1

Supplementary Materials for

A GREB1-steroid receptor feedforward mechanism governs differential GREB1 action in
 endometrial function and endometriosis

4 Sangappa B. Chadchan¹, Pooja Popli¹, Zian Liao¹, Eryk Andreas², Michelle Dias³, Tianyuan

5 Wang⁴, Stephanie J. Gunderson², Patricia T. Jimenez², Denise G. Lanza⁵, Rainer B. Lanz⁶,

6 Charles E. Foulds⁷, Diana Monsiavais¹, Francesco J. DeMayo⁸, Hari Krishna Yalamanchili^{3,9,10},

7 Emily S. Jungheim^{2,11}, Jason D. Heaney⁵, John P. Lydon⁶, Kelle H. Moley², Bert W. O'Malley⁶,

8 and Ramakrishna Kommagani^{1,12*}

9 **The PDF file includes:**

- 10 Supplementary Fig. 1 GREB1 acts as a PR cofactor in human endometrial stromal cells.
- 11 Supplementary Fig. 2 *Greb1* KO mice have normal ovarian function.
- 12 Supplementary Fig. 3 Compromised progesterone signaling in the uteri of *Greb1* KO mice.

13 Supplementary Fig. 4 Transcript levels of *Igf1, Mcm2, Klf4,* and *Klf15* in uteri of mimicked

- 14 hormonal states of pregnancy.
- 15 Supplementary Fig. 5 Decidualization is defective in *Greb1* KO mice.

16 Supplementary Fig. 6 Estradiol (E2) levels are unaltered in serum collected from control or *Greb1*

- 17 endometriotic females.
- 18 Supplementary Table 1 List of primers and TaqMan probes
- 19 Supplementary Table 2 List of antibodies
- 20 Supplementary Table 3 List of Primers used for Chromatin Immunoprecipitation (ChIP).

21 Supplementary figure legends

22 Supplementary Fig. 1 GREB1 acts as a PR cofactor in human endometrial stromal cells. a,

- 23 Visualization of GREB1 and PR ChIP-seq peaks enriched around the enhancer region of FOXO1.
- **b**, Gene ontology of enriched signaling pathways from GREB1 HES cistrome.

29 Supplementary Fig. 2 Greb1 KO mice have normal ovarian function. a, Graph depicting the 30 number of litter per female from wild type (n=9) and Greb1 KO (n=8) in six-month fertility tests. Paired, two-tailed, t-test. Data reported as the mean ± SEM. *P< 0.05, ***P< 0.001, ****P< 0.0001 31 32 b, Analysis of GREB1 transcript and protein levels in ovaries from wild-type (WT) (n=6) and Greb1 KO mice (n=6). Paired, two-tailed, t-test. Data reported as the mean ± SEM. *P< 0.05. ***P< 33 0.001, ****P< 0.0001. Red arrowhead indicates the GREB1-positive cells and black arrowhead 34 indicates GREB1-negative cells; scale bar: 200 µm. c, The relative mRNA concentration of Esr1 35 and Pgr (determined by QRT-PCR) in the ovary of WT (n=6) and Greb1 KO mice (n=6). Paired, 36 two-tailed, t-test. Data reported as the mean ± SEM. *P< 0.05, ***P< 0.001, ****P< 0.0001. d, 37 Representative cross-sectional images of the ovary from WT and Greb1 KO mice stained for ER-38 alpha and PR; scale bar: 200 µm. At the time of tissue collection, most of the females from WT or 39 40 Greb1 KO were at the diestrus or metestrus stage of the estrous cycle.

Supplementary Fig. 3 Compromised progesterone signaling in the uteri of Greb1 KO mice. 42 **a**, Relative transcript levels of *Muc1* in uterine tissues of dpc 4 from wild type (n=5) and *Greb1* 43 KO mice (n=5). Paired, two-tailed, t-test. Data reported as the mean ± SEM. *P< 0.05, ***P< 44 0.001, ****P< 0.0001. b, Relative mRNA levels of Greb1, Pgr, and Esr1 in the uteri of Greb1 KO 45 46 and WT mice at dpc 4 (n=5 for each genotype). Paired, two-tailed, t-test. Data reported as the mean ± SEM. *P< 0.05, ***P< 0.001, ****P< 0.0001. **b**, Relative mRNA levels of progesterone 47 target genes, Foxo1, Areg, and Hand2 in the uteri of Greb1 KO and WT mice at dpc 4 (n=5 for 48 each genotype). Paired, two-tailed, t-test. Data reported as the mean ± SEM. *P< 0.05, ***P< 49 0.001, ****P< 0.0001. 50

Supplementary Fig. 4 Transcript levels of *Igf1, Mcm2, Klf4,* and *Klf15* in uteri of mimicked
hormonal states of pregnancy. a-d, Relative mRNA levels of *Igf1* a, *Mcm2* b, *Klf4* c, and *Klf15*d, from uteri from WT and *Greb1* KO mice in the indicated treatment groups. Data was analyzed
by one-way ANOVA with Tukey's multiple comparisons post-test and presented as mean ± SEM
(n =4-6), P< 0.05, **P<0.01, ***P< 0.001, and ns, non-significant.

58 Supplementary Fig. 5 Decidualization is defective in Greb1 KO mice. a, Timeline for induction of artificial decidualization in ovariectomized mice. **b**, Representative images showing the gross 59 morphology of C: control and S: stimulated (oil-treated) uterine horns from WT and Greb1 KO 60 mice collected 2 days after oil injection. The ratio between the wet weight of the oil-treated horn 61 62 to the wet weight of the untreated horn was calculated for each WT and Greb1 KO (n = 5-6) mouse; then ratios were averaged and compared across genotypes by using Paired, two-tailed, 63 t-test. Data reported as the mean ± SEM. *P< 0.05, ***P< 0.001, ****P< 0.0001. c, Representative 64 cross-sectional images of the oil-treated uterus stained for Phospho-Histone H3 (PH3) from WT 65 and Greb1 KO mice. Red arrowhead indicates the PH3-positive cells and black arrowhead 66 indicates PH3-negative cells; scale bar: 200 µm. The graph on the right depicts the percentage 67 of ESCs (Endometrial stromal cells) undergoing proliferation in the stimulated horn of the WT 68 (n=6) and Greb1 KO (n=5) mice two days following receipt of the deciduogenic stimulus. 69 70 Percentage of PH3 positive cells was calculated by counting positive cells in four separate fields at 400X magnification in uteri by an investigator blinded to treatment groups and plotted as 71 72 percent positive cells relative to total cells. Paired, two-tailed, t-test. Data reported as the mean ± SEM. *P< 0.05, ***P< 0.001, ****P< 0.0001. **d**, Relative mRNA levels of decidualization marker 73 74 genes (Bmp2 and Wnt4) assayed by qRT-PCR. Data was analyzed by one-way ANOVA with Tukey's multiple comparisons post-test and presented as mean \pm SEM (n=4-6), P< 0.05, 75 **P<0.01, ***P< 0.001, and ns, non-significant. 76

77

78

79

80

6

Supplementary Fig. 6 Estradiol (E2) levels are unaltered in serum collected from control or *Greb1* endometriotic females. Graphs depicting the level of estrogen from WT (n=5) or *Greb1*endometriotic KO (n=5) mice. Paired, two-tailed, t-test. Data reported as the mean ± SEM. *P<
0.05, ***P< 0.001, ****P< 0.0001.

Gene name	Species	Application,	Company	Sequence/Cat. No.
		Chemistry		
Greb1 KO	Mouse	Genotyping	IDT	P1: GACAGGGTGTTTCCTTTTGC
				P2: TTAGGCCACCATTGGAAACT
				P3: ACAACCTCAGGCTGCAATTT
Greb1	Mouse	qPCR, TaqMan	ABI	Mm00479259_m1
Esr1	Mouse	qPCR, TaqMan	ABI	Mm00433149_m1
Pgr	Mouse	qPCR, TaqMan	ABI	Mm00435628_m1
Fgf18	Mouse	qPCR, TaqMan	ABI	Mm00433286_m1
Areg	Mouse	qPCR, TaqMan	ABI	Mm01354339_m1
Bmp2	Mouse	qPCR, TaqMan	ABI	Mm01340178_m1
lgf1	Mouse	qPCR, TaqMan	ABI	Mm00439560_m1
Klf4	Mouse	qPCR, TaqMan	ABI	Mm00516104_m1
Klf15	Mouse	qPCR, TaqMan	ABI	Mm00517792_m1
Ccnd1	Mouse	qPCR, TaqMan	ABI	Mm00432359_m1
Mcm2	Mouse	qPCR, TaqMan	ABI	Mm00484804_m1
Wnt4	Mouse	qPCR, TaqMan	ABI	Mm01194003_m1
lhh	Mouse	qPCR, TaqMan	ABI	Mm00439613_m1
Foxo1	Mouse	qPCR, TaqMan	ABI	Mm00490671_m1
Cyp26a1	Mouse	qPCR, TaqMan	ABI	Mm00514486_m1
ll13ra2	Mouse	qPCR, TaqMan	ABI	Mm00515166_m1
Muc1	Mouse	qPCR, TaqMan	ABI	Mm00449604_m1
Hand2	Mouse	qPCR, TaqMan	ABI	Mm00439247_m1
GREB1	Human	qPCR, TaqMan	ABI	Hs00536409_m1
FOXO1	Human	qPCR, TaqMan	ABI	Hs00231106_m1
CCND1	Human	qPCR, TaqMan	ABI	Hs00765553_m1
IGF1	Human	qPCR, TaqMan	ABI	Hs01547656_m1
ESR1	Human	qPCR, TaqMan	ABI	Hs01046816_m1
18S	Human	qPCR, TaqMan	ABI	4318839
	Mouse			

99 Supplementary Table 1 List of primers and TaqMan probes

100

*All primer sequences are written 5' to 3'

102 ABI-applied biosystems

103 IDT-integrated DNA technologies.

104 Supplementary Table 2 List of antibodies

Antibody	Company, Catalogue number	Application and Titer
GREB1	Abcam, ab72999	Immunoblotting (1:1000), ChIP (3 ug)
GREB1	ThermoFisher Scientific PA5-50673	Immunohistochemistry (1:100) Immunofluorescence (1:100)
Ki-67	Abcam, ab15580	Immunohistochemistry (1:100)
ER-α	Abcam, ab75635	Immunohistochemistry (1:100)
Cyclin D1	CST, #55506	Immunohistochemistry (1:100)
Phospho-Histone H3	Millipore Sigma, 06-570	Immunohistochemistry Immunofluorescence (1:100)
MUC1	Abcam, ab15481	Immunofluorescence (1:100)
PR Antibody (F-4) AC	SCBT, sc-166169 AC	Immunoprecipitation (3 ug)
normal mouse IgG-AC	SCBT, sc-2343	Immunoprecipitation (3 ug)
PR	SCBT, PR (H-190) sc-7208	Immunohistochemistry (1:100) Immunoblotting (1:1000) ChIP (3 ug)
Normal Rabbit IgG	CST, #2729	Immunohistochemistry (1:1000) ChIP (3 ug)
Goat anti-Rabbit IgG (H+L)	ThermoFisher Scientific, A32731	Immunofluorescence (1:100)
GAPDH	CST, #2118S	Immunoblotting (1:5000)
Anti-rabbit IgG, HRP-linked	CST, #7074	Immunoblotting (1:3000)

106Supplementary Table 3 List of Primers used for Chromatin Immunoprecipitation (ChIP)

Primers	Company	Sequence
FOXO1 Region 1A Forward	Sigma-Aldrich	GGTCAACCAATGCACACAATG
FOXO1 Region 1A Reverse	Sigma-Aldrich	CGTAGGTCCCTGGATGAGTATAA
FOXO1 Region 1B Forward	Sigma-Aldrich	CAATGCCGACGTCCAGAG
FOXO1 Region 1B Reverse	Sigma-Aldrich	GGGATTCCTGAGAACACTAAGC
FOXO1 Region 2A Forward	Sigma-Aldrich	GCTCCCAAGAATCATGTGTTATG
FOXO1 Region 2A Reverse	Sigma-Aldrich	GTGTTTGTGAAGCAGGTTGG
FOXO1 Region 2B Forward	Sigma-Aldrich	GGAGCTGGTTCACAGAAAGT
FOXO1 Region 2B Reverse	Sigma-Aldrich	CCCATCAAAGTAATCAGGGACA
UNTR Forward	Sigma-Aldrich	CTGTACCTGGGGTTCATTCATT
UNTR Reverse	Sigma-Aldrich	CAGTAAGCCGTTCACTCTCACA

107

108 *All primer sequences are written 5' to 3'