at which a person is equally likely to 
choose a smaller reward (e.g., $100) sooner 
versus a larger reward later (e.g., $200 in 3 
years). An adjusting-amount approach is 
used, in which delays are fixed and reward 
amounts are adjusted on a trial-by-trial basis 
based on participants’ choices, to rapidly 
hone in on indifference points.  

Spatial Orientation 
Variable Short Penn Line 
Orientation Test 

Participants are shown two lines with different 
orientations. They have to rotate one of the 
lines (a moveable blue one) so that is parallel 
to the other line (a fixed red line).  

Sustained Attention 
Short Penn Continuous 
Performance Test 

Participants see vertical and horizontal red 
lines flash on the computer screen. In one 
block, they must press the spacebar when 
the lines form a number and in the other 
block they press the spacebar when the lines 
form a letter.  

Verbal Episodic 
Memory 

Penn Word Memory Test 

Participants are shown 20 words and asked 
to remember them for a subsequent memory 
test. They are then shown 40 words (the 20 
previously presented words and 20 new 
words matched on memory related 
characteristics). They decide whether they 
have seen the word previously by choosing 
among “definitely yes,” “probably yes,” 
“probably no,” and “definitely no.” 

Working Memory List Sorting 

In the 1-List condition, Participants are 
required to order a series of objects (either 
food or animals displayed with both a sound 
clip and written text that name the item) in 
size order from smallest to largest. In the 2-
List condition, participants are presented both 
food and animals and are asked to report the 
food in size order, followed by the animals in 
size order.  

 
  



 

 

39 

Table S15. Overlap in brain regions whose dynamic functional circuit features predicted 
cognitive profiles in males in HCP Sessions 1 and 3. Only regions with sign consistent 
across the two sessions are included here.  
 

Brain Regions Subdivision (ID) Region Label 
Standardized Coefficients  

Session 1 Session 3 

R DLPFC A9/46d (16), MFG_R_7_1 0.253 0.172 

PCC, Precuneus A31 (153), Pcun_L_4_4 0.261 0.254 

R Postcentral Gyrus A1/2/3 (156), PoG_R_4_1 -0.309 -0.211 
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Table S16. Overlap in brain regions whose dynamic functional circuit features predicted 
cognitive profiles in females in HCP Sessions 1 and 3. Only regions with sign consistent 
across the two sessions are included here.  
 

Brain Regions Subdivision (ID) Region Label 
Standardized Coefficients  

Session 1 Session 3 

vmPFC A12/47o (43), OrG_L_6_2 0.198 0.202 

MTG A35/36r (109), PhG_L_6_1 0.174 0.196 

PCC, Precuneus A31 (153), Pcun_L_4_4 -0.208 -0.207 

R Postcentral Gyrus A1/2/3 (158), PoG_R_4_2 -0.217 -0.208 
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Table S17. Head movement (mean scan-to-scan movement) did not differ between males 
and females. CI = Confidence Interval 
 

Cohort/Session 
Mean 

t df p 95% CI 
Male Female 

HCP Session 1 0.081 0.083 -1.239 1071 0.216 -0.002 – 0.007  

HCP Session 2 0.079 0.080 -0.340 1015 0.734 -0.003 – 0.004  

HCP Session 3 0.078 0.080 -1.329 1086 0.184 -0.001 – 0.006  

HCP Session 4 0.081 0.083 -0.623 1011 0.533 -0.003 – 0.005 

NKI-RS 0.068 0.073 -1.141 203 0.255 -0.003 – 0.012  

MPI Leipzig 0.109 0.118 1.94 213 0.053 -1e-4 – 0.018  
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Table S18. Network Names. See also Fig. 6. 
 

Network # Our Terms Yeo Terms Full Names of Our Terms 

1 VisPeri VisPeri Visual Peripheral 

2 VisCent VisCent Visual Central 

3 SomMot-1 SomMotA Somato-Motor 1 

4 SomMot-2 SomMotB Somato-Motor 2 

5 DorsAttn-1 DorsAttnA Dorsal Attention 1 

6 DorsAttn-2 DorsAttnB Dorsal Attention 2 

7 SalVentAttn-1 SalVentAttnA Salience/Ventral Attention 1 

8 SalVentAttn-2 SalVentAttnB Salience/Ventral Attention 2 

9 Limbic-2 LimbicB Limbic 2 

10 Limbic-1 LimbicA Limbic 1 

11 FPN-1 FPA Frontoparietal Network 1 

12 FPN-2 FPB Frontoparietal Network 2 

13 FPN-3 FPC Frontoparietal Network 3 

14 AudLang DefaultA Auditory Language 

15 DMN-3 DefaultB Default Mode Network 3 

16 DMN-1 DefaultC Default Mode Network 1 

17 DMN-2 TempPar Default Mode Network 2 

18 AmyHip  Amygdala Hippocampus 

19 Striatum  Striatum 

20 Thalamus  Thalamus 
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