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S1   Methodology 66 

  We screened studies based on the following criteria: (a) addressing urban heat 67 

mitigation using one or more GBGI types, (b) clear identification of at least one GBGI sub-68 

category under investigation, (c) a clear link between the primary GBGI category and heat 69 

mitigation performance, including temperature reduction and associated co-benefits, and (d) 70 

accessibility of full-text articles from the databases for further review and data extraction. 71 
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After removing duplicates, 25,974 publications that didn't meet these criteria were 72 

eliminated, leaving 1,512 publications for further screening (Figure 2b). We retrieved and 73 

assessed the full text of each paper for eligibility (Figure 2c). Articles not meeting inclusion 74 

criteria, such as those mainly focusing on heat causes and impacts, methodological aspects of 75 

heat mitigation without a direct GBGI connection, or discussions limited to general green and 76 

blue spaces without specific GBGI details and cooling effectiveness, were excluded. After 77 

this additional screening, 1,250 more papers were discarded, resulting in 262 publications for 78 

final review. Out of these, 60 more publications were excluded due to insufficient 79 

performance reporting or a failure to mention the GBGI used. In the end, 202 publications 80 

(1.8% of the originally identified 27,486 publications) were chosen for meta-analysis and 81 

further consideration in this review (Figure 2d, e). First we cataloged data from the selected 82 

studies, extracting information from 202 of them, including (1) the study's location (site, city, 83 

country, and region), (2) the specific type of GBGI, (3) the nature of the study (monitoring, 84 

modeling, remote sensing, or a combination), (4) whether single or multiple GBGIs were 85 

studied, (5) qualitative or quantitative data on co-benefits, air temperature, land surface 86 

temperature (LST) reduction (in °C), and day or night air temperature reduction (in °C), (6) 87 

any identified knowledge gaps, and (7) key findings. We developed a data form to capture 88 

this essential information from the selected studies (Table S1). This information was used to 89 

address key objectives, including when and where previous articles were published, the types 90 

of GBGIs used for urban heat mitigation, and the nature of co-benefits and maximum 91 

temperature reductions reported. Following this, we analysed and synthesised the data from 92 

selected studies to address the specific review objectives. The information on the benefits of 93 

various GBGI subcategories was examined using descriptive statistics with R-project 94 

software. To create an evaluation framework for GBGI types and their services in addressing 95 
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heat-related challenges and associated co-benefits, we used a min-max normalization 96 

approach, scaling the data from 1 (none) to 6 (very high) (see Table 2). This standardized 97 

method was then applied to the relevant publications within each GBGI category. Out of the 98 

202 publications, 64.7% primarily focused on heat mitigation as their main ecosystem 99 

service, while the remaining 35.3% discussed co-benefits alongside direct heat mitigation 100 

benefits. 101 

The review proceeds with a summary of how GBGI mitigates heat stress, followed by 102 

mapping study origins, exploring GBGI interventions, and presenting evidence of their 103 

cooling advantages and co/dis-benefits. It also provides a conceptual framework for GBGI 104 

implementation and addresses existing knowledge gaps. The review concludes with major 105 

findings and recommendations for effective GBGI implementation to mitigate urban heat. 106 

Five additional co-benefits are identified, including enhanced recreational opportunities and 107 

improvements in air/water quality.  108 

S1.1       GBGI classification, scope, and outline 109 

 The conceptualisation and classification of GBGI types can differ due to varying 110 

interpretations from country to country, contingent on research contexts and the primary 111 

objective of studies. Sustainability objectives are selectively applied within different GBGI 112 

development frameworks, leading to a plethora of definitions and interpretations.1 These 113 

variations depend on whether GBGI is applied to ecological resources2 or includes natural 114 

green spaces, or is confined to highly altered landscapes intended for public benefit.3 115 

Consequently, it becomes challenging to specifically distinguish between green and grey 116 

infrastructure, such as cycle paths passing through green areas that provide additional 117 

recreational benefits. Often, scientists categorise non-ecological resources as GBGI, for 118 

example, permeable pavements, rainwater barrels, and rain gardens. For this review, we 119 
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adopt the GBGI classification presented by Jones et al.4 and expand it further by introducing 120 

two new categories, mixed (blue-green) and backyard irrigation,5-7 giving a total of 51 GBGI 121 

types. This classification uses a green-blue-grey continuum to cover natural green or blue, 122 

engineered green, blue, or hybrid (green-blue-grey) combinations. The typology was 123 

designed to flexibly incorporate all GBGI types within a typical urban environment. Within 124 

the scope of this review, we examined 51 GBGI types grouped under 10 broad categories: 125 

gardens, parks, amenity areas, linear features/routes, constructed GI on infrastructure, hybrid 126 

GI (for water), water bodies, other non-sealed urban areas, other public spaces, and mixed – 127 

(green-blue). 128 

The task of examining and integrating the diverse benefits of GBGIs was challenging due to 129 

their complex interactions and discipline-specific applications. For instance, public health is 130 

directly or indirectly tied to almost all evaluated benefits, encompassing psychological, 131 

social, and economic aspects.8 Therefore, this study focuses on the direct GBGI cooling 132 

benefits (heat mitigation), whilst indirect benefits such as management of other natural 133 

hazards (floods, droughts), the creation of new infrastructure (such as interconnected green 134 

infrastructure corridors to support active travel; Rogers and Hunt9) or associated social costs 135 

avoided by using specific GBGI types are considered as a secondary objective. In the course 136 

of this review, five more co-benefits were identified: (1) enhanced recreational opportunities, 137 

(2) ambient noise reduction, (3) flood and drought risk mitigation, (4) improvements in 138 

air/water quality, and (5) biodiversity (Section 3.3.2). Detailed GBGI design and 139 

implementation principles, along with global GBGI challenges, have been covered in earlier 140 

reviews (Table 1) and therefore were beyond the scope of this paper.  141 



 

 

7 

The review commences with a concise summary of how GBGI mitigates heat stress (Section 142 

3), followed by a spatial and temporal mapping of study origins, an exploration of various 143 

GBGI interventions, and a presentation of quantitative evidence supporting the direct cooling 144 

advantages and other co/dis-benefits (Section 4). Section 5 provides a nine-stage conceptual 145 

framework for GBGI implementation for heat mitigation based on the qualitative analysis of 146 

the reviewed literature and discusses practical recommendations for the design, 147 

implementation, monitoring, evaluation, and upscaling of GBGI to mitigate heat risks. 148 

Section 6 highlights the existing knowledge gaps. The review culminates with major 149 

conclusions and lays out a series of recommendations for the effective implementation of 150 

GBGI to mitigate urban heat (Section 7). 151 

S1.2  Search and selection of relevant studies  152 

 The goal of this review was to offer an in-depth assessment review and analysis of 153 

GBGI's functions and benefits concerning urban cooling, as well as their potential co-benefits 154 

and drawbacks. This approach led to an expansion of the scope beyond that of previous 155 

reviews covered, enables us to uncover overlooked geographical patterns and examine the 156 

temporal trends in the origin of studies, and knowledge voids in the existing literature. 157 

PRISMA methodology was adopted for this systematic review.10 Figure 1 provides a 158 

flowchart depicting our search and evaluation methodology, including its resultant findings. 159 

Our literature search consisted of five stages:  160 

(1) Development of search terms: To identify a comprehensive range of studies related to 161 

urban heat mitigation, relevant search terms were determined based on research gaps, 162 

objectives, and predetermined categories and subcategories within the GBGI framework. This 163 

approach ensures the inclusion of a diverse set of studies that are pertinent to the field of heat 164 
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mitigation. A range of relevant search terms based on keywords for urban heat mitigation was 165 

identified based on research gaps, objectives, and predetermined GBGI categories and 166 

subcategories to allow the identification of a wide range of studies relevant to heat mitigation. 167 

Search term combinations of GBGI type and heat are listed in Supplementary Information 168 

(SI) Table S1.  169 

(2) Search and identification of relevant studies: A peer-reviewed literature search was 170 

conducted via Boolean search term combinations (Table S1) utilising Web of Science (WoS), 171 

as the most comprehensive database with the ability to handle complex keyword searches. 172 

Studies published between 2010 and 2023 were included. The chosen timeframe was 173 

specifically selected to effectively manage the substantial number of search results, 174 

preventing an overwhelming amount of hits. Moreover, this time frame enables a more 175 

comprehensive examination, particularly in relation to the GBGI, which gained increased 176 

recognition as "nature-based solution" after the year 2010. Cross-checks were performed 177 

using other databases such as Science Direct, Scopus, and Google Scholar to verify that no 178 

relevant studies were missed from the analysis. To ensure inclusivity, we used the same 179 

keywords as in WoS (Table S1) when searching on Google Scholar. We reviewed multiple 180 

pages of search results initially, but the relevance of studies decreased as we continued. 181 

Therefore, we concluded the search after examining the first 20 pages. Finally, we compared 182 

the results with papers from WoS and included any relevant publications that were missed in 183 

our analysis. After excluding articles not written in English, the search terms yielded a total 184 

of 27,486 publications, including review and research papers (Figure 2a).  185 

(3) Selection of studies: The identified studies were screened against the following criteria: 186 

(a) addresses mitigation and/or adaptation to urban heat using one or several types of GBGI, 187 
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(b) distinctly identifies at least one GBGI sub-category under investigation, (c) the main 188 

GBGI category is clearly linked with heat mitigation performance, including actual or 189 

percentage temperature reduction, and any associated co-benefits, (d) the full texts were 190 

accessible from the databases for further review and data extractions. After removing 191 

duplicates, the remaining articles were reviewed and 25,974 publications that did not meet 192 

inclusion criteria were removed, leaving 1512 publications for further screening (Figure 2b). 193 

The full text of each paper was retrieved and assessed for eligibility (Figure 2c). Any articles 194 

not meeting the inclusion criteria, like those majorly focusing on causes and impacts of heat, 195 

methodological aspects of heat mitigation benefits without a direct tie to GBGI categories 196 

and temperature reductions or discussions confined to general green and blue spaces or green 197 

corridors without specific descriptions of GBGI types and cooling efficacy, were excluded. 198 

After this further screening, an additional 1250 papers were discarded, leaving 262 199 

publications for final screening. Out of these, 60 more publications were excluded due to 200 

non-reporting of performances or failure to mention the utilised GBGI. Eventually, a set of 201 

202 publications (1.8% of the originally identified 27,486 publications) was chosen for meta-202 

analysis and subsequent deliberation in this review (Figure 2d, e). 203 

(4) Cataloguing the data: Relevant data (e.g., location, type of GBGI, co-and dis-benefits, 204 

and knowledge gaps; Section 2.3) were extracted from the selected studies. The following 205 

data were extracted from the selected 202 studies: (1) the location of the GBGI study 206 

including the site, city, country, and region, (2) the specific type of GBGI, (3) the nature of 207 

the study, whether it was monitoring, modelling, remote sensing, or a combination of these, 208 

(4) either single or multiple GBGI, (5) qualitative or quantitative information on co-benefits, 209 

air temperature and land surface temperature (LST) reduction (in ℃), and a day or night time 210 

air temperature reduction (in ℃), (6) any identified knowledge gaps, and (7) key findings. 211 
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This process involved developing a data form to capture key information from the selected 212 

studies (Table S1). This extracted information was used to address the key objectives 213 

including when and where previous articles were published, the types of GBGI they utilised 214 

as mitigation measures for urban heat and the nature of co-benefits and maximum 215 

temperature reductions they reported.  216 

(5) Collating, summarising, and reporting the results: The data obtained from the selected 217 

studies were analysed and synthesised in a way that addressed the specific questions raised as 218 

a part of the review objectives (Section 1). The extracted information on the (co-)benefits of 219 

various subcategories of GBGI was analysed using descriptive statistics using R-project 220 

software.11 To develop an evaluation framework for GBGI types and the services offered to 221 

tackle heat-related challenges and their associated co-benefits, we adopted a min-max 222 

normalisation approach.12 This approach, also referred to as feature scaling, included a linear 223 

transformation of the original data on a scale ranging from 1 (none) to 6 (very high) (see 224 

Table 2). Subsequently, this standardised methodology was applied to the pertinent 225 

publications within each GBGI category. Of the 202 publications, 64.7% discussed heat 226 

mitigation as their main ecosystem service. The remaining 35.3% discussed the co-benefits 227 

alongside the direct heat mitigation benefits (Section 3). 228 

S2 Mechanisms of temperature and heat stress regulation by GBGI 229 

S2.1 Mechanisms of temperature and heat stress regulation by green infrastructure 230 

The mechanisms by which GI such as street trees, parks, green roofs, and green walls 231 

reduce heat are multifaceted and interconnected. Trees and plants help in the reduction of 232 

heat by providing shade and reducing the amount of direct sunlight reaching the ground, 233 

therefore lowering surface temperatures and mitigating the urban heat island (UHI) effect via 234 

creating a cooler microclimate.13-15 Additionally, during evapotranspiration plants release 235 
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moisture which further cools the surrounding air by converting sensible heat into latent 236 

heat.16 Parks can act as natural air conditioners through several mechanisms,17-19 including the 237 

formation of microscale centripetal thermal system (park-breeze) that generate low-level 238 

advection currents which draw air from cooler green towards warmer urban areas.20 Other GI 239 

elements such as green roofs, green walls, and roof gardens provide insulation, reduce heat 240 

absorption by buildings, and promote evaporative cooling (heat absorption, as water changes 241 

from liquid to a gas state in the air stream.21-24 Vegetation also contributes to the dissipation 242 

of heat by acting as windbreaks, modifying airflow patterns, and facilitating natural 243 

ventilation. 244 

S2.2 Mechanisms of temperature and heat stress regulation by blue infrastructure 245 

  Blue infrastructure (BI), in the form of water-based natural or constructed features 246 

including ponds and wetlands, actively mitigates heat effects by cooling the surrounding 247 

environment.20 This is achieved through processes such as evapotranspiration, shading, the 248 

albedo effect, groundwater recharge, and temperature buffering.25,26 BI can provide cooling 249 

during the day (acts as a heat sink by absorbing and storing heat from the surrounding 250 

environment) whereas it may lead to warming at night (re-releasing the heat due to water's 251 

higher heat capacity compared to the land surface).27 Evaporation from water bodies also 252 

helps cool the air, creating a microclimate with lower temperatures and thereby helping to 253 

mitigate the UHI effect.28 Larger urban water bodies can also generate cool breezes that 254 

further lower the ambient temperature and provide relief during hot weather through 255 

evaporative cooling.20 Furthermore, surfaces of blue infrastructure are often highly reflective, 256 

especially under calm conditions, thereby increasing surface reflectivity which, in turn, 257 

contributes to the reduction of heat absorption,29 thus helping to mitigate heat build-up and 258 

contributing to the cooling of the surrounding area. Some of the blue infrastructure such as 259 
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wetlands, ponds/lakes, swales, and rain gardens also act as natural sponges, storing water and 260 

releasing it during high air temperatures, thereby moderating temperatures in the vicinity by 261 

increasing water availability for evaporation through groundwater recharge.30 262 

 263 

264 
Figure S1. Flowchart of the inclusion and exclusion criteria (e.g. article identification, 265 

screening, eligibility check, and inclusion) process and the number of GBGI main categories 266 

included. 267 

 268 
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Figure S2. Köppen-Geiger climate classification: the main climate region (A-D) and detailed 269 

climate conditions (right column) where GBGs are implemented. 270 
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 271 

Figure S3. (a) The number of publications exhibiting a significant linear increase over time, 272 

with the linear trend (R2=0.69; p=0.00043) providing the best fit among the various trends 273 

(exponential, linear, polynomial, power functions) analysed. Our search in 2023 was limited 274 

to the month of 30 March 2023, and the trend line did not incorporate the 2023 data as it did 275 

not cover the entire year. (b) The number of publications in each of the 10 main GBGI 276 

categories. The number of publications covering all the GBGI sub-categories is shown in 277 

Figure 1a.  278 
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279 
Figure S4. Relevant publications on the benefits of GBGI for heat adaptation and mitigation 280 

evidence gathered from the literature: (a) number of publications covering the main 281 

categories and sub-categories and (b) number of publications covering the main category 282 

(shown by the bold coloured text). The percentage values are printed on the top of each bar.   283 
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284 
Figure S5. The effectiveness of the main and sub-GBGI categories implemented in tropical 285 

(n = 16), dry (n = 15), temperate (n = 137), and continental (n = 34) climate zones of 286 

Köppen-Geiger climate classification. 287 



 

 

17 

 288 

Figure S6. The density of GBGI cooling efficiency in different climate zones and against 289 
population density, area of the city, altitude, ratio: area of GBGI/area of the city, and 290 
temporal scale of cooling.  291 
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Figure S7. Night-time temperature reduction efficiency of GBGI sub-categories: (a) a 293 

summary of the overall performance of different GBGI types from all studies, (b) heatmap 294 

showing GBGI performances from for different methods and the average values, and (c) 295 

overall average of GBGI efficiency for urban heat mitigation. The ‘Average’ and ‘Average*’ 296 

values represent the average of all study types with and without RS data, respectively. M&M 297 

denotes combined monitoring and modelling studies. The colour gradient represents the 298 

performance, with grey cells representing studies that did not consider either monitoring, 299 

modelling, M&M, or RS. The figure uses a boxplot representation with the median indicated 300 

by a thick vertical black line, the mean represented by blue dots, and the upper and lower 301 

quartiles indicated by the box boundaries. The circle with a vertical line represents the GBGI 302 

categories with only one publication.   303 
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Table S1. The table below serves as a sample for organising the datasets obtained from the 304 

reviewed papers for each of the 51 sub-categories.  305 

 306 

  307 
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Table S2. The string of keywords used to record literature for the review of the efficiency of 308 

51 GBGI categories to mitigate heat.  309 

GBGI Type  Keywords 

Number of 
publications 

Identified 

Web of Science 

Pocket park 

pocket park AND heat waves  - 

pocket park AND urban heat island 14 

pocket park AND temperature reduction 3 

pocket park AND cooling 10 

  Pocket Park (Total) 27 

Park 

park NOT pocket park AND heat waves 1623 

park NOT pocket park AND urban heat island 907 

park NOT pocket park AND temperature reduction 6804 

park NOT pocket park AND cooling 9741 

  Park (Total) 19075 

Botanical 
garden 

botanical garden OR arboretum AND heat waves 1 

botanical garden OR arboretum AND urban heat 
island 

10 

botanical garden OR arboretum AND temperature 
reduction 

10 

botanical garden OR arboretum AND cooling 20 

  Botanical garden (Total) 41 

Heritage 
garden 

heritage garden AND heat waves 3 

heritage garden AND urban heat island 3 

heritage garden AND temperature reduction 1 

heritage garden AND cooling 6 

  Heritage garden (Total) 13 
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Nursery 
garden 

nursery garden AND heat waves  - 

nursery garden AND urban heat island  - 

nursery garden AND temperature reduction 12 

nursery garden AND cooling 3 

  Nursery garden (Total) 15 

Zoological 
garden 

zoo OR zoos OR zoological garden AND heat waves 2 

zoo OR zoos OR zoological garden AND urban heat 
island 

1 

zoo OR zoos OR zoological garden AND temperature 
reduction 

12 

zoo OR zoos OR zoological garden AND cooling 31 

  Zoological garden (Total) 46 

Street Tree 

street tree AND heat waves 51 

street tree AND urban heat island 326 

street tree AND temperature reduction 123 

street tree AND cooling 246 

  Street Tree (Total) 746 

Cycle track 

cycle path OR cycle track AND heat waves 6 

cycle path OR cycle track AND urban heat island 14 

cycle path OR cycle track AND temperature reduction 421 

cycle path OR cycle track AND cooling 896 

  Cycle track (Total) 1337 

Footpath 

footpath AND heat waves -  

footpath AND urban heat island 6 

footpath AND temperature reduction 0 

footpath AND cooling 1 

  Footpath (Total) 7 



 

 

23 

Road verge 

roadside OR verge AND heat waves 6 

roadside OR verge AND urban heat island 26 

roadside OR verge AND temperature reduction 48 

roadside OR verge AND cooling 103 

  Road verge (Total) 183 

Railway 
corridor 

rail AND heat waves 31 

rail AND urban heat island 7 

rail AND temperature reduction 300 

rail AND cooling 456 

  Railway corridor (Total) 794 

Riparian 
woodland 

riparian tree OR riparian wood OR riparian forest 
AND heat waves 

4 

riparian tree OR riparian wood OR riparian forest 
AND urban heat island 

4 

riparian tree OR riparian wood OR riparian forest 
AND temperature reduction 

16 

riparian tree OR riparian wood OR riparian forest 
AND cooling 

28 

  Riparian woodland (Total) 52 

Hedge 

hedge AND heat waves 3 

hedge AND urban heat island 9 

hedge AND temperature reduction 47 

hedge AND cooling 52 

  Hedges (Total) 111 

Green Roof 

green roof AND heat waves 104 

green roof AND urban heat island 806 

green roof AND temperature reduction 360 

green roof AND cooling 886 
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  Green Roof (Total) 2156 

Green Wall 

green wall OR green facade AND heat waves 57 

green wall OR green façade AND urban heat island 295 

green wall OR green façade AND temperature 
reduction 

298 

green wall OR green façade AND cooling 536 

  Green Wall (Total) 1186 

Roof garden 

roof garden OR roof terrace AND heat waves 12 

roof garden OR roof terrace AND urban heat island 57 

roof garden OR roof terrace AND temperature 
reduction 

22 

roof garden OR roof terrace AND cooling 80 

  Roof garden (Total) 171 

Pergola 

pergola AND heat waves  - 

pergola AND urban heat island 5 

pergola AND temperature reduction 5 

pergola AND cooling 7 

  Pergola (Total) 17 

Road verge 

Road verge AND heat waves 0 

Road verge AND urban heat island 0 

Road verge AND temperature reduction 1 

Road verge AND cooling 2 

(roadside* OR verge*) AND cooling 207 

(roadside* OR verge*) AND heat waves 12 

(roadside* OR verge*) AND urban heat island 29 

(roadside* OR verge*) AND temperature reduction 62 

  Road verge (Total) 313 
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Permeable 
paving 

Permeable Paving AND Heatwaves 0 

Permeable Paving AND Urban Heat Island 26 

Permeable Paving AND cooling 18 

Permeable Paving AND Temperature reduction 8 

Permeable parking/roadway AND Heatwaves 0 

Permeable parking/roadway AND Urban Heat Island 0 

Permeable parking/roadway AND Temperature 
reduction 

0 

"permeable park*" OR "permeable road Heatwaves 
reduction"* 

13 

"permeable park*" OR "permeable road Urban Heat 
Island"* 

13 

Permeable park*" OR "permeable road Temperature 
reduction 

13 

Permeable Paving AND cooling 18 

  Permeable Paving (Total) 109 

Attenuation 
pond 

Attenuation pond AND Heatwaves 0 

Attenuation pond AND Urban Heat Island 1 

Attenuation pond AND Temperature reduction 8 

Attenuation pond AND cooling 6 

  Permeable Paving (Total) 15 

Permeable 
paving 

Flood control channel AND Heatwaves 0 

Flood control channel AND Urban Heat Island 1 

Flood control channel AND Temperature reduction 22 

flood* OR channel or Heatwaves* 1 

flood* OR channel or Urban Heat Island* 2 

flood* OR channel or Temperature reduction* 35 

Flood control channel AND cooling 30 

  Flood Control Channel (Total) 91 
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Rain garden 

Rain garden AND Heatwaves 2 

Rain garden AND Urban Heat Island 23 

Rain garden AND Temperature reduction 22 

Rain garden AND cooling 14 

  Rain Garden (Total) 61 

Bioswale 

Bioswale AND cooling 1 

Bioswale AND Heatwaves 0 

Bioswale AND Urban Heat Island 1 

Bioswale AND Temperature reduction 1 

  Bioswale (Total) 3 

Outdoor 
swimming 

pool 

Outdoor swimming pool AND cooling 16 

Outdoor swimming pool AND Heatwaves 0 

Outdoor swimming pool AND Urban Heat Island 3 

Outdoor swimming pool AND Temperature reduction 3 

  Outdoor swimming pool (Total) 22 

Canal 

Canal AND cooling 338 

Canal AND Heatwaves 1 

Canal AND Urban Heat Island 4 

Canal AND Temperature reduction 160 

  Canal (Total) 503 

Estuary/ 
tidal river 

Estuary/tidal river AND cooling 0 

Estuary/tidal river AND Heatwaves 0 

Estuary/tidal river AND Urban Heat Island 0 

Estuary/tidal river AND Temperature reduction 0 

  Estuary/ tidal river (Total) 0 

River/ 
Stream 

River/stream AND cooling 8 

River/stream AND Heatwaves 0 
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River/stream AND Urban Heat Island 0 

River/stream AND Temperature reduction 7 

river* OR stream* AND Heatwaves 0 

river* OR stream* AND Urban Heat Island 0 

river* OR stream*AND Temperature reduction 0 

  River/ Stream (Total) 15 

River/ 
Stream 

Reservoir AND cooling 3955 

Reservoir AND Heatwaves 15 

Reservoir AND Urban Heat Island 44 

Reservoir AND Temperature reduction 0 

  Reservoir (Total) 4014 

Lake 

Lake AND Heatwaves 53 

Lake AND Urban Heat Island 167 

Lake AND Temperature reduction 0 

Lake AND cooling 4715 

  Lake (Total) 4935 

Sea 

Sea (incl. coast) AND Heatwaves 0 

Sea (incl. coast) AND Urban Heat Island 495 

Sea (incl. coast) AND Temperature reduction 6957 

Sea AND cooling 15381 

(sea OR seaside OR coast* OR beach* OR shore and 
Heatwaves*) 

0 

  Sea (Total) 22833 

Pond 

Pond AND Heatwaves 0 

Pond AND Urban Heat Island 0 

Pond AND cooling 945 

Pond AND Temperature reduction 0 
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  Pond (Total) 945 

Balcony/terr
ace 

Balcony AND Heatwaves 1 

Balcony AND Urban Heat Island 7 

Balcony AND Temperature reduction 21 

 terrace AND Urban Heat Island 16 

 terrace AND Urban Heatwaves 1 

terrace AND Temperature reduction 233 

  Balcony/terrace (Total) 279 

Road verge 

Riparian woodland AND heat waves 1 

Riparian woodland AND urban heat island 0 

Riparian woodland AND temperature reduction 7 

Riparian woodland AND cooling 20 

("riparian tree*" OR "riparian wood*" OR "riparian 
forest*") AND cooling 

66 

("riparian tree*" OR "riparian wood*" OR "riparian 
forest*") AND heat waves 

3 

("riparian tree*" OR "riparian wood*" OR "riparian 
forest*") AND urban heat island 

4 

("riparian tree*" OR "riparian wood*" OR "riparian 
forest*") AND temperature reduction 

30 

  Riparian woodland (Total) 131 

Playground 

Playground AND Heatwaves  1 

Playground AND Urban Heat Island 9 

Playground AND Temperature reduction 19 

Playground AND cooling 33 

  Playground (Total) 62 

Golf course 
Golf course AND Heatwaves 0 

Golf course AND Urban Heat Island 4 
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Golf course AND Temperature reduction 11 

Golf course AND cooling 111 

  Golf course(Total) 126 

Shared open 
space 

Shared open space AND Heatwaves 1 

Shared open space AND Urban Heat Island 4 

Shared open space AND Temperature reduction 10 

Shared open space AND cooling 44 

  Shared open space(Total) 59 

Cemetery 

Cemetery AND Heatwaves 0 

Cemetery AND Urban Heat Island 5 

Cemetery AND Temperature reduction 1 

Cemetery AND cooling 12 

  Cemetery (Total) 18 

Allotment 

Allotment AND Temperature reduction 5 

Allotment AND Urban Heat Island 6 

Allotment AND Temperature reduction 5 

Allotment AND cooling 15 

  Allotment (Total) 31 

City farm 

City farm AND Heatwaves 1 

City farm AND Urban Heat Island 23 

City farm AND Temperature reduction 20 

City farm AND cooling 44 

  City farm (Total) 88 

Adopted 
public space 

Adopted public space AND Heatwaves 1 

Adopted public space AND Urban Heat Island 13 

Adopted public space AND Temperature reduction 8 
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Adopted public space AND cooling 18 

  Adopted public space (Total) 40 

Woodland 

Woodland (other) AND Heatwaves 3 

Woodland (other) AND Urban Heat Island 8 

Woodland (other) AND Temperature reduction 34 

Woodland AND cooling 457 

  Woodland (Total) 502 

Grass 
(other) 

Grass (other) AND Heatwaves 9 

Grass (other) AND Urban Heat Island 40 

Grass (other) AND Temperature reduction 155 

Grass (other) AND cooling 3041 

  Grass (other) (Total) 3245 

Arable 
agriculture 

Arable agriculture AND Heatwaves 0 

Arable agriculture AND Urban Heat Island 0 

Arable agriculture AND Temperature reduction 0 

Arable agriculture AND cooling 24 

  Arable agriculture (Total) 24 

Private 
Garden 

Private garden AND Heatwaves 0 

Private garden AND Urban Heat Island 5 

Private garden AND Temperature reduction 1 

Private garden AND cooling 13 

  Private Garden (Total) 19 

Shared 
common 
garden 

Shared common garden area AND Heatwaves 0 

Shared common garden area AND Urban Heat Island 1 

Shared common garden area AND Temperature 
reduction 

0 
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Shared common garden area AND cooling 0 

  Shared Common garden (Total) 1 

Wetland 

Wetland AND Heatwaves 15 

Wetland area AND Urban Heat Island 55 

Wetland AND Temperature reduction 589 

Wetland AND cooling 587 

  Wetland (Total) 1246 

Estuary 

Estuary AND Heatwaves  22 

Estuary AND Urban Heat Island 13 

Estuary AND Temperature reduction 474 

Estuary AND cooling 428 

  Estuary (Total) 937 

Sports fields 

Sports field AND Heatwaves  1 

Sports field AND Urban Heat Island 2 

Sports field AND Temperature reduction 25 

Sports field AND cooling 102 

  Sports field (Total) 130 

School yard 

School yard AND Heatwaves  0 

School yard AND Urban Heat Island 2 

School yard AND Temperature reduction 0 

School yard AND cooling 3 

  School yard (Total) 5 

Shrubland 

Shrubland (other) AND Heatwaves 0 

Shrubland (other) AND Urban Heat Island 0 

Shrubland (other) AND Temperature reduction 0 

Shrubland (other) AND cooling 16 



 

 

32 

  Shrubland (Total) 16 

Sparsely 
vegetated 

land 

Sparsely vegetated land AND Heatwaves 0 

Sparsely vegetated land AND Urban Heat Island 0 

Sparsely vegetated land AND Temperature reduction 0 

Sparsely vegetated land AND cooling 8 

  Sparsely vegetated land (Total) 8 

 310 

Table S3. Classification matrix to categorise the number of studies available for each of the 311 

GBGI sub-categories in terms of heat mitigation. Zero values indicate that there is negligible 312 

empirical evidence available for GBGI’s against urban heat mitigation, including heatwaves.  313 

Scale Conditional performance 
(%)a 

Evidence-based 
classification (%)b 

Number of GBGI typesc 

1 None 0 18 

2 Very low ≥0 ≤20 15 

3 Low ≥20 ≤40 9 

4 Medium ≥40 ≤ 60  4 

5 High ≥60 ≤80  1 

6 Very High ≥80 4  
aThe number of publications from negligible to very high under the six-classification scale. 314 
bThe percentage availability of publications for each classification scale. cThe number of 315 
GBGI types found in each of the classification scales. 316 

Table S4. The best performing GBGI types in each climate zone and sub-climate type with 317 
reported magnitude and measured scale (i.e. inside/outside of GBGI) of cooling providing 318 
details of surroundings. 319 

 GBGI (Sub 
climate#1, and 
del T) 

GBGI (sub 
climate#2, and 
del T) 

Inside/outside 
(scale) 

Nearby 
surrounding 

Temperate Wetland (Cfa, 
10) 

Park (Cfb, 9.2) Wetland works 
well at meso 
scale (mostly 

Near built-up 
area (park),  
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inside) than 
micro, on the 
contrary park 
works better on 
micro-scale 
(inside and 
outside both).  

Near nature 
(wetland) 

Continental Greenwall, 
Botanical 
garden (Dfb, 8.7 
& 10)  

Green roof and 
Botanical 
garden (Dwa, 
10.8 & 10) 

Works well at 
Microscale but 
not at meso and 
macro but the 
park can be 
suggested at the 
mesoscale.  
 
Green roof 
(inside, outside 
and top)  
botanical garden 
(inside-outside), 
green wall 
(near) 

Built-up area 
(green wall and 
botanical 
garden) 
 
Green roof 
(mixed 
environment of  
grey and nature)  

Dry Wetland, Pocket 
park (BWh, 12 
& 7)) 

- Microscale  
wetland (inside) 
pocket park 
(inside-outside) 

Wetland (near 
nature) 
 
Pocket park 
(built-up area) 

Tropical Roof garden 
(Af, 10 ) 

- Microscale  
 
(inside and top) 

Built up area  

Table S5. Sample size (n), correlation of population and p-value density, city area, altitude, 320 
ratio of GBGI and city area, and temporal cooling with reported cooling by GBGI in four 321 
different climatic conditions i.e. continental, dry, temperate and tropical.  322 

 Climate Zone Correlation P-value  

Population density (n = 34 ) Continental 0.0183 0.919 

(n = 15) Dry  0.193 0.4791 

(n = 137) Temperate -0.013 0.8827 

(n = 16) Tropical 0.2241 0.404 

City Area Continental 0.018 0.9189 
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(n = 15) Dry 0.1981 0.4791 

(n = 137) Temperate -0.013 0.8827 

(n = 16) Tropical 0.22 0.404 

Altitude Continental 0.135 0.4449 

(n = 15) Dry 0.0158 0.9552 

(n = 137) Temperate -0.089 0.2975 

(n = 16) Tropical 0.325 0.2188 

Ratio GBGI/city Continental 0.0917 0.606 

(n = 15) Dry -0.117 0.6768 

(n = 137) Temperate -0.017 0.8386 

(n = 16) Tropical -0.328 0.2142 

Temporal cooling Continental 0.208 0.2367 

(n = 15) Dry 0.1132 0.6879 

(n = 137) Temperate 0.0399 0.6427 

(n = 16) Tropical 0.2824 0.2892 

 323 
Table S6. The location, study types (in-situ, modelling, combined (in-situ and modelling), 324 
and remote sensing), and performance in reducing temperature (∆T oC)) of different types of 325 
GBGI categories against extreme heat extracted from 202 papers.  326 

GBGI 
Type 

 GBGI 
Categorie

s 

Location 
(city, 

country) 

Study type Perfo
rman
ce ∆T 
(oC) 

Reference 
(Year) 

 
 
 
 
 

Gardens 

 Balcony 

Vienna Monitoring 4 Teichmann et 
al.31 

Malaysia Monitoring 1.7 Toe and 
Kubota32 

Tehran, Iran Modelling 7 Aghasizadeh 
et al.33 

China Modelling 3.8 Cui and 
Zheng34 

Lublin, Monitoring 0.22 Grudzińska35 
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Poland 

Tampere, 
Finland 

Monitoring 2 Hilliaho et 
al.36 

Zamo, 
Poland 

Modelling 7.6 Grudzińska37 

Private 
garden 

Melbourne, 
Australia 

Monitoring 2.3 Cheung et 
al.38 

Irrigating 
backyard 

Sydney, 
Australia 

Modelling 3 Gao et al.39 

Adelaide, 
Australia 

Modelling 2.3 Broadbent et 
al.40 

United States Remote 
Sensing 

3.74 Wang et al.41 

 
Parks 

 

Pocket 
Park 

Hong Kong Monitoring 0.38 Lau et al.42 

Hong Kong Monitoring 1.09 Lin et al.433 

New York Monitoring 0.5 Rosso et al.44 

Veszprém, 
Hungary 

Modelling 0.6 Trájer et al.45 

Xi’an, China Modelling 1.1 Hou et al.46 

Xi’an, China Monitoring 
& 

Modelling 

0.43 Ma et al.47 

Shanghai, 
China 

Monitoring 3.6 Wu et al.48 

Cairo 
Metropolitan 
Area, Egypt 

Modelling 7 Ibrahim49 

Hong Kong Monitoring 
& 

Modelling 

0.13 Huang et al.50 

Park 
Chongqing, 
Southwest 

China 

Modelling 0.8 Lu et al.51 
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Abuja, 
Nigeria 

Remote 
Sensing 

2.04 Chibuike et 
al.52 

Shenzhen 
City, China 

Monitoring 5.15 Zhang et al.53 

Yreb, China Remote 
Sensing 

2.34 Shi et al.54 

Xian, China Monitoring 0.78 Du et al.55 

Shenzhen, 
China 

Remote 
Sensing 

3.02 Peng et al.56 

Taipei, 
Taiwan 

Monitoring 
& 

Modelling 

2.42 Yang et al.57 

Wuhan, 
China 

Monitoring 3.5 Chen et al.58 

Kolkata 
Metropolitan 
Area, India 

Remote 
Sensing 

3.15 Das et al.59 

Beijing, 
China 

Monitoring 1.38 Zhou et al.60 

Melbourne, 
Australia 

Remote 
Sensing 

3.28 Algretawee61 

Beijing, 
China 

Remote 
Sensing 

1.71 Qiu and Jia62 

Beijing, 
China 

Monitoring 1.09 Li et al.63 

Austin, US Remote 
Sensing 

6.89 Gao et al.64 

Taiwan Monitoring 
& 

Modelling 

2.42 Yang et al.65 

Özgürlük 
Park, 

Istanbul, 
Turkey 

Monitoring 
& 

Modelling 

2.3 Şimşek et 
al.66 

Beijing, 
China 

Monitoring 2.71 Li et al.67 
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Hong Kong Monitoring 4.9 Cheung er 
al.68 

Melbourne, 
Australia 

Remote 
Sensing 

10 Algretawee69 

Beijing, 
China 

Monitoring 4.8 Yan et al.70 

Botanical 
garden 

Baoji, China Monitoring 2.7 Chang and 
Li71 

Erzurum, 
Turkey 

Monitoring 2.6 Irmak et al.72 

Beijing, 
China 

Monitoring 10 Su 73 

Erzurum, 
Turkey 

Monitoring 
& 

Modelling 

2.2 Yilmaz et 
al.74 

Erzurum, 
Turkey 

Monitoring 7.1 Yilmaz et 
al.75 

Amenity 
areas 

 

Sports 
field 

Khalifa 
stadium in 

Doha, Qatar 

Monitoring 
& 

Modelling 

3.1 Ghani et al.76 

Playgroun
d 

Warsaw, 
Poland 

Monitoring 5 Kuchcik et 
al.77 

United States Remote 
Sensing 

5.5 Vanos et al.78 

Golf 
course 

Perth, 
Australia 

Remote 
Sensing 

6 Nguyen et 
al.79 

Shared 
open space  

Maxvorstadt, 
Munich  

Modelling 2.1 Zölch et al.80 

Other 
public 
spaces 

 

Cemetery 
Budapest’s, 

Hungary 
Monitoring 1.7 Sallay et al.81 

Allotment 
Berlin, 

Germany 
Remote 
Sensing 

4 Rost et al.82 

City farm 

Phoenix, 
Arizona 

Monitoring 3.9 Hawkins et 
al.83 

Paris, France Modelling 3 Masson et 
al.84 
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Adopted 
public 
space 

Raiganj, 
West Bengal, 

India 

Monitoring 
& 

Modelling 

3 Basu and 
Das85 

Bologna, 
Italy 

Modelling 3 Boeri et al.86 

Liverpool, 
NSW, 

Australia 

Modelling 1.5 Abdollahzade
h and 

Biloria87 

Linear 
features/ro

utes 
 Street tree 

Hangzhou 
city, 

Zhejiang 
Province, 

China 

Monitoring 1.8 Cai et al.88 

Turin, Italy Monitoring 0.5 Morabito et 
al.89 

Florence, 
Italy 

Modelling 9.4 Napoli et al.90 

Nanjing , 
Jiangsu 

Province, 
China 

Modelling 5.5 Xi et al.91 

Karachi, 
Pakistan 

Modelling 1.2 Zeeshan et 
al.92 

Abu Dhabi Monitoring 
& 

Modelling 

0.9 Abu Ali et 
al.93 

Rome, Italy Remote 
Sensing 

3.2 Marando et 
al.94 

Karachi, 
Pakistan 

Modelling 1.2 Zeeshan et 
al.95 

Montreal, 
Canada 

Modelling 4 Wang et al.96 

Vancouver, 
Canada 

Remote 
Sensing 

12 Lachapelle et 
al.97 

Barcelona, 
Spain 

Modelling 1.3 Segura et al.98 

Shenyang, Monitoring 2.9 Miao et al.699 
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China 

Prague 
Czech 

Republic 

Modelling 5 Geletic et 
al.100 

Basel, 
Switzerland 

Monitoring 
& 

Modelling 

2 Mussetti et 
al.101 

Bangalore, 
India 

Monitoring 5.6 Valishery et 
al.102 

Dresden, 
Germany 

Monitoring 2.22 Gillner et 
al.103 

Melbourne, 
Australia 

Monitoring 1.5 Coutts et 
al.104 

Richmond, 
Australia 

Monitoring 2.1 Sanusi et 
al.105 

Vancouver, 
Canada 

Modelling 7.1 Aminipour et 
al.106 

Tsukuba 
City, Japan 

Monitoring 5.9 Kusaka et 
al.107 

Road 
verge 

Jongro, 
Seoul, 

Republic of 
Korea 

Monitoring 4.44 Cho108 

Taipei, 
Taiwan 

Monitoring 0.68 Huang and 
Li109 

New 
Belgrade, 

Serbia 

Monitoring 2.1 Stojanovic et 
al.110 

Kuala 
Lumpur, 
Malaysia 

Monitoring 1.3 Zaki et al.111 

Haikou, 
China 

Modelling 2 Zheng et 
al.8112 

Czech 
Republic 

Monitoring 
& 

Modelling 

0.05 Žižlavská et 
al.113 
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Riparian 
woodland 

Sydney, 
Australia 

Monitoring 1.16 Adams and 
Smith1144 

Ejina basin, 
China 

Monitoring 1.28 Yonghong et 
al.115 

Yorkshire, 
England 

Monitoring 3 Tsai et al.116 

Glen 
Girnock, UK 

Remote 
sensing 

5.4 Dugdale et 
al.117 

Beijing, 
China 

Monitoring 3 Zheng et 
al.118 

Hedge 

Beijing, 
China 

Modelling 2.68 Zhang and 
Hu119 

Lazio, Italy Modelling 3 Peluso et 
al.120 

Rome, Italy Modelling 3 Del Serrone 
et al.121 

Shenzhen, 
China 

Monitoring 
& 

Modelling 

1.29 Zou et al.1222 

Sakai, Japan Remote 
Sensing 

7 Yoshida et 
al.123 

 
 
 

 

Green roof 

Berlin, 
Germany 

Modelling 0.44 Wang et al.124 

Mandaue, 
Philippines 

Modelling 1.1 Cortes et 
al.125 

Sydney, 
Australia 

Monitoring 9.63 Fleck et al.126 

Xiamen, 
China 

Remote 
Sensing 

0.91 Dong et al.127 

Belgrade, 
Serbia 

Monitoring 5.5 Kostadinovic 
et al.128 

Nanjing, 
China 

Monitoring 1.1 Peng et al.129 

Tseung 
Kwan O 

New Town, 

Monitoring 4.9 Lee and 
Jim130 
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Hong Kong, 
China 

Neubrandenb
urg, 

Germany 

Monitoring 1.5 Kohler and 
Kaiser131 

Gangnam-gu, 
Seoul, South 

Korea 

Monitoring 10.8 Park et al.132 

Jerusalem 
and Tel Aviv 

Monitoring 
& 

Modelling 

0.4 Lynn and 
Lynn133 

Shenzhen, 
China 

Monitoring 4.03 Chen et al.134 

Mandaue, 
Philippines 

Modelling 1.1 Cortes et 
al.135 

Utrecht, The 
Netherlands 

Monitoring 0.2 Solcerova136 

Lodz, Poland Modelling 0.19 Bochenek 
and 

Klemm137 

Guangzhou, 
China 

Modelling 0.1 Chen et al.138 

Hamad, 
Northern 
Bahrain 

Modelling 0.72 Elnabawi and 
Saber139 

Chengdu, 
China 

Monitoring 0.94 Zuo et al.140 

Rome, Italy Modelling 0.16 Iaria and 
Susca141 

Sydney, 
Australia 

Monitoring 2.92 Fleck et al.142 

Cordoba, 
Argentina 

Monitoring 0.892 Robbiati et 
al.143 

Constructe
d GI on 

infrastruct
ure 

 Green wall 

Changsha, 
Hunan 

Province, 
China 

Modelling 0.49 Liao et al.144 
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Reading, UK Remote 
Sensing 

6.3 Cameron et 
al.145 

Guangzhou, 
China 

Monitoring 3.6 Zhang et 
al.146 

Shanghai, 
China 

Modelling 1.02 Liu et al.147 

Reading, UK Monitoring 3 Cameron et 
al.148 

Madrid, 
Spain  

Monitoring 2.7 Jesus et al.149 

Hong-Kong Monitoring  1.19 Lee and 
Jim150 

Rio de 
Janeiro, 
Brazil  

Modelling  1.16 Feitosa and 
Wilkinson151 

Zürich, 
Switzerland 

Modelling  0.1 Li et al.152 

Prague, 
Czech 

Republic 

Monitoring 
& 

modelling 

2 Geletič et 
al.153 

Ljubljana, 
Slovenia 

Remote 
Sensing 

18.9 Šuklje et 
al.154 

Tyrol, 
Austria 

Monitoring 8.7 Medl et al.155 

Sydney, 
Australia 

Monitoring 7.7 Feitosa and 
Wilkinson156 

Bari,Valenza
no, Italy 

Monitoring 7 Blanco et 
al.157 

Pertth, 
Western 
Australia 

Monitoring 8.1 Bakhshoodeh 
et al.158 

Quito, 
Ecuador 

Modelling  1.43 Davis et al.159 

London 
Olympic 

Park 

Monitoring 1.5 Hosseinzadeh 
et al.160 
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La Rochelle, 
France 

Modelling  1.9 Djedjig et 
al.161 

Chennai, 
India 

Modelling  1.2 Pragati et 
al.162 

Guangzhou, 
China 

Monitoring 8 Lin et al.163 

United States Monitoring 4.3 Price et al.164 

Hong Kong Monitoring 1.2 Lee and Jim 

165 

Munich, 
Germany 

Modelling 3.5 Lin et al.166 

Chenzhou, 
Hunan, 
China 

Modelling 2.56 Li et al.167 

Roof 
garden 

Nanjing, 
China 

Monitoring 1 Peng et al.168 

 Xinxiang, 
Henan, 
China 

Monitoring 1 Shen 169 

Duhok, Iraq Monitoring 3 AbdulBaqi 170 

Seoul, South 
Korea 

Modelling 0.3 Kim et al.171 

Hong Kong Monitoring 1.8 Lee and Jim 

172 

Singapore Monitoring 17.7 Tan et al.173 

Singapore Remote 
Sensing 

10 Tan et al.174 

Pergola 

Nagoya, 
Japan 

Remote 
Sensing 

16.2 Watanabe et 
al.175 

Arta, Greece Monitoring 
& 

Modelling 

1.3 Katsoulas et 
al.176 

Lleida, Spain Monitoring 3.1 Chafer et 
al.177 
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Suwon, 
Republic of 

Korea 

Monitoring 0.2 Kong et al.178 

Vienna, 
Austria 

Monitoring 
& 

Modelling 

4 Teichmann et 
al.179 

Hybrid GI  

Permeable 
paving 

Vertemate 
con 

Minoprio, 
CO, Italy 

Monitoring 2.8 Fini et al.180 

Perugia, Italy Monitoring 9.2 Kousis et 
al.181 

Zhouzhi 
County, 
Xi'An, 

Shaanxi, 
China 

Monitoring 6 Lu et al.182 

Rome, Italy Modelling 0.6 Moretti et 
al.183 

Guangzhou, 
China 

Monitoring 1 Wang et al.184 

Changping 
China 

Monitoring 0.19 Wang et al.185 

Attenuatio
n pond 

Guangzhou, 
China 

Monitoring 7 Yang et al.186 

Rain 
garden 

Yau Tsim 
Mong 

district, 
Hong Kong 

Modelling 1.3 An et al.187 

Tucson, 
Arizona 

Monitoring 5.2 Buzzard et 
al.188 

Gdansk, 
Poland 

Monitoring 7 Kasprzyk et 
al.189 

Waterbodi
es 

 Wetland 

Zoige 
Plateau, 
China 

Monitoring 2 Bai et al.190 

Beijing, 
China 

Remote 
Sensing 

7.83 Cai et al.191 
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Vienna, 
Austria 

Monitoring 3.4 Pucher et 
al.192 

Avondale, 
Arizona 

Remote 
Sensing 

12 Ruiz-Aviles 
et al.193 

 Dhaka, 
Bangladesh, 

Anatolia 

Modelling 3 Shahjahan et 
al.194 

Central 
Anatolia, 
Turkey 

Remote 
Sensing 

4.38 Şimşek and 
Ödül195 

Beijing, 
China 

Monitoring 3.15 Sun et al.196 

Eastern 
Germany 

Modelling 1.6 Sušnik et 
al.197 

Palembang 
City, 

Indonesia 

Monitoring 1.2 Triyuly et 
al.198 

 Chengdu, 
China 

Monitoring 4.08 Wu et al.199 

Wuhan, 
China 

Monitoring 4.8 Xu et al.200 

Hangzhou, 
China 

Remote 
Sensing 

9.27 Zhang et 
al.201 

Northeast 
China  

Remote 
Sensing 

8.15 Wenguang et 
al.202 

Prairie 
Pothole 
Region, 
North 

America 

Remote 
Sensing 

3 Zhang et 
al.203 

Beijing, 
China 

Remote 
Sensing 

2.6 Sun et al.204 

Lake 

Hue Citadel, 
Hue City, 
Vietnam 

Remote 
Sensing 

2.82 Le Phuc et 
al.205 

Altenberge, 
Germany 

Modelling 0.8 Theeuwes et 
al.206 
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Wuhan, 
China 

Monitoring 4.2 Xu et al.207 

Daming lake, 
Jinan, China 

Monitoring 1.9 Yang et al.208 

Reservoir 

São José do 
Rio Preto, 

Brazil 

Monitoring 5 Masiero and 
de Souza209 

Northern, 
Spain 

Monitoring 2 Novo et al.210 

Santander, 
Spain 

Monitoring 1.82 Novo et 
al.2111 

Sea  

 Athens, 
Greece 

Monitoring 
& 

Modelling 

1.7 Dandou et 
al.212 

Sendai, 
Japan 

Monitoring 1.3 Zhou et al.213 

Adelaide, 
Australia 

Monitoring 0.9 Zhou et al.214 

South 
Australia 

Monitoring 2 Zhou et al.215 

Wuhan, 
China 

Modelling 0.4 Zhu et al.216 

Other non-
sealed 

urban area 
 Woodland 

Guildford, 
UK 

Monitoring 5.7 Sahani et 
al.217 

Hong Kong 
Golf Course 

Monitoring 1.43 Fung and 
Jim218 

Hong Kong 
Golf Course 

Monitoring 4.2 Fung and 
Jim219 

Ejina basin  Monitoring 
& 

Modelling 

1.28 Yonghong et 
al.220 

Baoji 
Botanical 
Garden 

Monitoring 2.7 Chang and 
Li221 

Beijing, 
China 

Monitoring 1.32 Liu et al.222 
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Xi’an, China Remote 
Sensing 

4.32 Ma et al.223 

Hong Kong Monitoring 2.9 Fung and 
Jim224 

Grass 
(other) 

Sydney, 
Australia 

Monitoring 2.94 Adams and 
Smith225 

Shrubland 
(other) 

Howard 
Valley, 

South Island, 
New Zealand 

Monitoring 3 Callard et 
al.226 

Mixed  
(Green-
Blue) 

 
Mixed  
(Green-
Blue) 

Olympic 
Forest Park, 

Beijing, 
China 

Monitoring 0.4 Amani-Beni 
et al.227 

Beijing, 
China 

Remote 
Sensing 

1.32 Liu et al.228 

Nagpur, 
Maharashtra 

Remote 
Sensing 

3.6 Jain et al.229 

Igapó Lak, 
Latin 

American 
city 

Monitoring 2.63 Targino et 
al.230 

Beijing, 
China 

Monitoring 
& 

Modelling 

0.4 Cheung and 
Jim231 

Olympic 
Area, 

Beijing, 
China 

Remote 
Sensing 

4.95 Dai et al.232 
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Table S7. The average performance of different types of GBGI categories, which were 328 
evaluated using in-situ, modelling, in-situ combined modelling, and remote sensing 329 
techniques for heat risk adaptation and mitigations. The '-' symbol indicates 'no data 330 
available'. 331 

GBGI GBGI 
Category 

Monit
oring 
∆T 
(oC) 

Modellin
g ∆T (oC) 

RS  
∆T 
(oC) 

MM 
∆T (oC) 

Overall 
∆T (oC) 

Availabili
ty  

Gardens 

Balcony 2.0 6.1  -  - 4.06 Medium  

Private 
garden 

2.3  -  -  - 2.30 Very low  

Irrigating 
backyard 

 - 2.7 3.7  - 3.20 Very low  

Parks Pocket Park 1.4 2.9 4.1 0.28 2.16 Medium  

Park 
3.0 0.8  - 2.38 2.07 Very 

High 

Botanical 
garden 

5.6  -  - 2.2 3.90 Low  

Amenity 
areas 

Sports field  -  -  - 3.1 3.10 Very low  

Playground 3.0  - 2.8  - 2.90 Very low  

Golf course  -  - 5.0  - 5.00 Very low  

Shared open 
space  

 - 2.1  -  - 2.10 Very low  

Other public 
space 

Cemetery 1.7  -  -  - 1.70 Very low  

Allotment  -  - 4.0  - 4.00 Very low  

City farm 3.9 3.0  -  - 3.45 Very low  

Adopted 
public space 

 - 2.3  - 3 2.63 Very low  

Linear GI 
features/ 
routes 

Street tree 
2.8 4.3 7.6 1.45 4.05 Very 

High 

Road verge 2.1 2.0  - 0.05 1.39 Low  
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Riparian 
woodland 

2.1  - 5.4  - 3.76 Low  

Hedge  - 2.9 7.0 1.29 3.73 Low  

Constructed 
GI on 
infrastructure 

Green roof 3.9 0.5 0.9 0.4 1.43 Very 
High 

Green wall 4.7 1.5 12.6 2 5.21 Very 
High 

Roof garden 2.1 0.3 7.1  - 3.13 Medium  

Pergola 1.7  - 18.2 2.65 7.50 Low  

Hybrid GI 
(for water) 

Permeable 
paving 

3.8 0.6  -  - 2.22 Low  

Attenuation 
pond 

7.0  -  -  - 7.00 Very low  

Rain garden 6.1 1.3  -  - 3.70 Very low  

Waterbodies Wetland 3.1 2.3 6.7  - 4.05 High  

Lake 3.1 0.8 2.8  - 2.22 Low  

Reservoir 2.9  -  -  - 2.94 Very low  

Sea (incl. 
coast) 

1.4 0.4  - 1.7 1.17 Low  

Other non-
sealed urban 
areas 

Woodland 
(other) 

3.1  - 4.3 1.28 2.89 Medium  

Grass (other) 2.9  -  -  - 2.94 Very low  

Shrubland 
(other) 

3.0  -  -  - 3.00 Very low  

Mixed 
(Green-Blue) 

Mixed 
(Green-Blue) 

1.5  - 3.3 0.4 1.74 Low  

  332 
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Table S8. The projected influence of future climate change on the choice of GBGI in various 333 
climate zones. 334 

Climate 
zone 

Previous/Cur
rent climate 

Future 
climate 

Present GBGI Future GBGI 

Continent Dfa Dfb Street trees 
Permeable 
paving 

Wetland 

Dfb   BSk Botanical garden Green wall 
Street trees 

Dry BSk BSh Balcony Green wall, street trees  

BSk BWk  Wetland Woodland 

Temperate 
(Europe) 

Cfb Cfa  Green roofs, 
Green walls, 
Woodland 
Reservoir 
City farm 
Riparian 
woodland 

Parks 
Pocket parks  
Green walls 
Green roofs 
Lakes 
Grass  

Dfb Cfa Green roof 
Balcony  
Road verge 
Playground  
 

Parks 
Pocket parks  
Green walls 
Green roofs 
Lakes 
Grass  

Temperate           
(China) 

Cwa Am Park 
Green wall  
Green roof 
Rain garden  

Lakes 
Road verge  

Dwa Cwa Woodland 
Lake 
Green roof 
Road verge 
Pergola 
Roof garden 

Green roof 
Adopted space 
wetland   

 335 
 336 
 337 
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Table 9. Summary of key stages and action points for implementing, replicating, and 338 

upscaling GBGI to mitigate urban heat.  339 

Stages Action points  

Stakeholder 

engagementa 

● Engage stakeholders early on, and from various sectors such as 

urban planning, public health, environmental agencies, and 

community organisations to identify and frame the heat risk 

problem and understand their concerns and priorities. 

● Foster collaboration and participatory decision-making processes to 

ensure diverse perspectives are considered. 

● Conduct workshops, interviews, and surveys to gather input and 

feedback from stakeholders. 

● Involve residents, local businesses, and community groups to 

increase awareness and support.  

Feasibility 

study of  

GBGIb 

● Conduct a preliminary cost-benefit analysis to assess the feasibility 

and potential effectiveness of different GBGI measures. 

● Consider factors such as implementation costs, maintenance 

requirements, technical feasibility, and expected benefits in terms of 

heat reduction and other co-benefits. 

● Identify suitable locations for implementation based on the analysis 

of UHI intensity and vulnerability maps/zones. 

● Explore funding options and potential partnerships to support 

implementation.  

Assess co-

benefits and 

dis-benefits 

of the 

GBGIc 

● Consider the multiple co-benefits associated with GBGI, such as 

improved air quality, reduced stormwater runoff, enhanced 

biodiversity, and increased recreational opportunities. 

● Assess potential dis-benefits, such as increased maintenance 

requirements, potential conflicts with existing infrastructure, 

allergic reactions, and displacement of vulnerable populations due 

to gentrification. 

● Conduct a comprehensive cost-benefit analysis to evaluate the 
overall value and trade-offs of implementing GBGI.  
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Design 

GBGI 

measuresd  

● Select suitable GBGI measures based on the local context, including 

the climate, topography, available space, and community 

preferences. 

● Incorporate GBGI elements such as trees, green roofs, green walls, 

and permeable surfaces to maximise shade, evapotranspiration, and 

cooling effects. 

● Consider the use of native and drought-tolerant plant species for 

long-term sustainability and reduced water demand. 

● Ensure proper placement and spacing of vegetation to optimise 

shading and air movement. 

Policy and 

planninge 

● Integrate GBGI strategies into urban planning and policy 

frameworks, such as comprehensive plans, zoning ordinances, and 

building codes. 

● Develop heat mitigation plans that prioritise the implementation of 

GBGI measures in high-risk areas. 

● Provide incentives, regulations, and guidelines to encourage the 

adoption of GBGI in private and public developments. 

● Collaborate with relevant organisations to ensure coordination and 

alignment of policies, goals, and levelling up of sustainability 

agenda (e.g., SDGs, European Green Deal, Paris Climate 

Agreement).  

Implementat

ionf 

● Establish partnerships and collaborations between governmental 

agencies, private sector organisations, and community groups for 

effective implementation. 

● Allocate sufficient resources, including funding, staff, and technical 

expertise, for the installation and maintenance of the selected GBGI 

measures. 

● Ensure proper construction practices and quality control to 

maximise the performance and longevity of implemented measures. 

● Incorporate community engagement and education programs to 

foster stewardship and long-term support for the solutions in place.  
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Monitoringg ● Utilise relevant or a combination of in-situ measurements, remote 

sensing, and modelling methods to monitor the performance and 

effectiveness of GBGI used against heatwaves. 

● Deploy and use weather stations, sensors, and satellite imagery to 

evaluate the efficacy of the GBGI measures.  

● Collect data on temperature, humidity, air quality, and vegetation 

health to evaluate the impact of implemented measures.  

● Employ modelling tools to simulate the cooling effects and assess 

potential future scenarios. 

Evaluationh ● Conduct a comprehensive evaluation of the implemented GBGI 

measures to assess their effectiveness and cost-effectiveness. 

● Compare the heat risk before and after implementation using 

temperature data, health indicators, and energy consumption. 

● Analyse the economic, social, and environmental benefits achieved 

through the implementation of GBGI. 

● Incorporate feedback from stakeholders and learn from the 

implementation process to inform future improvements. 

Upscaling 

and 

replicationi 

● Develop strategies for upscaling and replicating successful GBGI 

measures in different neighbourhoods and cities. 

● Share successful case studies and best practices to encourage 

replication in other areas and facilitate upscaling of GBGI measures. 

● Adapt the GBGI approach to suit local contexts, considering factors 

like climate, social dynamics, and available resources. 

● Develop training programs and capacity-building initiatives to 

support the replication and upscaling of GBGI measures.  

● Foster knowledge exchange among cities and regions. 
aSherman and Ford233; O'Brien et al.234; bCoutts et al.235; cCurt et al.236; Ommer et al.237; dDumitru et 340 
al.238; Kumar et al.239; eDavies et al.240; eEuropean Green Deal241; fDi Pirro et al.242; Topal et al.243; 341 
gAugusto et al.244; hFrantzeskaki245; iCortinovis et al.246. 342 
 343 
 344 
 345 
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