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Supplementary table 1. Characteristics of the study population 

Variable Training dataset (n=881) Test dataset (n=452) P-value 

Age (years) 62.7 ± 10.7 64.8 ± 10.5 0.001 

Sex (male) 537 (61.0) 260 (57.5) 0.238 

Body mass index (kg/m2) 23.7± 3.5 23.7 ±3.0 0.849 

Hypertension 208 (23.6) 191 (42.3) <0.001 

Diabetes 140 (15.9) 132 (29.2) <0.001 

Cerebrovascular disease 6 (0.7) 24 (0.3) <0.001 

Laboratory data    

White blood cell (103/uL) 6265 ±2075 6134 ±1727 0.222 

Hemoglobin (g/dL) 12.5± 6.0 12.1± 1.6 0.160 

Total bilirubin (µmol/L) 1.5 ±2.4 1.1 ±1.9 0.001 

Albumin (g/L) 3.6 ±7.6 3.4 ±0.4 0.518 

Glucose (mg/dL) 137.9 ±63.8  139.0 ±64.8 0.754 

Blood urea nitrogen (mg/dL) 13.9 ±5.5 14.2 ±5.7 0.308 

Creatinine (mg/dL) 0.7± 0.4 0.8± 0.3 0.373 

Operative indication    0.280 

Pancreatic cancer 344 (39.5) 187 (41.9)  

Other malignancies 354 (40.7) 190 (42.6)  

Low-grade malignancies 139 (16.0) 54 (12.1)  

Benign disease 33 (3.8) 15 (3.4)  

Neoadjuvant chemotherapy 54 (6.1) 34 (7.5) 0.352 

Pancreatic texture (soft/hard/firm) 538 

(61.1)/153(17.4)/177(20.1) 

306 (67.7)/54(11.9)/90(19.9) 0.069 

Pancreatic duct size (mm) 3.7 ±2.1 4.0± 1.9 0.003 

Concurrent vessel resection 149 (16.9) 79 (17.5) 0.818 

Operative time (min) 360.3 ±80.7 273.5 ±72.6 <0.001 

Intraoperative transfusion 164 (18.6) 75 (16.6) 0.407 

Pylorus preservation 635 (72.6) 227 (50.2) <0.001 

Drain amylase POD3 954.1 ±3618.4 483.3 ±1195.6 <0.001 

CR-POPF (B/C) 56 (6.4) / 3 (0.3) 27 (6.0)/0 0.639 

Note—Unless otherwise indicated, data that are presented are means, with standard deviation in 

parentheses. 
Abbreviations: POD, postoperative day; CR-POPF, clinically relevant postoperative pancreatic 

fistula. 



Supplementary table 2. Clinical risk factors for postoperative pancreatic fistula 

 For POPF For CR-POPF 

Variables HR 95% CI P-value HR 95% CI P-value 

Non-PDAC etiology 
2.464 1.849–3.282 <0.001 2.025 1.165–3.519 0.012 

Pancreatic duct size 
0.799 0.740–0.863 <0.001 0.841 0.721–0.980 0.027 

Male sex    1.806 1.103–2.957 0.019 

Glucose level 0.997 0.995–0.999 0.006    

Body mass index 
1.040 1.000–1.080 0.047    

Pancreatic texture 

(Soft[ref] / hard, firm) 
0.401 0.3–0.537 <0.001 0.575 0.312–1.059 0.076 

Note—Unless otherwise indicated, data presented are means, with standard deviation in parentheses. 

Abbreviations: POPF, postoperative pancreatic fistula; CR-POPF, clinically relevant postoperative 

pancreatic fistula; PDAC, pancreatic ductal adenocarcinoma.  

  



Supplementary table 3. Characteristics of the patients with POPF 

Variable No-POPF (n=778) POPF (n=555) P-value 

Age (years) 64.1 ± 10.1 62.5 ± 11.3 0.007 

Sex (male) 455 (58.5) 342 (61.6) 0.257 

Body mass index (kg/m2) 23.4 ± 3.0 24.2 ± 3.7 <0.001 

Hypertension 251 (32.3) 148 (26.7) 0.029 

Diabetes 193 (24.8) 79 (14.2) <0.001 

Cerebrovascular disease 23 (3.0) 7 (1.3) 0.041 

Laboratory data    

WBC (103/uL) 6206 ± 2039 6241 ± 1857 0.744 

Hemoglobin (g/dL) 12.1 ± 1.7 12.7 ± 7.4 0.027 

Total bilirubin (µmol/L) 1.3 ± 2.1 1.4 ± 2.5 0.521 

Albumin (g/L) 3.7 ± 8.1 3.4 ± 0.4 0.450 

Glucose (mg/dL) 146.9 ± 71.8 126.2 ± 49.0 <0.001 

Blood urea nitrogen (mg/dL) 14.0 ± 5.8 14.1 ± 5.3 0.688 

Creatinine (mg/dL) 0.7 ± 0.2 0.8 ± 0.6 0.047 

Operative indication     

PDAC/non-PDAC 419 (53.9) /359 (46.1) 112 (20.2) / 443 (79.8) <0.001 

Minimally invasive surgery 102 (13.1) 113 (20.4) <0.001 

Neoadjuvant chemotherapy 66 (8.5) 22 (4.0) 0.001 

Pancreatic texture (soft/hard/firm/ 

unknown) 

389(50.0)/171(22.0)/208(26

.7)/10(1.3) 

455 (82.0)/36(6.5)/59(10.6)/5(0.9) <0.001 

Pancreatic duct size (mm) 4.3 ± 2.3 3.1 ± 1.4 <0.001 

Concurrent vessel resection 179 (23.0) 49 (8.8) <0.001 

Operative time (min) 328.4 ± 88.4 334.3 ± 87.9 0.232 

Intraoperative transfusion 169 (21.7) 70 (12.6)  

Pylorus preservation 481 (62.1) 381 (69.0) 0.010 

Drain amylase POD3 136.0 ± 279.1 1708.1 ± 4526.7 <0.001 

CRP POD 3 8.1 ± 4.7 8.9 ± 5.4 0.014 

Postoperative hospital stay 12.2 ± 6.2 13.9 ± 8.3 <0.001 

Other complications 63 (8.1) 86 (15.5) <0.001 

Note—Unless otherwise indicated, data that are presented are means, with standard deviation in 

parentheses. 
Abbreviations: PDAC, pancreatic ductal adenocarcinoma; POD, postoperative day; CRP, C-reactive 

protein  



Supplementary table 4. Characteristics of the patients with CR-POPF 

Variable No CR-POPF (n=1247) CR-POPF (n=86) P-value 

Age (years) 63.4 ± 10.7 64.2 ± 10.6 0.482 

Sex (male) 733 (59.0) 62 (72.1) 0.017 

Body mass index (kg/m2) 23.7 ± 3.3 24.4 ± 3.2 0.063 

Hypertension 368 (29.6) 29 (33.7) 0.465 

Diabetes 260 (20.9) 12 (14.0) 0.130 

Cerebrovascular disease 29 (2.3) 1 (1.2) 0.717 

Laboratory data    

WBC (103/uL) 6.2 ± 1.9 6.6 ± 2.2 0.084 

Hemoglobin (g/dL) 12.3 ± 5.1 12.5 ± 2.1 0.761 

Total bilirubin (µmol/L) 1.3 ± 2.2 2.0 ± 3.3 0.054 

Albumin (g/L) 3.6 ± 6.4 3.3 ± 0.4 0.735 

Glucose (mg/dL) 139.3 ± 65.6 123.1 ± 33.1 0.001 

Blood urea nitrogen 

(mg/dL) 

13.9 ± 5.4 15.2 ± 7.4 0.131 

Creatinine (mg/dL) 0.7 ± 0.4 0.9 ± 0.6 0.032 

Operative indication     

PDAC/non-PDAC 510 (41.1)/ 732 (58.9) 18 (20.9)/68(79.1)  

Minimally invasive surgery 205 (16.5) 10 (11.6) 0.289 

Neoadjuvant chemotherapy 84 (6.8) 3 (3.5) 0.363 

Pancreatic texture 

(soft/hard/firm/unknown) 

769(61.9)/200(16.1)/259(20.9)/1

4(1.1) 

70(81.4)/7(8.1)/8(9.3)/1(1.2) 0.001 

Pancreatic duct size (mm) 3.9 ± 2.1 3.1 ± 1.5 0.001 

Concurrent vessel resection 221 (17.8) 6 (7.0) 0.007 

Operative time (min) 330.5 ± 87.6 335.6 ± 97.5 0.604 

Intraoperative transfusion 222 (17.9) 16 (18.6) 0.884 

Pylorus preservation 806 (65.2) 52 (60.5) 0.414 

Drain amylase POD3 653.8 ± 2345.3 2842.2 ± 7718.6 0.001 

CRP POD 3 8.3 ± 4.9 11.1 ± 6.3 0.001 

Postoperative hospital stay 12.0 ± 5.6 26.2 ± 12.4 0.001 

Other complications 99 (8.0) 50 (58.1) 0.001 

Note—Unless otherwise indicated, data that are presented are means, with standard deviation in 

parentheses. 



Abbreviations: PDAC, pancreatic ductal adenocarcinoma; POD, postoperative day; CRP, C-reactive 

protein 
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Supplementary table 5. Body composition characteristics of patients with and without POPF 

Variable No-POPF (n=778) POPF (n=555) P-value 

VATI 37.8 ± 21.2 43.2 ± 26.3 <0.001 

SATI 48.1 ± 24.7 52.1 ± 27.6 0.005 

SMI 46.2 ± 7.8 48.4 ± 15.9 <0.001 

Myosteatosis 193 (24.8) 109 (19.6) 0.028 

Note—Unless otherwise indicated, data that are presented are means ± standard deviation or number 

with percentage in parentheses. 

Abbreviations: SATI, subcutaneous adipose tissue index; SMI, skeletal muscle index; VATI, visceral 

adipose tissue index 
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Supplementary table 6. Body composition characteristics of patients with and without CR-

POPF 

Variable No CR-POPF (n=1247) CR-POPF (n=86) P-value 

VATI 39.5 ± 23.7 48.3 ± 20.6 0.001 

SATI 49.5 ± 25.9 53.5 ± 28.3 0.164 

SMI 47.1 ± 12.1 48.1 ± 7.6 0.444 

Myosteatosis 284 (22.8) 18 (20.9) 0.79 

Note—Unless otherwise indicated, data that are presented are means ± standard deviation or number 

with percentage in parentheses. 

Abbreviations: SATI, subcutaneous adipose tissue index; SMI, skeletal muscle index; VATI, visceral 

adipose tissue index 
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Supplementary table 7. Predictive performance of preoperative models in the training, 

validation and test set 

      AUROC Sensitivity Specificity F1 score 

Training set 

For POPF 

Roberts model 0.662  0.797  0.451  0.666  

ML model 0.744  0.725  0.625  0.680  

DL model 0.859  0.848  0.710  0.784  

Ensemble 

model 
0.969  0.928  0.818  0.873  

For CR-

POPF 

Roberts model 0.647  0.845  0.348  0.180  

ML model 0.710  0.707  0.560  0.208  

DL model 0.978  1.000  0.925  0.699  

Ensemble 

model 
0.936  0.966  0.675  0.337  

Validation set 

For POPF 

Roberts model 0.731  0.806  0.543  0.695  

ML model 0.769  0.722  0.691  0.698  

DL model 0.745  0.778  0.605  0.700  

Ensemble 

model 
0.779  0.806  0.654  0.734  

For CR-

POPF 

Roberts model 0.623  0.857  0.390  0.118  

ML model 0.785  0.714  0.596  0.141  

DL model 0.717  0.286  0.856  0.133  

Ensemble 

model 
0.915  1.000  0.616  0.200  

Test set 

For POPF 

Roberts model 0.637  0.716  0.509  0.497  

ML model 0.730  0.709  0.629  0.548  

DL model 0.714  0.799  0.519  0.543  

Ensemble 

model 
0.750  0.828  0.619  0.607  

For CR-

POPF 

Roberts model 0.635  0.778  0.456  0.151  

ML model 0.623  0.556  0.619  0.147  

DL model 0.622  0.259  0.866  0.154  

Ensemble 

model 
0.682  0.704  0.692  0.215  

Note—Unless otherwise indicated, data that are presented are means, with standard deviation in 

parentheses. For the ML and the DL models, values of the single model which showed the best 

predictive performance are shown. 

Abbreviations: AUROC, area under the receiver operating characteristic curve; POPF, postoperative 

pancreatic fistula; CR-POPF, clinically relevant postoperative pancreatic fistula; ML, clinical and 

body composition data-based machine learning model; DL, computed tomography-based deep 

learning model; FRS, fistula risk score. 
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Supplementary table 8. Area under the curve values of postoperative prediction models for 

postoperative pancreatic fistula 

   Training set Validation set Test set 

For POPF Alternative fistula risk 

score model 
0.721  0.795  0.696  

ML model 0.810  0.801  0.773  

DL model 0.859 0.832  0.714 

Ensemble model 0.936 0.795  0.787  

For CR-POPF Alternative fistula risk 

score model 
0.666 0.624 0.667 

ML model 0.616 0.689 0.636 

DL model - - 0.622 

Ensemble model 0.834 0.799 0.685 

Note—Unless otherwise indicated, data presented are means, with standard deviation in parentheses. 

For the ML and DL models, values of the single model which showed the best predictive performance 

are shown. 

Abbreviations: ML, clinical and body composition data-based machine learning model; DL, computed 

tomography-based deep learning model; POPF, postoperative pancreatic fistula; CR-POPF, clinically 

relevant postoperative pancreatic fistula; 
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Supplementary table 9. CT imaging techniques used for the development and test datasets 

CT techniques 
Training dataset 

(n = 881) 

Test dataset 

(n = 452) 

Configuration   

16–32 detectors 183 (20.8) 69 (15.3) 

64 detectors 697 (79.1) 381 (84.3) 

≥128 detectors 1 (0.1) 2 (0.4) 

Tube voltage, kVp   

90–110 169 (19.2) 275 (60.8) 

120 699 (79.3) 174 (38.5) 

130–140 13 (1.5) 3 (0.7) 

Slice thickness, mm   

≤2.5 244 (27.7) 125 (27.7) 

3 503 (57.1) 276 (61.2) 

3.75–5 132 (15.0) 50 (11.1) 

7 2 (0.2) 0 (0.0) 

CT vendors   

Siemens 565 (64.1) 301 (66.7) 

GE 277 (31.4) 137 (30.4) 

Toshiba 19 (2.2) 8 (1.8) 

Philips 16 (1.8) 4 (0.9) 

Hitachi 4 (0.5) 1 (0.2) 

Pixel size, mm   

0.53–0.7 588 (66.7) 318 (70.4) 

0.7–0.83 293 (33.3) 134 (29.6) 

Data are presented as n (%).  

Abbreviation: kVp, peak kilovoltage. 
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Supplementary method 

 

CT techniques 

All CT images were obtained using 16-detector or higher CT systems. For contrast enhancement, the 

total volume of non-ionic iodinated contrast medium was stratified according to the patient’s body 

weight (approximate rate, 2 mL/kg; maximum rate,150 mL), and an automatic power injector was 

used to deliver the contrast agent intravenously (3 mL/s). Portal venous phase (PVP) images were 

obtained at 70–75 seconds after contrast injection. Images were reconstructed using filtered back 

projection (B30f, B30s, B41f, B41s) or iterative reconstruction (I30s, I30f). Pixel size ranged from 

0.53 to 1.11 mm. 

 

Body composition analysis 

A single PVP axial CT image at the level of the lower endplate of the 3rd lumbar vertebra was used.1,2 

The cross-sectional areas of the total abdominal wall muscle (skeletal muscle area; including psoas, 

paraspinal, transversus abdominis, rectus abdominis, quadratus lumborum, and internal and external 

obliques), subcutaneous adipose tissue, and visceral adipose tissue were measured with pre-

established thresholds (from −29 to +150 Hounsfield unit [HU] for skeletal muscle area and from 

−190 to −30 HU for subcutaneous and visceral adipose tissues).3 The body composition parameters 

were normalized by being divided to the patient height squared (cm2/m2) and reported as indices, 

including the visceral adipose tissue index (VATI), subcutaneous adipose tissue index (SATI), and 

skeletal muscle index (SMI). Skeletal muscle density (SMD), which represents the degree of 

myosteatosis, was quantified as the mean HU of the skeletal muscle area; the cutoff points for the 

presence of myosteatosis were set at 41 and 33 HU for non-overweight and overweight patients, 

respectively.4  

 

Model development 

Machine learning models 
The clinical information and body composition data extracted from the training dataset was used to 

develop machine learning models. In cases of missing values, the median value of each variable was 

imputed. Five machine learning models (artificial neural network [ANN], tabular network [TabNet], 

logistic regression, random forest, and gradient boosting) were employed.5-7 ANN was trained by an 

Adam optimizer with a batch size of 257 and a learning rate of 4e-3. The training part of TabNet was 

performed using the Adam optimizer (learning rate, 0.1; batch size, 64). The binary cross-entropy loss 

function (i.e., average difference between the predicted and actual probabilities) was used for the 

ANN and TabNet. Linear LR with L2-regularization and Kernel SVM with Gaussian kernel were 

used. The number of trees in RF and GB was 100. All machine learning models, except for ANN and 

TabNet, were trained using the Scikit-learn library on Python 3.8.6 The deep learning library Keras 

2.5 version was used for the development of the ANN and TabNet models.7  

 
Deep learning models 

We developed two-dimensional (2D) convolutional neural network-based deep learning models. CT 

images underwent several pre-processing steps, including resampling, intensity normalization, 

augmentation, and cropping. All CT images were resampled to pixels of 0.5 × 0.5 mm2 using spline 

interpolation to decrease the variability between scans.8,9 The image intensities were normalized from 

0 to 1 by using the limit of lower and upper HU as −200 and 300, respectively. Image augmentation 

techniques, such as rotation, shearing, scaling, and modification of the image brightness, were applied 

to enhance the size of the training dataset.10 For data augmentation, we used rotation angles ranging 

from −5° to 5°, with an interval of 1° and shifting of brightness ranging from −0.1 to 0.1 (interval, 

0.01). Moreover, scaling and shearing ratios of heights and widths ranging from 95% to 105% with an 

interval of 1% were utilized. Each data augmentation technique was applied on a 50-50 chance, and 

the parameters were randomly selected within a predefined range. As a final step of pre-processing, 
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the region with 96 × 96 mm2 centered at the pancreatic neck (predicted cut surface during 

pancreatidoduodenectomy) was cropped from the original images. 

Four deep convolutional neural networks (ResNet, DenseNet, ResNeXt, and Inception v3) were 

utilized to develop the CT-based deep learning models.11-14 The first convolutional layers of deep 

convolutional neural networks were modified to have an input channel of 1. A dropout layer and a 

sigmoid layer were appended to the last fully connected layer of the networks. To reduce the 

interdependent network elements, the dropout layer randomly ignored the hidden layer nodes in the 

training process with a probability rate of 0.25.  

To train the deep learning models, the training dataset was divided into the training subset (for 

model development) and the validation subset (for evaluation of models’ performance with different 

hyperparameter values and for the detection of any overfitting that occurred during the training 

course). Patients who underwent surgery between 2016 and 2017 were randomly separated into the 

training (728 patients) and validation (153 patients) subsets. Models were learned by the Adam 

optimizer with a batch size of 32 and a learning rate of 1e-4. The loss function was binary cross-

entropy. A maximum epoch was 300; however, when the loss in the validation set did not decrease for 

10 epochs, the training was aborted. The implementation of the models was conducted in Python 3.8 

with Pytorch 1.8 with Nvidia GTX 2080 ti. 

The gradient-guided class attention maps (Grad-CAM++)15 overlaid with CT images were 

generated by averaging each attention map of the deep learning models included in the ensemble 

models.16 Two model values (ResNet and Inception v3) were averaged for predicting all POPF, and 

three model values (ResNet, DenseNet, and ResNeXt) were averaged for predicting CR-POPF. 

 

Ensemble model 

Ensemble learning was performed separately for making a preoperative model and a comprehensive 

model. Machine learning, deep learning, and prior models17,18 were included by ensemble voting, by 

using the soft or hard voting method.19 In hard voting, the output of the ensemble was the proportion 

of models that predicted the class as positive (i.e., the probability predicted by a model was >0.5); 

however, in soft voting, the output of the ensemble was the average of probabilities predicted by each 

model. For each voting method, we searched all possible combinations with grid-search methods. The 

final ensemble of the models was chosen according to two conditions: (1) highest accuracy in the 

validation subset and (2) absolute difference <5% between the accuracies of the training and 

validation subsets to avoid overfitting.  
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