The Innovation, Volume 5

Supplemental Information

Urban heat mitigation by green and blue infrastructure: Drivers, effec-

tiveness, and future needs

Prashant Kumar, Sisay E. Debele, Soheila Khalili, Christos H. Halios, Jeetendra Sahani, Nasrin Aghamohammadi, Maria de Fatima Andrade, Maria Athanassiadou, Kamaldeep Bhui, Nerea Calvillo, Shi-Jie Cao, Frederic Coulon, Jill L. Edmondson, David Fletcher, Edmilson Dias de Freitas, Hai Guo, Matthew C. Hort, Madhusudan Katti, Thomas Rodding Kjeldsen, Steffen Lehmann, Giuliano Maselli Locosselli, Shelagh K. Malham, Lidia Morawska, Rajan Parajuli, Christopher D.F. Rogers, Runming Yao, Fang Wang, Jannis Wenk, and Laurence Jones

1 2	Supplementary Information (SI)
3	for
4	Urban heat mitigation by green and blue infrastructure: a review of drivers,
5	effectiveness, and future needs
6	Prashant Kumar ^{1,2,10,*} , Sisay Debele ¹ , Soheila Khalili ¹ , Christos H. Halios ³ , Jeetendra
7	Sahani ¹ , Nasrin Aghamohammadi ^{4,5} , Maria de Fatima Andrade ⁶ , Maria Athanassiadou ⁷ ,
8	Kamaldeep Bhui ⁸ , Nerea Calvillo ⁹ , Shi-Jie Cao ^{1,10} , Frederic Coulon ¹¹ , Jill L. Edmondson ¹² ,
9	David Fletcher ¹³ , Edmilson Dias de Freitas ⁶ , Hai Guo ¹⁴ , Matthew C Hort ⁷ , Madhusudan
10	Katti ¹⁵ , Thomas Rodding Kjeldsen ¹⁶ , Steffen Lehmann ¹⁷ , Giuliano Maselli Locosselli ¹⁸ ,
11	Shelagh K Malham ¹⁹ , Lidia Morawska ^{1,20} , Rajan Parajuli ²¹ , , Christopher DF Rogers ²² ,
12	Runming Yao ^{3,23} , Fang Wang ^{24,25} , Jannis Wenk ¹⁶ , Laurence Jones ^{13,26}
13	¹ Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and
14	Environmental Engineering, Faculty of Engineering and Physical Sciences, University of
15	Surrey, Guildford GU2 7XH, United Kingdom
16	² Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, United
17	Kingdom
18	³ School of Built Environment, University of Reading, Shinfield Rd, Whiteknights Rd, Reading
19	RG6 6BU, United Kingdom
20	⁴ School Design and the Built Environment, Curtin University Sustainability Policy Institute,
21	Kent St, Bentley, 6102, Western Australia
22	⁵ Harry Butler Institute, Murdoch University, Murdoch, 6150 Western Australia
23	⁶ Atmospheric Sciences Department, Institute of Astronomy, Geophysics and Atmospheric
24	Sciences, University of Sao Paulo, 05508-090, Sao Paulo, Brazil

25	⁷ Met Office, FitzRoy Road, Exeter, EX1 3PB, United Kingdom
26	⁸ Department of Psychiatry and Nuffield Department of Primary Care Health Sciences,
27	Wadham College, University of Oxford, Oxford, United Kingdom
28	⁹ Centre for Interdisciplinary Methodologies, University of Warwick, United Kingdom
29	¹⁰ School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China
30	¹¹ Cranfield University, School of Water, Environment and Energy, Cranfield, MK43 0AL,
31	United Kingdom
32	¹² Plants, Photosynthesis, Soil Cluster, School of Biosciences, University of Sheffield,
33	Sheffield S10 2TN, United Kingdom
34	¹³ UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor
35	LL57 2UW, United Kingdom
36	¹⁴ Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong
37	Polytechnic University, Hong Kong, China
38	¹⁵ Department of Forestry and Environmental Resources, Faculty Excellence Program for
39	Leadership in Public Science, North Carolina State University, Chancellor', Raleigh, NC,
40	27695, USA
41	¹⁶ Departments of Architecture & Civil Engineering, and Chemical Engineering, University of
42	Bath, Bath BA2 7AY, United Kingdom
43	¹⁷ School of Architecture, University of Nevada, Las Vegas, NV 89154, USA
44	¹⁸ Department of Tropical Ecosystems Functioning, Center of Nuclear Energy in Agriculture,
45	University of São Paulo, Piracicaba, 13416-000, Sao Paulo, Brazil
46	¹⁹ School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5 AB, United
47	Kingdom

48	²⁰ International Laboratory for Air Quality and Health, Science and Engineering Faculty,
49	Queensland University of Science and Technology, Queensland, Australia
50	²¹ Department of Forestry and Environmental Resources, North Carolina State University,
51	Raleigh NC 27695, USA
52	²² Department of Civil Engineering, School of Engineering, University of Birmingham,
53	Edgbaston, Birmingham B15 2TT, United Kingdom
54	²³ Joint International Research Laboratory of Green Buildings and Built Environments,
55	School of the Civil Engineering, Chongqing University, China
56	²⁴ State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese
57	Academy of Sciences, Nanjing 210008, China
58	²⁵ University of Chinese Academy of Sciences, Beijing 100049, China
59	²⁶ Liverpool Hope University, Department of Geography and Environmental Science, Hope
60	Park, Liverpool L16 9JD, United Kingdom
61	
62	This document includes:
63	Sections S1-S2
64	Figures S1-S7.
65	Tables S1-S9
66	S1 Methodology
67	We screened studies based on the following criterio: (a) addressing urban beat
07	we screened studies based on the following criteria. (a) addressing urban heat
68	mitigation using one or more GBGI types, (b) clear identification of at least one GBGI sub-
69	category under investigation (c) a clear link between the primary GBGI category and heat
00	category under investigation, (c) a creat mix between the primary of or category and near

71 accessibility of full-text articles from the databases for further review and data extraction.

After removing duplicates, 25,974 publications that didn't meet these criteria were 72 73 eliminated, leaving 1,512 publications for further screening (Figure 2b). We retrieved and assessed the full text of each paper for eligibility (Figure 2c). Articles not meeting inclusion 74 75 criteria, such as those mainly focusing on heat causes and impacts, methodological aspects of 76 heat mitigation without a direct GBGI connection, or discussions limited to general green and 77 blue spaces without specific GBGI details and cooling effectiveness, were excluded. After 78 this additional screening, 1,250 more papers were discarded, resulting in 262 publications for final review. Out of these, 60 more publications were excluded due to insufficient 79 performance reporting or a failure to mention the GBGI used. In the end, 202 publications 80 (1.8% of the originally identified 27,486 publications) were chosen for meta-analysis and 81 82 further consideration in this review (Figure 2d, e). First we cataloged data from the selected studies, extracting information from 202 of them, including (1) the study's location (site, city, 83 84 country, and region), (2) the specific type of GBGI, (3) the nature of the study (monitoring, modeling, remote sensing, or a combination), (4) whether single or multiple GBGIs were 85 86 studied, (5) qualitative or quantitative data on co-benefits, air temperature, land surface 87 temperature (LST) reduction (in °C), and day or night air temperature reduction (in °C), (6) 88 any identified knowledge gaps, and (7) key findings. We developed a data form to capture 89 this essential information from the selected studies (Table S1). This information was used to 90 address key objectives, including when and where previous articles were published, the types 91 of GBGIs used for urban heat mitigation, and the nature of co-benefits and maximum 92 temperature reductions reported. Following this, we analysed and synthesised the data from 93 selected studies to address the specific review objectives. The information on the benefits of various GBGI subcategories was examined using descriptive statistics with R-project 94 95 software. To create an evaluation framework for GBGI types and their services in addressing

96 heat-related challenges and associated co-benefits, we used a min-max normalization 97 approach, scaling the data from 1 (none) to 6 (very high) (see Table 2). This standardized 98 method was then applied to the relevant publications within each GBGI category. Out of the 99 202 publications, 64.7% primarily focused on heat mitigation as their main ecosystem 100 service, while the remaining 35.3% discussed co-benefits alongside direct heat mitigation 101 benefits.

102 The review proceeds with a summary of how GBGI mitigates heat stress, followed by 103 mapping study origins, exploring GBGI interventions, and presenting evidence of their 104 cooling advantages and co/dis-benefits. It also provides a conceptual framework for GBGI 105 implementation and addresses existing knowledge gaps. The review concludes with major 106 findings and recommendations for effective GBGI implementation to mitigate urban heat.

Five additional co-benefits are identified, including enhanced recreational opportunities and
 improvements in air/water quality.

109

S1.1

GBGI classification, scope, and outline

110 The conceptualisation and classification of GBGI types can differ due to varying 111 interpretations from country to country, contingent on research contexts and the primary 112 objective of studies. Sustainability objectives are selectively applied within different GBGI development frameworks, leading to a plethora of definitions and interpretations.¹ These 113 variations depend on whether GBGI is applied to ecological resources² or includes natural 114 green spaces, or is confined to highly altered landscapes intended for public benefit.³ 115 116 Consequently, it becomes challenging to specifically distinguish between green and grey 117 infrastructure, such as cycle paths passing through green areas that provide additional 118 recreational benefits. Often, scientists categorise non-ecological resources as GBGI, for 119 example, permeable pavements, rainwater barrels, and rain gardens. For this review, we

adopt the GBGI classification presented by Jones et al.⁴ and expand it further by introducing 120 121 two new categories, mixed (blue-green) and backyard irrigation,⁵⁻⁷ giving a total of 51 GBGI types. This classification uses a green-blue-grey continuum to cover natural green or blue, 122 123 engineered green, blue, or hybrid (green-blue-grey) combinations. The typology was 124 designed to flexibly incorporate all GBGI types within a typical urban environment. Within 125 the scope of this review, we examined 51 GBGI types grouped under 10 broad categories: 126 gardens, parks, amenity areas, linear features/routes, constructed GI on infrastructure, hybrid 127 GI (for water), water bodies, other non-sealed urban areas, other public spaces, and mixed – 128 (green-blue).

129 The task of examining and integrating the diverse benefits of GBGIs was challenging due to 130 their complex interactions and discipline-specific applications. For instance, public health is 131 directly or indirectly tied to almost all evaluated benefits, encompassing psychological, social, and economic aspects.⁸ Therefore, this study focuses on the direct GBGI cooling 132 133 benefits (heat mitigation), whilst indirect benefits such as management of other natural 134 hazards (floods, droughts), the creation of new infrastructure (such as interconnected green infrastructure corridors to support active travel; Rogers and Hunt⁹) or associated social costs 135 136 avoided by using specific GBGI types are considered as a secondary objective. In the course 137 of this review, five more co-benefits were identified: (1) enhanced recreational opportunities, (2) ambient noise reduction, (3) flood and drought risk mitigation, (4) improvements in 138 air/water quality, and (5) biodiversity (Section 3.3.2). Detailed GBGI design and 139 140 implementation principles, along with global GBGI challenges, have been covered in earlier reviews (Table 1) and therefore were beyond the scope of this paper. 141

142 The review commences with a concise summary of how GBGI mitigates heat stress (Section 143 3), followed by a spatial and temporal mapping of study origins, an exploration of various GBGI interventions, and a presentation of quantitative evidence supporting the direct cooling 144 145 advantages and other co/dis-benefits (Section 4). Section 5 provides a nine-stage conceptual 146 framework for GBGI implementation for heat mitigation based on the qualitative analysis of 147 the reviewed literature and discusses practical recommendations for the design, 148 implementation, monitoring, evaluation, and upscaling of GBGI to mitigate heat risks. 149 Section 6 highlights the existing knowledge gaps. The review culminates with major conclusions and lays out a series of recommendations for the effective implementation of 150 151 GBGI to mitigate urban heat (Section 7).

152 S1.2 Search and selection of relevant studies

153 The goal of this review was to offer an in-depth assessment review and analysis of 154 GBGI's functions and benefits concerning urban cooling, as well as their potential co-benefits 155 and drawbacks. This approach led to an expansion of the scope beyond that of previous 156 reviews covered, enables us to uncover overlooked geographical patterns and examine the 157 temporal trends in the origin of studies, and knowledge voids in the existing literature. PRISMA methodology was adopted for this systematic review.¹⁰ Figure 1 provides a 158 flowchart depicting our search and evaluation methodology, including its resultant findings. 159 160 Our literature search consisted of five stages:

161 (1) Development of search terms: To identify a comprehensive range of studies related to 162 urban heat mitigation, relevant search terms were determined based on research gaps, 163 objectives, and predetermined categories and subcategories within the GBGI framework. This 164 approach ensures the inclusion of a diverse set of studies that are pertinent to the field of heat mitigation. A range of relevant search terms based on keywords for urban heat mitigation was
identified based on research gaps, objectives, and predetermined GBGI categories and
subcategories to allow the identification of a wide range of studies relevant to heat mitigation.
Search term combinations of GBGI type and heat are listed in Supplementary Information
(SI) Table S1.

170 (2) Search and identification of relevant studies: A peer-reviewed literature search was 171 conducted via Boolean search term combinations (Table S1) utilising Web of Science (WoS), 172 as the most comprehensive database with the ability to handle complex keyword searches. 173 Studies published between 2010 and 2023 were included. The chosen timeframe was 174 specifically selected to effectively manage the substantial number of search results, 175 preventing an overwhelming amount of hits. Moreover, this time frame enables a more 176 comprehensive examination, particularly in relation to the GBGI, which gained increased 177 recognition as "nature-based solution" after the year 2010. Cross-checks were performed 178 using other databases such as Science Direct, Scopus, and Google Scholar to verify that no 179 relevant studies were missed from the analysis. To ensure inclusivity, we used the same 180 keywords as in WoS (Table S1) when searching on Google Scholar. We reviewed multiple 181 pages of search results initially, but the relevance of studies decreased as we continued. 182 Therefore, we concluded the search after examining the first 20 pages. Finally, we compared 183 the results with papers from WoS and included any relevant publications that were missed in 184 our analysis. After excluding articles not written in English, the search terms yielded a total 185 of 27,486 publications, including review and research papers (Figure 2a).

(3) Selection of studies: The identified studies were screened against the following criteria:
(a) addresses mitigation and/or adaptation to urban heat using one or several types of GBGI,

188 (b) distinctly identifies at least one GBGI sub-category under investigation, (c) the main 189 GBGI category is clearly linked with heat mitigation performance, including actual or 190 percentage temperature reduction, and any associated co-benefits, (d) the full texts were 191 accessible from the databases for further review and data extractions. After removing 192 duplicates, the remaining articles were reviewed and 25,974 publications that did not meet 193 inclusion criteria were removed, leaving 1512 publications for further screening (Figure 2b). 194 The full text of each paper was retrieved and assessed for eligibility (Figure 2c). Any articles 195 not meeting the inclusion criteria, like those majorly focusing on causes and impacts of heat, 196 methodological aspects of heat mitigation benefits without a direct tie to GBGI categories 197 and temperature reductions or discussions confined to general green and blue spaces or green 198 corridors without specific descriptions of GBGI types and cooling efficacy, were excluded. After this further screening, an additional 1250 papers were discarded, leaving 262 199 200 publications for final screening. Out of these, 60 more publications were excluded due to 201 non-reporting of performances or failure to mention the utilised GBGI. Eventually, a set of 202 202 publications (1.8% of the originally identified 27,486 publications) was chosen for meta-203 analysis and subsequent deliberation in this review (Figure 2d, e).

204 (4) Cataloguing the data: Relevant data (e.g., location, type of GBGI, co-and dis-benefits, 205 and knowledge gaps; Section 2.3) were extracted from the selected studies. The following 206 data were extracted from the selected 202 studies: (1) the location of the GBGI study 207 including the site, city, country, and region, (2) the specific type of GBGI, (3) the nature of 208 the study, whether it was monitoring, modelling, remote sensing, or a combination of these, 209 (4) either single or multiple GBGI, (5) qualitative or quantitative information on co-benefits, 210 air temperature and land surface temperature (LST) reduction (in °C), and a day or night time 211 air temperature reduction (in °C), (6) any identified knowledge gaps, and (7) key findings.

This process involved developing a data form to capture key information from the selected studies (Table S1). This extracted information was used to address the key objectives including when and where previous articles were published, the types of GBGI they utilised as mitigation measures for urban heat and the nature of co-benefits and maximum temperature reductions they reported.

217 (5) Collating, summarising, and reporting the results: The data obtained from the selected 218 studies were analysed and synthesised in a way that addressed the specific questions raised as 219 a part of the review objectives (Section 1). The extracted information on the (co-)benefits of 220 various subcategories of GBGI was analysed using descriptive statistics using R-project software.¹¹ To develop an evaluation framework for GBGI types and the services offered to 221 222 tackle heat-related challenges and their associated co-benefits, we adopted a min-max normalisation approach.¹² This approach, also referred to as feature scaling, included a linear 223 transformation of the original data on a scale ranging from 1 (none) to 6 (very high) (see 224 225 Table 2). Subsequently, this standardised methodology was applied to the pertinent 226 publications within each GBGI category. Of the 202 publications, 64.7% discussed heat mitigation as their main ecosystem service. The remaining 35.3% discussed the co-benefits 227 228 alongside the direct heat mitigation benefits (Section 3).

229

S2

Mechanisms of temperature and heat stress regulation by GBGI

230 S2.1 Mechanisms of temperature and heat stress regulation by green infrastructure

The mechanisms by which GI such as street trees, parks, green roofs, and green walls reduce heat are multifaceted and interconnected. Trees and plants help in the reduction of heat by providing shade and reducing the amount of direct sunlight reaching the ground, therefore lowering surface temperatures and mitigating the urban heat island (UHI) effect via creating a cooler microclimate.¹³⁻¹⁵ Additionally, during evapotranspiration plants release 236 moisture which further cools the surrounding air by converting sensible heat into latent heat.¹⁶ Parks can act as natural air conditioners through several mechanisms,¹⁷⁻¹⁹ including the 237 formation of microscale centripetal thermal system (park-breeze) that generate low-level 238 239 advection currents which draw air from cooler green towards warmer urban areas.²⁰ Other GI 240 elements such as green roofs, green walls, and roof gardens provide insulation, reduce heat 241 absorption by buildings, and promote evaporative cooling (heat absorption, as water changes from liquid to a gas state in the air stream.²¹⁻²⁴ Vegetation also contributes to the dissipation 242 of heat by acting as windbreaks, modifying airflow patterns, and facilitating natural 243 244 ventilation.

245 S2.2 Mechanisms of temperature and heat stress regulation by blue infrastructure

246 Blue infrastructure (BI), in the form of water-based natural or constructed features including ponds and wetlands, actively mitigates heat effects by cooling the surrounding 247 environment.²⁰ This is achieved through processes such as evapotranspiration, shading, the 248 albedo effect, groundwater recharge, and temperature buffering.^{25,26} BI can provide cooling 249 250 during the day (acts as a heat sink by absorbing and storing heat from the surrounding 251 environment) whereas it may lead to warming at night (re-releasing the heat due to water's higher heat capacity compared to the land surface).²⁷ Evaporation from water bodies also 252 253 helps cool the air, creating a microclimate with lower temperatures and thereby helping to mitigate the UHI effect.²⁸ Larger urban water bodies can also generate cool breezes that 254 255 further lower the ambient temperature and provide relief during hot weather through evaporative cooling.²⁰ Furthermore, surfaces of blue infrastructure are often highly reflective, 256 257 especially under calm conditions, thereby increasing surface reflectivity which, in turn, contributes to the reduction of heat absorption,²⁹ thus helping to mitigate heat build-up and 258 259 contributing to the cooling of the surrounding area. Some of the blue infrastructure such as

wetlands, ponds/lakes, swales, and rain gardens also act as natural sponges, storing water and releasing it during high air temperatures, thereby moderating temperatures in the vicinity by increasing water availability for evaporation through groundwater recharge.³⁰

263

265 Figure S1. Flowchart of the inclusion and exclusion criteria (e.g. article identification,

- 269 Figure S2. Köppen-Geiger climate classification: the main climate region (A-D) and detailed
- 270 climate conditions (right column) where GBGs are implemented.

271

Figure S3. (a) The number of publications exhibiting a significant linear increase over time, with the linear trend (R^2 =0.69; p=0.00043) providing the best fit among the various trends (exponential, linear, polynomial, power functions) analysed. Our search in 2023 was limited to the month of 30 March 2023, and the trend line did not incorporate the 2023 data as it did not cover the entire year. (b) The number of publications in each of the 10 main GBGI categories. The number of publications covering all the GBGI sub-categories is shown in Figure 1a.

279

Figure S4. Relevant publications on the benefits of GBGI for heat adaptation and mitigation evidence gathered from the literature: (a) number of publications covering the main categories and sub-categories and (b) number of publications covering the main category (shown by the bold coloured text). The percentage values are printed on the top of each bar.

Figure S5. The effectiveness of the main and sub-GBGI categories implemented in tropical (n = 16), dry (n = 15), temperate (n = 137), and continental (n = 34) climate zones of Köppen-Geiger climate classification.

Figure S6. The density of GBGI cooling efficiency in different climate zones and against
population density, area of the city, altitude, ratio: area of GBGI/area of the city, and
temporal scale of cooling.

Figure S7. Night-time temperature reduction efficiency of GBGI sub-categories: (a) a 293 294 summary of the overall performance of different GBGI types from all studies, (b) heatmap 295 showing GBGI performances from for different methods and the average values, and (c) 296 overall average of GBGI efficiency for urban heat mitigation. The 'Average' and 'Average*' 297 values represent the average of all study types with and without RS data, respectively. M&M 298 denotes combined monitoring and modelling studies. The colour gradient represents the performance, with grey cells representing studies that did not consider either monitoring, 299 300 modelling, M&M, or RS. The figure uses a boxplot representation with the median indicated 301 by a thick vertical black line, the mean represented by blue dots, and the upper and lower 302 quartiles indicated by the box boundaries. The circle with a vertical line represents the GBGI 303 categories with only one publication.

Table S1. The table below serves as a sample for organising the datasets obtained from thereviewed papers for each of the 51 sub-categories.

Paper Title	Source	Online Link	Study type (modelling, monitoring)	Location (City, Country)	Co- benefits	Multiple GBGIs	ΔΤ	Day- time ∆T °C	Night- time ∆T °C	Unit	Gap	Dis- benefits	Summary
Evaluating the vertical cooling performances of urban vegetation scenarios in a residential environment	Journal of Building Engineeri ng	<u>https://doi .org/10.10 16/j.jobe.2 021.10231 3</u>	Modelling	Changsha, Hunan Province, China ()27°51'- 28°40' N, 111°53'- 114°5'E	-	grass, shrubs, trees	0.49 °C	-	-	oC		-	The results of the study show that shadowing can directly affect the cooling effect of vegetation. The cooling effect of vegetation types that provide a large area of shadowing is better, and the green coverage rate cannot directly reflect the shadowing situation of the regional environment.
What's 'cool' in the world of green façades? How plant choice influences the cooling properties of green walls	Building and Environm ent	https://doi .org/10.10 16/j.builde nv.2013.12 .005	Monitor	Reading, UK			6.3 oC			٥C			Artificial wall sections were used to provide replicated data sets in both outdoor and controlled environmental conditions.
Thermal behavior of a vertical green facade and its impact on the indoor and outdoor thermal environmen	Energy and Building	<u>https://doi</u> .org/10.10 16/j.enbuil d.2019.109 <u>502</u>	Monitoring	Guangzho u, China,			2.7 °C			oC			Measurements and calculations of operative and WBGT temperatures, mass and heat fluxes and energy consumption in two westward identical rooms, one with a green wall system installed. The results indicated that transpiration could consume approximately 50% of solar radiation absorbed by the vegetation canopy.
Impacts of green walls on the characteristics of thermo-flow and photochemical reaction kinetics within street canyons	Urban Forestry and Urban Greening	https://doi .org/10.10 16/j.ufug.2 022.12756 <u>8</u>	Numerical modelling				1.02°C			oC			CFD looking on the effect of GWs on wind, temp, CO and NO2/NO/O3 fields in a street cayon. Four scenarios. Results are discussed in tamp reduction and co-benefits cells
A Hedera green façade – Energy performance and saving under different maritime- temperate, winter weather conditions	Building and Environm ent	https://doi .org/10.10 16/j.builde nv.2015.04 .011	Monitoring	University of Reading, UK			3 oC			oC			Temperature differences were affected by weather parameters, aspect, diurnal time and canopy density. Largest savings in energy due to vegetation were associated with more extreme weather, such as cold temperatures, strong wind or rain.

Table S2. The string of keywords used to record literature for the review of the efficiency of
51 GBGI categories to mitigate heat.

GBGI Type	Keywords	Number of publications Identified
		Web of Science
	pocket park AND heat waves	-
Dealsot newly	pocket park AND urban heat island	14
Роскет рагк	pocket park AND temperature reduction	3
	pocket park AND cooling	10
	Pocket Park (Total)	27
	park NOT pocket park AND heat waves	1623
Dault	park NOT pocket park AND urban heat island	907
Гагк	park NOT pocket park AND temperature reduction	6804
	park NOT pocket park AND cooling	9741
	Park (Total)	19075
	botanical garden OR arboretum AND heat waves	1
Botanical	botanical garden OR arboretum AND heat waves botanical garden OR arboretum AND urban heat island	1 10
Botanical garden	botanical garden OR arboretum AND heat waves botanical garden OR arboretum AND urban heat island botanical garden OR arboretum AND temperature reduction	1 10 10
Botanical garden	botanical garden OR arboretum AND heat waves botanical garden OR arboretum AND urban heat island botanical garden OR arboretum AND temperature reduction botanical garden OR arboretum AND cooling	1 10 10 20
Botanical garden	botanical garden OR arboretum AND heat waves botanical garden OR arboretum AND urban heat island botanical garden OR arboretum AND temperature reduction botanical garden OR arboretum AND temperature reduction botanical garden OR arboretum AND cooling Botanical garden (Total)	1 10 10 20 41
Botanical garden	botanical garden OR arboretum AND heat waves botanical garden OR arboretum AND urban heat island botanical garden OR arboretum AND temperature reduction botanical garden OR arboretum AND cooling Botanical garden (Total) heritage garden AND heat waves	1 10 10 20 41 3
Botanical garden	botanical garden OR arboretum AND heat waves botanical garden OR arboretum AND urban heat island botanical garden OR arboretum AND temperature reduction botanical garden OR arboretum AND cooling Botanical garden OR arboretum AND cooling heritage garden AND heat waves heritage garden AND urban heat island	1 10 10 20 41 3 3
Botanical garden Heritage garden	botanical garden OR arboretum AND heat waves botanical garden OR arboretum AND urban heat island botanical garden OR arboretum AND temperature reduction botanical garden OR arboretum AND temperature reduction botanical garden OR arboretum AND cooling Botanical garden OR arboretum AND cooling heritage garden AND heat waves heritage garden AND heat waves heritage garden AND urban heat island heritage garden AND temperature reduction	1 10 10 20 41 3 3 1
Botanical garden Heritage garden	botanical garden OR arboretum AND heat waves botanical garden OR arboretum AND urban heat island botanical garden OR arboretum AND temperature reduction botanical garden OR arboretum AND cooling Botanical garden (Total) heritage garden AND heat waves heritage garden AND urban heat island heritage garden AND temperature reduction heritage garden AND cooling	1 10 10 20 41 3 3 1 6

	nursery garden AND heat waves	-
Nursery	nursery garden AND urban heat island	-
garden	nursery garden AND temperature reduction	12
	nursery garden AND cooling	3
	Nursery garden (Total)	15
	zoo OR zoos OR zoological garden AND heat waves	2
Zoological	zoo OR zoos OR zoological garden AND urban heat island	1
garden	zoo OR zoos OR zoological garden AND temperature reduction	12
	zoo OR zoos OR zoological garden AND cooling	31
	Zoological garden (Total)	46
	street tree AND heat waves	51
Stugat Tuga	street tree AND urban heat island	326
Succi free	street tree AND temperature reduction	123
	street tree AND cooling	246
	Street Tree (Total)	746
	cycle path OR cycle track AND heat waves	6
Cycle treek	cycle path OR cycle track AND urban heat island	14
Cycle track	cycle path OR cycle track AND temperature reduction	421
	cycle path OR cycle track AND cooling	896
	Cycle track (Total)	1337
	footpath AND heat waves	-
Footpath	footpath AND urban heat island	6
rootpath	footpath AND temperature reduction	0
	footpath AND cooling	1
	Footpath (Total)	7

	roadside OR verge AND heat waves	6
Dood yourse	roadside OR verge AND urban heat island	26
Koau verge	roadside OR verge AND temperature reduction	48
	roadside OR verge AND cooling	103
	Road verge (Total)	183
	rail AND heat waves	31
Railway	rail AND urban heat island	7
corridor	rail AND temperature reduction	300
	rail AND cooling	456
	Railway corridor (Total)	794
	riparian tree OR riparian wood OR riparian forest AND heat waves	4
Riparian	riparian tree OR riparian wood OR riparian forest AND urban heat island	4
woodland	riparian tree OR riparian wood OR riparian forest AND temperature reduction	16
	riparian tree OR riparian wood OR riparian forest AND cooling	28
	Riparian woodland (Total)	52
	hedge AND heat waves	3
Hedge	hedge AND urban heat island	9
neuge	hedge AND temperature reduction	47
	hedge AND cooling	52
	Hedges (Total)	111
	green roof AND heat waves	104
Green Roof	green roof AND urban heat island	806
	green roof AND temperature reduction	360
	green roof AND cooling	886

	Green Roof (Total)	2156
	green wall OR green facade AND heat waves	57
	green wall OR green façade AND urban heat island	295
Green Wall	green wall OR green façade AND temperature reduction	298
	green wall OR green façade AND cooling	536
	Green Wall (Total)	1186
	roof garden OR roof terrace AND heat waves	12
	roof garden OR roof terrace AND urban heat island	57
Roof garden	roof garden OR roof terrace AND temperature reduction	22
	roof garden OR roof terrace AND cooling	80
	Roof garden (Total)	171
	pergola AND heat waves	-
Pergola	pergola AND urban heat island	5
Ŭ	pergola AND temperature reduction	5
	pergola AND cooling	7
	Pergola (Total)	17
	Road verge AND heat waves	0
	Road verge AND urban heat island	0
	Road verge AND temperature reduction	1
Road verge	Road verge AND cooling	2
Road verge	(roadside* OR verge*) AND cooling	207
	(roadside* OR verge*) AND heat waves	12
	(roadside* OR verge*) AND urban heat island	29
	(roadside* OR verge*) AND temperature reduction	62
	Road verge (Total)	313

	Permeable Paving AND Heatwaves	0
	Permeable Paving AND Urban Heat Island	26
	Permeable Paving AND cooling	18
	Permeable Paving AND Temperature reduction	8
	Permeable parking/roadway AND Heatwaves	0
	Permeable parking/roadway AND Urban Heat Island	0
Permeable paving	Permeable parking/roadway AND Temperature reduction	0
	"permeable park*" OR "permeable road Heatwaves reduction"*	13
	"permeable park*" OR "permeable road Urban Heat Island"*	13
	Permeable park*" OR "permeable road Temperature reduction	13
	Permeable Paving AND cooling	18
	Permeable Paving (Total)	109
	Attenuation pond AND Heatwaves	0
Attenuation	Attenuation pond AND Heatwaves Attenuation pond AND Urban Heat Island	0
Attenuation pond	Attenuation pond AND Heatwaves Attenuation pond AND Urban Heat Island Attenuation pond AND Temperature reduction	0 1 8
Attenuation pond	Attenuation pond AND HeatwavesAttenuation pond AND Urban Heat IslandAttenuation pond AND Temperature reductionAttenuation pond AND cooling	0 1 8 6
Attenuation pond	Attenuation pond AND Heatwaves Attenuation pond AND Urban Heat Island Attenuation pond AND Temperature reduction Attenuation pond AND cooling Permeable Paving (Total)	0 1 8 6 15
Attenuation pond	Attenuation pond AND Heatwaves Attenuation pond AND Urban Heat Island Attenuation pond AND Temperature reduction Attenuation pond AND cooling Permeable Paving (Total) Flood control channel AND Heatwaves	0 1 8 6 15 0
Attenuation pond	Attenuation pond AND HeatwavesAttenuation pond AND Urban Heat IslandAttenuation pond AND Temperature reductionAttenuation pond AND coolingPermeable Paving (Total)Flood control channel AND HeatwavesFlood control channel AND Urban Heat Island	0 1 8 6 15 0 1
Attenuation pond	Attenuation pond AND HeatwavesAttenuation pond AND Urban Heat IslandAttenuation pond AND Temperature reductionAttenuation pond AND coolingPermeable Paving (Total)Flood control channel AND HeatwavesFlood control channel AND Urban Heat IslandFlood control channel AND Urban Heat IslandFlood control channel AND Temperature reduction	0 1 8 6 15 0 1 22
Attenuation pond	Attenuation pond AND HeatwavesAttenuation pond AND Urban Heat IslandAttenuation pond AND Temperature reductionAttenuation pond AND coolingPermeable Paving (Total)Flood control channel AND HeatwavesFlood control channel AND Urban Heat IslandFlood control channel AND Temperature reductionflood* OR channel or Heatwaves*	0 1 8 6 15 0 1 22 1
Attenuation pond	Attenuation pond AND HeatwavesAttenuation pond AND Urban Heat IslandAttenuation pond AND Temperature reductionAttenuation pond AND coolingPermeable Paving (Total)Flood control channel AND HeatwavesFlood control channel AND HeatwavesFlood control channel AND Urban Heat IslandFlood control channel AND Temperature reductionflood* OR channel or Heatwaves*flood* OR channel or Urban Heat Island*	0 1 8 6 15 0 1 22 1 2
Attenuation pond	Attenuation pond AND HeatwavesAttenuation pond AND Urban Heat IslandAttenuation pond AND Temperature reductionAttenuation pond AND coolingPermeable Paving (Total)Flood control channel AND HeatwavesFlood control channel AND Urban Heat IslandFlood control channel AND Urban Heat IslandFlood control channel or Heatwaves*flood* OR channel or Heatwaves*flood* OR channel or Temperature reduction*	0 1 8 6 15 0 1 22 1 2 35
Attenuation pond	Attenuation pond AND HeatwavesAttenuation pond AND Urban Heat IslandAttenuation pond AND Temperature reductionAttenuation pond AND coolingPermeable Paving (Total)Flood control channel AND HeatwavesFlood control channel AND Heat IslandFlood control channel AND Temperature reductionflood* OR channel or Heatwaves*flood* OR channel or Urban Heat Island*flood* OR channel or Temperature reductionFlood control channel AND cooling	0 1 8 6 15 0 1 22 1 2 35 30

	Rain garden AND Heatwaves	2
Dain gandan	Rain garden AND Urban Heat Island	23
Kain garuen	Rain garden AND Temperature reduction	22
	Rain garden AND cooling	14
	Rain Garden (Total)	61
	Bioswale AND cooling	1
Pioswala	Bioswale AND Heatwaves	0
DIOSWAIC	Bioswale AND Urban Heat Island	1
	Bioswale AND Temperature reduction	1
	Bioswale (Total)	3
	Outdoor swimming pool AND cooling	16
Outdoor	Outdoor swimming pool AND Heatwaves	0
pool	Outdoor swimming pool AND Urban Heat Island	3
	Outdoor swimming pool AND Temperature reduction	3
	Outdoor swimming pool (Total)	22
	Outdoor swimming pool (Total) Canal AND cooling	22 338
Canal	Outdoor swimming pool (Total) Canal AND cooling Canal AND Heatwaves	22 338 1
Canal	Outdoor swimming pool (Total) Canal AND cooling Canal AND Heatwaves Canal AND Urban Heat Island	22 338 1 4
Canal	Outdoor swimming pool (Total) Canal AND cooling Canal AND Heatwaves Canal AND Urban Heat Island Canal AND Temperature reduction	22 338 1 4 160
Canal	Outdoor swimming pool (Total) Canal AND cooling Canal AND Heatwaves Canal AND Urban Heat Island Canal AND Temperature reduction Canal (Total)	22 338 1 4 160 503
Canal	Outdoor swimming pool (Total) Canal AND cooling Canal AND Heatwaves Canal AND Urban Heat Island Canal AND Temperature reduction Canal (Total) Estuary/tidal river AND cooling	22 338 1 4 160 503 0
Canal Estuary/	Outdoor swimming pool (Total)Canal AND coolingCanal AND HeatwavesCanal AND Urban Heat IslandCanal AND Temperature reductionCanal (Total)Estuary/tidal river AND coolingEstuary/tidal river AND Heatwaves	22 338 1 4 160 503 0 0
Canal Estuary/ tidal river	Outdoor swimming pool (Total)Canal AND coolingCanal AND HeatwavesCanal AND Urban Heat IslandCanal AND Temperature reductionCanal (Total)Estuary/tidal river AND coolingEstuary/tidal river AND HeatwavesEstuary/tidal river AND HeatwavesEstuary/tidal river AND Urban Heat Island	22 338 1 4 160 503 0 0 0
Canal Estuary/ tidal river	Outdoor swimming pool (Total)Canal AND coolingCanal AND HeatwavesCanal AND Urban Heat IslandCanal AND Temperature reductionCanal (Total)Estuary/tidal river AND coolingEstuary/tidal river AND HeatwavesEstuary/tidal river AND HeatwavesEstuary/tidal river AND Urban Heat IslandEstuary/tidal river AND Urban Heat IslandEstuary/tidal river AND Urban Heat Island	22 338 1 4 160 503 0 0 0 0 0 0
Canal Estuary/ tidal river	Outdoor swimming pool (Total) Canal AND cooling Canal AND Heatwaves Canal AND Urban Heat Island Canal AND Temperature reduction Canal (Total) Estuary/tidal river AND cooling Estuary/tidal river AND Heatwaves Estuary/tidal river AND Heatwaves Estuary/tidal river AND Urban Heat Island Estuary/tidal river AND Temperature reduction Estuary/tidal river (Total)	22 338 1 4 160 503 0 0 0 0 0 0 0 0
Canal Estuary/ tidal river	Outdoor swimming pool (Total)Canal AND coolingCanal AND HeatwavesCanal AND Urban Heat IslandCanal AND Temperature reductionCanal (Total)Estuary/tidal river AND coolingEstuary/tidal river AND HeatwavesEstuary/tidal river AND HeatwavesEstuary/tidal river AND HeatwavesEstuary/tidal river AND Urban Heat IslandEstuary/tidal river AND Urban Heat IslandEstuary/tidal river AND Urban Heat IslandEstuary/tidal river AND CoolingEstuary/tidal river AND Temperature reductionEstuary/tidal river AND Temperature reductionEstuary/tidal river AND Temperature reductionEstuary/tidal river AND Temperature reductionEstuary/tidal river AND CoolingRiver/stream AND cooling	22 338 1 4 160 503 0 0 0 0 0 0 0 8

	River/stream AND Urban Heat Island	0
	River/stream AND Temperature reduction	7
	river* OR stream* AND Heatwaves	0
	river* OR stream* AND Urban Heat Island	0
	river* OR stream*AND Temperature reduction	0
	River/ Stream (Total)	15
	Reservoir AND cooling	3955
River/	Reservoir AND Heatwaves	15
Stream	Reservoir AND Urban Heat Island	44
	Reservoir AND Temperature reduction	0
	Reservoir (Total)	4014
	Lake AND Heatwaves	53
Laka	Lake AND Urban Heat Island	167
Гаке	Lake AND Temperature reduction	0
	Lake AND cooling	4715
	Lake (Total)	4935
	Sea (incl. coast) AND Heatwaves	0
	Sea (incl. coast) AND Urban Heat Island	495
Sea	Sea (incl. coast) AND Temperature reduction	6957
	Sea AND cooling	15381
	(sea OR seaside OR coast* OR beach* OR shore and Heatwaves*)	0
	Sea (Total)	22833
	Pond AND Heatwaves	0
Dond	Pond AND Urban Heat Island	0
rond	Pond AND cooling	945
	Pond AND Temperature reduction	0

	Pond (Total)	945
	Balcony AND Heatwaves	1
	Balcony AND Urban Heat Island	7
Balcony/terr	Balcony AND Temperature reduction	21
ace	terrace AND Urban Heat Island	16
	terrace AND Urban Heatwaves	1
	terrace AND Temperature reduction	233
	Balcony/terrace (Total)	279
	Riparian woodland AND heat waves	1
	Riparian woodland AND urban heat island	0
	Riparian woodland AND temperature reduction	7
	Riparian woodland AND cooling	20
Road verge	("riparian tree*" OR "riparian wood*" OR "riparian forest*") AND cooling	66
	("riparian tree*" OR "riparian wood*" OR "riparian forest*") AND heat waves	3
	("riparian tree*" OR "riparian wood*" OR "riparian forest*") AND urban heat island	4
	("riparian tree*" OR "riparian wood*" OR "riparian forest*") AND temperature reduction	30
	Riparian woodland (Total)	131
	Playground AND Heatwaves	1
Discourse	Playground AND Urban Heat Island	9
riayground	Playground AND Temperature reduction	19
	Playground AND cooling	33
	Playground (Total)	62
Calferration	Golf course AND Heatwaves	0
Golf course	Golf course AND Urban Heat Island	4

	Golf course AND Temperature reduction	11
	Golf course AND cooling	111
	Golf course(Total)	126
	Shared open space AND Heatwaves	1
Shared open	Shared open space AND Urban Heat Island	4
space	Shared open space AND Temperature reduction	10
	Shared open space AND cooling	44
	Shared open space(Total)	59
	Cemetery AND Heatwaves	0
Comotory	Cemetery AND Urban Heat Island	5
Cemetery	Cemetery AND Temperature reduction	1
	Cemetery AND cooling	12
	Cemetery (Total)	18
	Allotment AND Temperature reduction	5
A Illo 4m ou t	Allotment AND Urban Heat Island	6
Anotment	Allotment AND Temperature reduction	5
	Allotment AND cooling	15
	Allotment (Total)	31
	City farm AND Heatwaves	1
	City farm AND Urban Heat Island	23
City farm	City farm AND Temperature reduction	20
	City farm AND cooling	44
	City farm (Total)	88
	Adopted public space AND Heatwaves	1
Adopted public space	Adopted public space AND Urban Heat Island	13
	Adopted public space AND Temperature reduction	8

	Adopted public space AND cooling	18
	Adopted public space (Total)	40
	Woodland (other) AND Heatwaves	3
Weedler d	Woodland (other) AND Urban Heat Island	8
vv oodiand	Woodland (other) AND Temperature reduction	34
	Woodland AND cooling	457
	Woodland (Total)	502
	Grass (other) AND Heatwaves	9
Grass	Grass (other) AND Urban Heat Island	40
(other)	Grass (other) AND Temperature reduction	155
	Grass (other) AND cooling	3041
	Grass (other) (Total)	3245
Arable	Arable agriculture AND Heatwaves	0
	Arable agriculture AND Urban Heat Island	0
agriculture	Arable agriculture AND Temperature reduction	0
	Arable agriculture AND cooling	24
	Arable agriculture (Total)	24
	Private garden AND Heatwaves	0
Private	Private garden AND Urban Heat Island	5
Garden	Private garden AND Temperature reduction	1
	Private garden AND cooling	13
	Private Garden (Total)	19
	Shared common garden area AND Heatwaves	0
Shared common	Shared common garden area AND Urban Heat Island	1
garden	Shared common garden area AND Temperature reduction	0

	Shared common garden area AND cooling	0
	Shared Common garden (Total)	1
	Wetland AND Heatwaves	15
Watland	Wetland area AND Urban Heat Island	55
Wetland	Wetland AND Temperature reduction	589
	Wetland AND cooling	587
	Wetland (Total)	1246
	Estuary AND Heatwaves	22
Estuamy	Estuary AND Urban Heat Island	13
Estuary	Estuary AND Temperature reduction	474
	Estuary AND cooling	428
	Estuary (Total)	937
Seconda Califa	Sports field AND Heatwaves	1
	Sports field AND Urban Heat Island	2
Sports netus	Sports field AND Temperature reduction	25
	Sports field AND cooling	102
	Sports field (Total)	130
	School yard AND Heatwaves	0
School vard	School yard AND Urban Heat Island	2
School yaru	School yard AND Temperature reduction	0
	School yard AND cooling	3
	School yard (Total)	5
	Shrubland (other) AND Heatwaves	0
Shruhland	Shrubland (other) AND Urban Heat Island	0
Sin ubranu	Shrubland (other) AND Temperature reduction	0
	Shrubland (other) AND cooling	16

	Shrubland (Total)	16
Sparsely vegetated land	Sparsely vegetated land AND Heatwaves	0
	Sparsely vegetated land AND Urban Heat Island	0
	Sparsely vegetated land AND Temperature reduction	0
	Sparsely vegetated land AND cooling	8
	Sparsely vegetated land (Total)	8

Table S3. Classification matrix to categorise the number of studies available for each of the
GBGI sub-categories in terms of heat mitigation. Zero values indicate that there is negligible

Scale	Conditional performance (%) ^a	Evidence-based classification (%) ^b	Number of GBGI types ^c
1	None	0	18
2	Very low	≥0 ≤20	15
3	Low	≥20 ≤40	9
4	Medium	$\geq 40 \leq 60$	4
5	High	≥60 ≤80	1
6	Very High	≥80	4

empirical evidence available for GBGI's against urban heat mitigation, including heatwaves.

^aThe number of publications from negligible to very high under the six-classification scale.

^bThe percentage availability of publications for each classification scale. ^cThe number of

316 GBGI types found in each of the classification scales.

Table S4. The best performing GBGI types in each climate zone and sub-climate type with
reported magnitude and measured scale (i.e. inside/outside of GBGI) of cooling providing
details of surroundings.

	GBGI (Sub climate#1, and del T)	GBGI (sub climate#2, and del T)	Inside/outside (scale)	Nearby surrounding
Temperate	Wetland (Cfa, 10)	Park (Cfb, 9.2)	Wetland works well at meso scale (mostly	Near built-up area (park),

			inside) than micro, on the contrary park works better on micro-scale (inside and outside both).	Near nature (wetland)
Continental	Greenwall, Botanical garden (Dfb, 8.7 & 10)	Green roof and Botanical garden (Dwa, 10.8 & 10)	Works well at Microscale but not at meso and macro but the park can be suggested at the mesoscale. Green roof (inside, outside and top) botanical garden (inside-outside), green wall (near)	Built-up area (green wall and botanical garden) Green roof (mixed environment of grey and nature)
Dry	Wetland, Pocket park (BWh, 12 & 7))	-	Microscale wetland (inside) pocket park (inside-outside)	Wetland (near nature) Pocket park (built-up area)
Tropical	Roof garden (Af, 10)	-	Microscale (inside and top)	Built up area

Table S5. Sample size (n), correlation of population and p-value density, city area, altitude, 320

ratio of GBGI and city area, and temporal cooling with reported cooling by GBGI in four 321

Climate Zone		Correlation	P-value
Population density $(n = 34)$	Continental	0.0183	0.919
(n = 15)	Dry	0.193	0.4791
(n = 137)	Temperate	-0.013	0.8827
(n = 16)	Tropical	0.2241	0.404
City Area	Continental	0.018	0.9189

different climatic conditions i.e. continental, dry, temperate and tropical. 322

(n = 15)	Dry	0.1981	0.4791
(n = 137)	Temperate	-0.013	0.8827
(n = 16)	Tropical	0.22	0.404
Altitude	Continental	0.135	0.4449
(n = 15)	Dry	0.0158	0.9552
(n = 137)	Temperate	-0.089	0.2975
(n = 16)	Tropical	0.325	0.2188
Ratio GBGI/city	Continental	0.0917	0.606
(n = 15)	Dry	-0.117	0.6768
(n = 137)	Temperate	-0.017	0.8386
(n = 16)	Tropical	-0.328	0.2142
Temporal cooling	Continental	0.208	0.2367
(n = 15)	Dry	0.1132	0.6879
(n = 137)	Temperate	0.0399	0.6427
(n = 16)	Tropical	0.2824	0.2892

Table S6. The location, study types (in-situ, modelling, combined (in-situ and modelling), and remote sensing), and performance in reducing temperature ($\Delta T \ ^{\circ}C$)) of different types of GBGI categories against extreme heat extracted from 202 papers.

GBGI Type	GBGI Categorie s	Location (city, country)	Study type	Perfo rman ce ∆T (°C)	Reference (Year)
		Vienna	Monitoring	4	Teichmann et al. ³¹
		Malaysia	Monitoring	1.7	Toe and Kubota ³²
	Balcony	Tehran, Iran	Modelling	7	Aghasizadeh et al. ³³
Gardens		China	Modelling	3.8	Cui and Zheng ³⁴
		Lublin,	Monitoring	0.22	Grudzińska ³⁵

		Poland			
		Tampere, Finland	Monitoring	2	Hilliaho et al. ³⁶
		Zamo, Poland	Modelling	7.6	Grudzińska ³⁷
	Private garden	Melbourne, Australia	Monitoring	2.3	Cheung et al. ³⁸
		Sydney, Australia	Modelling	3	Gao et al. ³⁹
	Irrigating backyard	Adelaide, Australia	Modelling	2.3	Broadbent et al. ⁴⁰
		United States	Remote Sensing	3.74	Wang et al. ⁴¹
		Hong Kong	Monitoring	0.38	Lau et al. ⁴²
		Hong Kong	Monitoring	1.09	Lin et al. ⁴³³
		New York	Monitoring	0.5	Rosso et al. ⁴⁴
		Veszprém, Hungary	Modelling	0.6	Trájer et al. ⁴⁵
		Xi'an, China	Modelling	1.1	Hou et al. ⁴⁶
Parks	Pocket Park	Xi'an, China	Monitoring & Modelling	0.43	Ma et al. ⁴⁷
		Shanghai, China	Monitoring	3.6	Wu et al. ⁴⁸
		Cairo Metropolitan Area, Egypt	Modelling	7	Ibrahim ⁴⁹
		Hong Kong	Monitoring & Modelling	0.13	Huang et al. ⁵⁰
	Park	Chongqing, Southwest China	Modelling	0.8	Lu et al. ⁵¹

	Abuja, Nigeria	Remote Sensing	2.04	Chibuike et al. ⁵²
	Shenzhen City, China	Monitoring	5.15	Zhang et al. ⁵³
	Yreb, China	Remote Sensing	2.34	Shi et al. ⁵⁴
	Xian, China	Monitoring	0.78	Du et al. ⁵⁵
	Shenzhen, China	Remote Sensing	3.02	Peng et al. ⁵⁶
	Taipei, Taiwan	Monitoring & Modelling	2.42	Yang et al. ⁵⁷
	Wuhan, China	Monitoring	3.5	Chen et al. ⁵⁸
	Kolkata Metropolitan Area, India	Remote Sensing	3.15	Das et al. ⁵⁹
	Beijing, China	Monitoring	1.38	Zhou et al. ⁶⁰
	Melbourne, Australia	Remote Sensing	3.28	Algretawee ⁶¹
	Beijing, China	Remote Sensing	1.71	Qiu and Jia ⁶²
	Beijing, China	Monitoring	1.09	Li et al. ⁶³
	Austin, US	Remote Sensing	6.89	Gao et al. ⁶⁴
	Taiwan	Monitoring & Modelling	2.42	Yang et al. ⁶⁵
	Özgürlük Park, Istanbul, Turkey	Monitoring & Modelling	2.3	Şimşek et al. ⁶⁶
	Beijing, China	Monitoring	2.71	Li et al. ⁶⁷

			Hong Kong	Monitoring	4.9	Cheung er al. ⁶⁸
			Melbourne, Australia	Remote Sensing	10	Algretawee ⁶⁹
			Beijing, China	Monitoring	4.8	Yan et al. ⁷⁰
			Baoji, China	Monitoring	2.7	Chang and Li ⁷¹
			Erzurum, Turkey	Monitoring	2.6	Irmak et al. ⁷²
	Botanical garden	Beijing, China	Monitoring	10	Su ⁷³	
		Erzurum, Turkey	Monitoring & Modelling	2.2	Yilmaz et al. ⁷⁴	
			Erzurum, Turkey	Monitoring	7.1	Yilmaz et al. ⁷⁵
		Sports field	Khalifa stadium in Doha, Qatar	Monitoring & Modelling	3.1	Ghani et al. ⁷⁶
		Playgroun	Warsaw, Poland	Monitoring	5	Kuchcik et al. ⁷⁷
Amenity areas		d	United States	Remote Sensing	5.5	Vanos et al. ⁷⁸
		Golf course	Perth, Australia	Remote Sensing	6	Nguyen et al. ⁷⁹
		Shared open space	Maxvorstadt, Munich	Modelling	2.1	Zölch et al. ⁸⁰
		Cemetery	Budapest's, Hungary	Monitoring	1.7	Sallay et al. ⁸¹
Other		Allotment	Berlin, Germany	Remote Sensing	4	Rost et al. ⁸²
spaces		City form	Phoenix, Arizona	Monitoring	3.9	Hawkins et al. ⁸³
		City farm	Paris, France	Modelling	3	Masson et al. ⁸⁴

1						
			Raiganj, West Bengal, India	Monitoring & Modelling	3	Basu and Das ⁸⁵
		Adopted public space	Bologna, Italy	Modelling	3	Boeri et al. ⁸⁶
			Liverpool, NSW, Australia	Modelling	1.5	Abdollahzade h and Biloria ⁸⁷
		Street tree	Hangzhou city, Zhejiang Province, China	Monitoring	1.8	Cai et al. ⁸⁸
			Turin, Italy	Monitoring	0.5	Morabito et al. ⁸⁹
			Florence, Italy	Modelling	9.4	Napoli et al. ⁹⁰
			Nanjing , Jiangsu Province, China	Modelling	5.5	Xi et al. ⁹¹
Linear			Karachi, Pakistan	Modelling	1.2	Zeeshan et al. ⁹²
features/ro utes			Abu Dhabi	Monitoring & Modelling	0.9	Abu Ali et al. ⁹³
			Rome, Italy	Remote Sensing	3.2	Marando et al. ⁹⁴
			Karachi, Pakistan	Modelling	1.2	Zeeshan et al. ⁹⁵
			Montreal, Canada	Modelling	4	Wang et al. ⁹⁶
			Vancouver, Canada	Remote Sensing	12	Lachapelle et al. ⁹⁷
			Barcelona, Spain	Modelling	1.3	Segura et al. ⁹⁸
			Shenyang,	Monitoring	2.9	Miao et al. ⁶⁹⁹

			China			
			Prague Czech Republic	Modelling	5	Geletic et al. ¹⁰⁰
			Basel, Switzerland	Monitoring & Modelling	2	Mussetti et al. ¹⁰¹
			Bangalore, India	Monitoring	5.6	Valishery et al. ¹⁰²
			Dresden, Germany	Monitoring	2.22	Gillner et al. ¹⁰³
			Melbourne, Australia	Monitoring	1.5	Coutts et al. ¹⁰⁴
			Richmond, Australia	Monitoring	2.1	Sanusi et al. ¹⁰⁵
			Vancouver, Canada	Modelling	7.1	Aminipour et al. ¹⁰⁶
			Tsukuba City, Japan	Monitoring	5.9	Kusaka et al. ¹⁰⁷
			Jongro, Seoul, Republic of Korea	Monitoring	4.44	Cho ¹⁰⁸
			Taipei, Taiwan	Monitoring	0.68	Huang and Li ¹⁰⁹
		Road verge	New Belgrade, Serbia	Monitoring	2.1	Stojanovic et al. ¹¹⁰
			Kuala Lumpur, Malaysia	Monitoring	1.3	Zaki et al. ¹¹¹
		Haikou, China	Modelling	2	Zheng et al. ⁸¹¹²	
			Czech Republic	Monitoring & Modelling	0.05	Žižlavská et al. ¹¹³

			Sydney, Australia	Monitoring	1.16	Adams and Smith ¹¹⁴⁴
			Ejina basin, China	Monitoring	1.28	Yonghong et al. ¹¹⁵
		Riparian woodland	Yorkshire, England	Monitoring	3	Tsai et al. ¹¹⁶
			Glen Girnock, UK	Remote sensing	5.4	Dugdale et al. ¹¹⁷
		Beijing, China	Monitoring	3	Zheng et al. ¹¹⁸	
		Beijing, China	Modelling	2.68	Zhang and Hu ¹¹⁹	
	Hedge	Lazio, Italy	Modelling	3	Peluso et al. ¹²⁰	
		Rome, Italy	Modelling	3	Del Serrone et al. ¹²¹	
		Shenzhen, China	Monitoring & Modelling	1.29	Zou et al. ¹²²²	
			Sakai, Japan	Remote Sensing	7	Yoshida et al. ¹²³
			Berlin, Germany	Modelling	0.44	Wang et al. ¹²⁴
			Mandaue, Philippines	Modelling	1.1	Cortes et al. ¹²⁵
			Sydney, Australia	Monitoring	9.63	Fleck et al. ¹²⁶
		Green roof	Xiamen, China	Remote Sensing	0.91	Dong et al. ¹²⁷
			Belgrade, Serbia	Monitoring	5.5	Kostadinovic et al. ¹²⁸
			Nanjing, China	Monitoring	1.1	Peng et al. ¹²⁹
			Tseung Kwan O New Town,	Monitoring	4.9	Lee and Jim ¹³⁰

		Hong Kong, China			
		Neubrandenb urg, Germany	Monitoring	1.5	Kohler and Kaiser ¹³¹
		Gangnam-gu, Seoul, South Korea	Monitoring	10.8	Park et al. ¹³²
		Jerusalem and Tel Aviv	Monitoring & Modelling	0.4	Lynn and Lynn ¹³³
		Shenzhen, China	Monitoring	4.03	Chen et al. ¹³⁴
		Mandaue, Philippines	Modelling	1.1	Cortes et al. ¹³⁵
		Utrecht, The Netherlands	Monitoring	0.2	Solcerova ¹³⁶
		Lodz, Poland	Modelling	0.19	Bochenek and Klemm ¹³⁷
		Guangzhou, China	Modelling	0.1	Chen et al. ¹³⁸
		Hamad, Northern Bahrain	Modelling	0.72	Elnabawi and Saber ¹³⁹
		Chengdu, China	Monitoring	0.94	Zuo et al. ¹⁴⁰
		Rome, Italy	Modelling	0.16	Iaria and Susca ¹⁴¹
		Sydney, Australia	Monitoring	2.92	Fleck et al. ¹⁴²
		Cordoba, Argentina	Monitoring	0.892	Robbiati et al. ¹⁴³
Constructe d GI on infrastruct ure	Green wall	Changsha, Hunan Province, China	Modelling	0.49	Liao et al. ¹⁴⁴

	Reading, UK	Remote Sensing	6.3	Cameron et al. ¹⁴⁵
	Guangzhou, China	Monitoring	3.6	Zhang et al. ¹⁴⁶
	Shanghai, China	Modelling	1.02	Liu et al. ¹⁴⁷
	Reading, UK	Monitoring	3	Cameron et al. ¹⁴⁸
	Madrid, Spain	Monitoring	2.7	Jesus et al. ¹⁴⁹
	Hong-Kong	Monitoring	1.19	Lee and Jim ¹⁵⁰
	Rio de Janeiro, Brazil	Modelling	1.16	Feitosa and Wilkinson ¹⁵¹
	Zürich, Switzerland	Modelling	0.1	Li et al. ¹⁵²
	Prague, Czech Republic	Monitoring & modelling	2	Geletič et al. ¹⁵³
	Ljubljana, Slovenia	Remote Sensing	18.9	Šuklje et al. ¹⁵⁴
	Tyrol, Austria	Monitoring	8.7	Medl et al. ¹⁵⁵
	Sydney, Australia	Monitoring	7.7	Feitosa and Wilkinson ¹⁵⁶
	Bari,Valenza no, Italy	Monitoring	7	Blanco et al. ¹⁵⁷
	Pertth, Western Australia	Monitoring	8.1	Bakhshoodeh et al. ¹⁵⁸
	Quito, Ecuador	Modelling	1.43	Davis et al. ¹⁵⁹
	London Olympic Park	Monitoring	1.5	Hosseinzadeh et al. ¹⁶⁰

					1	
			La Rochelle, France	Modelling	1.9	Djedjig et al. ¹⁶¹
			Chennai, India	Modelling	1.2	Pragati et al. ¹⁶²
			Guangzhou, China	Monitoring	8	Lin et al. ¹⁶³
			United States	Monitoring	4.3	Price et al. ¹⁶⁴
			Hong Kong	Monitoring	1.2	Lee and Jim
			Munich, Germany	Modelling	3.5	Lin et al. ¹⁶⁶
			Chenzhou, Hunan, China	Modelling	2.56	Li et al. ¹⁶⁷
		Nanjing, China	Monitoring	1	Peng et al. ¹⁶⁸	
			Xinxiang, Henan, China	Monitoring	1	Shen ¹⁶⁹
		Roof garden	Duhok, Iraq	Monitoring	3	AbdulBaqi ¹⁷⁰
			Seoul, South Korea	Modelling	0.3	Kim et al. ¹⁷¹
			Hong Kong	Monitoring	1.8	Lee and Jim
			Singapore	Monitoring	17.7	Tan et al. ¹⁷³
			Singapore	Remote Sensing	10	Tan et al. ¹⁷⁴
		Nagoya, Japan	Remote Sensing	16.2	Watanabe et al. ¹⁷⁵	
		Pergola	Arta, Greece	Monitoring & Modelling	1.3	Katsoulas et al. ¹⁷⁶
			Lleida, Spain	Monitoring	3.1	Chafer et al. ¹⁷⁷

			Suwon, Republic of Korea	Monitoring	0.2	Kong et al. ¹⁷⁸
			Vienna, Austria	Monitoring & Modelling	4	Teichmann et al. ¹⁷⁹
		Permeable paving	Vertemate con Minoprio, CO, Italy	Monitoring	2.8	Fini et al. ¹⁸⁰
			Perugia, Italy	Monitoring	9.2	Kousis et al. ¹⁸¹
			Zhouzhi County, Xi'An, Shaanxi, China	Monitoring	6	Lu et al. ¹⁸²
			Rome, Italy	Modelling	0.6	Moretti et al. ¹⁸³
Hybrid GI			Guangzhou, China	Monitoring	1	Wang et al. ¹⁸⁴
			Changping China	Monitoring	0.19	Wang et al. ¹⁸⁵
		Attenuatio n pond	Guangzhou, China	Monitoring	7	Yang et al. ¹⁸⁶
		Rain	Yau Tsim Mong district, Hong Kong	Modelling	1.3	An et al. ¹⁸⁷
		garden	Tucson, Arizona	Monitoring	5.2	Buzzard et al. ¹⁸⁸
			Gdansk, Poland	Monitoring	7	Kasprzyk et al. ¹⁸⁹
Waterbodi		Wetland	Zoige Plateau, China	Monitoring	2	Bai et al. ¹⁹⁰
es		Wetland	Beijing, China	Remote Sensing	7.83	Cai et al. ¹⁹¹

		Vienna, Austria	Monitoring	3.4	Pucher et al. ¹⁹²
		Avondale, Arizona	Remote Sensing	12	Ruiz-Aviles et al. ¹⁹³
		Dhaka, Bangladesh, Anatolia	Modelling	3	Shahjahan et al. ¹⁹⁴
		Central Anatolia, Turkey	Remote Sensing	4.38	Şimşek and Ödül ¹⁹⁵
		Beijing, China	Monitoring	3.15	Sun et al. ¹⁹⁶
		Eastern Germany	Modelling	1.6	Sušnik et al. ¹⁹⁷
		Palembang City, Indonesia	Monitoring	1.2	Triyuly et al. ¹⁹⁸
		Chengdu, China	Monitoring	4.08	Wu et al. ¹⁹⁹
		Wuhan, China	Monitoring	4.8	Xu et al. ²⁰⁰
		Hangzhou, China	Remote Sensing	9.27	Zhang et al. ²⁰¹
		Northeast China	Remote Sensing	8.15	Wenguang et al. ²⁰²
		Prairie Pothole Region, North America	Remote Sensing	3	Zhang et al. ²⁰³
		Beijing, China	Remote Sensing	2.6	Sun et al. ²⁰⁴
	Lake	Hue Citadel, Hue City, Vietnam	Remote Sensing	2.82	Le Phuc et al. ²⁰⁵
		Altenberge, Germany	Modelling	0.8	Theeuwes et al. ²⁰⁶

			Wuhan, China	Monitoring	4.2	Xu et al. ²⁰⁷
			Daming lake, Jinan, China	Monitoring	1.9	Yang et al. ²⁰⁸
			São José do Rio Preto, Brazil	Monitoring	5	Masiero and de Souza ²⁰⁹
		Reservoir	Northern, Spain	Monitoring	2	Novo et al. ²¹⁰
		Santander, Spain	Monitoring	1.82	Novo et al. ²¹¹¹	
			Athens, Greece	Monitoring & Modelling	1.7	Dandou et al. ²¹²
			Sendai, Japan	Monitoring	1.3	Zhou et al. ²¹³
		Sea	Adelaide, Australia	Monitoring	0.9	Zhou et al. ²¹⁴
			South Australia	Monitoring	2	Zhou et al. ²¹⁵
			Wuhan, China	Modelling	0.4	Zhu et al. ²¹⁶
			Guildford, UK	Monitoring	5.7	Sahani et al. ²¹⁷
			Hong Kong Golf Course	Monitoring	1.43	Fung and Jim ²¹⁸
Othernon			Hong Kong Golf Course	Monitoring	4.2	Fung and Jim ²¹⁹
sealed urban area		Woodland	Ejina basin	Monitoring & Modelling	1.28	Yonghong et al. ²²⁰
			Baoji Botanical Garden	Monitoring	2.7	Chang and Li ²²¹
			Beijing, China	Monitoring	1.32	Liu et al. ²²²

			Xi'an, China	Remote Sensing	4.32	Ma et al. ²²³
			Hong Kong	Monitoring	2.9	Fung and Jim ²²⁴
			Sydney, Australia	Monitoring	2.94	Adams and Smith ²²⁵
		Shrubland (other)	Howard Valley, South Island, New Zealand	Monitoring	3	Callard et al. ²²⁶
			Olympic Forest Park, Beijing, China	Monitoring	0.4	Amani-Beni et al. ²²⁷
		Mixed (Green- Blue)	Beijing, China	Remote Sensing	1.32	Liu et al. ²²⁸
			Nagpur, Maharashtra	Remote Sensing	3.6	Jain et al. ²²⁹
Mixed (Green- Blue)	Mixed (Green- Blue)		Igapó Lak, Latin American city	Monitoring	2.63	Targino et al. ²³⁰
			Beijing, China	Monitoring & Modelling	0.4	Cheung and Jim ²³¹
			Olympic Area, Beijing, China	Remote Sensing	4.95	Dai et al. ²³²

328 Table S7. The average performance of different types of GBGI categories, which were 329 evaluated using in-situ, modelling, in-situ combined modelling, and remote sensing 330 techniques for heat risk adaptation and mitigations. The '-' symbol indicates 'no data 331 available'.

GBGI	GBGI Category	Monit oring ∆T (°C)	Modellin g ΔT (°C)	RS ΔT (°C)	MM ΔT (°C)	Overall ∆T (°C)	Availabili ty
	Balcony	2.0	6.1	-	-	4.06	Medium
Gardens	Private garden	2.3	-	-	-	2.30	Very low
	Irrigating backyard	-	2.7	3.7	-	3.20	Very low
Parks	Pocket Park	1.4	2.9	4.1	0.28	2.16	Medium
	Park	3.0	0.8	-	2.38	2.07	Very High
	Botanical garden	5.6	-	-	2.2	3.90	Low
Amenity areas	Sports field	-	-	-	3.1	3.10	Very low
	Playground	3.0	-	2.8	-	2.90	Very low
	Golf course	-	-	5.0	-	5.00	Very low
	Shared open space	-	2.1	-	-	2.10	Very low
Other public space	Cemetery	1.7	-	-	-	1.70	Very low
-p	Allotment	-	-	4.0	-	4.00	Very low
	City farm	3.9	3.0	-	-	3.45	Very low
	Adopted public space	-	2.3	-	3	2.63	Very low
Linear GI features/	Street tree	2.8	4.3	7.6	1.45	4.05	Very High
routes	Road verge	2.1	2.0	-	0.05	1.39	Low

	Riparian woodland	2.1	-	5.4	-	3.76	Low
	Hedge	-	2.9	7.0	1.29	3.73	Low
Constructed GI on infrastructure	Green roof	3.9	0.5	0.9	0.4	1.43	Very High
	Green wall	4.7	1.5	12.6	2	5.21	Very High
	Roof garden	2.1	0.3	7.1	-	3.13	Medium
	Pergola	1.7	-	18.2	2.65	7.50	Low
Hybrid GI (for water)	Permeable paving	3.8	0.6	-	-	2.22	Low
	Attenuation pond	7.0	-	-	-	7.00	Very low
	Rain garden	6.1	1.3	-	-	3.70	Very low
Waterbodies	Wetland	3.1	2.3	6.7	-	4.05	High
	Lake	3.1	0.8	2.8	-	2.22	Low
	Reservoir	2.9	-	-	-	2.94	Very low
	Sea (incl. coast)	1.4	0.4	-	1.7	1.17	Low
Other non- sealed urban areas	Woodland (other)	3.1	-	4.3	1.28	2.89	Medium
	Grass (other)	2.9	-	-	-	2.94	Very low
	Shrubland (other)	3.0	-	-	-	3.00	Very low
Mixed (Green-Blue)	Mixed (Green-Blue)	1.5	-	3.3	0.4	1.74	Low

333	Table S8. The projected influence of future climate change on the choice of GBGI in various
334	climate zones.

Climate zone	Previous/Cur rent climate	Future climate	Present GBGI	Future GBGI
Continent	Dfa	Dfb	Street trees Permeable paving	Wetland
	Dfb	BSk	Botanical garden	Green wall Street trees
Dry	BSk	BSh	Balcony	Green wall, street trees
	BSk	BWk	Wetland	Woodland
Temperate (Europe)	Cfb	Cfa	Green roofs, Green walls, Woodland Reservoir City farm Riparian woodland	Parks Pocket parks Green walls Green roofs Lakes Grass
	Dfb	Cfa	Green roof Balcony Road verge Playground	Parks Pocket parks Green walls Green roofs Lakes Grass
Temperate (China)	Cwa	Am	Park Green wall Green roof Rain garden	Lakes Road verge
	Dwa	Cwa	Woodland Lake Green roof Road verge Pergola Roof garden	Green roof Adopted space wetland

Table 9. Summary of key stages and action points for implementing, replicating, andupscaling GBGI to mitigate urban heat.

Stages	Action points
Stakeholder engagement ^a	 Engage stakeholders early on, and from various sectors such as urban planning, public health, environmental agencies, and community organisations to identify and frame the heat risk problem and understand their concerns and priorities. Foster collaboration and participatory decision-making processes to ensure diverse perspectives are considered. Conduct workshops, interviews, and surveys to gather input and feedback from stakeholders. Involve residents, local businesses, and community groups to
Feasibility study of GBGI ^b	 increase awareness and support. Conduct a preliminary cost-benefit analysis to assess the feasibility and potential effectiveness of different GBGI measures. Consider factors such as implementation costs, maintenance requirements, technical feasibility, and expected benefits in terms of heat reduction and other co-benefits. Identify suitable locations for implementation based on the analysis of UHI intensity and vulnerability maps/zones. Explore funding options and potential partnerships to support implementation.
Assess co- benefits and dis-benefits of the GBGI ^c	 Consider the multiple co-benefits associated with GBGI, such as improved air quality, reduced stormwater runoff, enhanced biodiversity, and increased recreational opportunities. Assess potential dis-benefits, such as increased maintenance requirements, potential conflicts with existing infrastructure, allergic reactions, and displacement of vulnerable populations due to gentrification. Conduct a comprehensive cost-benefit analysis to evaluate the overall value and trade-offs of implementing GBGI.

Design GBGI measures ^d	• Select suitable GBGI measures based on the local context, including the climate, topography, available space, and community preferences.
·	• Incorporate GBGI elements such as trees, green roofs, green walls, and permeable surfaces to maximise shade, evapotranspiration, and cooling effects.
•	• Consider the use of native and drought-tolerant plant species for long-term sustainability and reduced water demand.
·	• Ensure proper placement and spacing of vegetation to optimise shading and air movement.
Policy and planning ^e	• Integrate GBGI strategies into urban planning and policy frameworks, such as comprehensive plans, zoning ordinances, and building codes.
•	• Develop heat mitigation plans that prioritise the implementation of GBGI measures in high-risk areas.
•	• Provide incentives, regulations, and guidelines to encourage the adoption of GBGI in private and public developments.
·	• Collaborate with relevant organisations to ensure coordination and alignment of policies, goals, and levelling up of sustainability agenda (e.g., SDGs, European Green Deal, Paris Climate Agreement).
Implementat ion ^f	• Establish partnerships and collaborations between governmental agencies, private sector organisations, and community groups for effective implementation.
·	• Allocate sufficient resources, including funding, staff, and technical expertise, for the installation and maintenance of the selected GBGI measures.
•	• Ensure proper construction practices and quality control to maximise the performance and longevity of implemented measures.
•	• Incorporate community engagement and education programs to foster stewardship and long-term support for the solutions in place.

	Monitoring ^g	 Utilise relevant or a combination of in-situ measurements, remote sensing, and modelling methods to monitor the performance and effectiveness of GBGI used against heatwaves. Deploy and use weather stations, sensors, and satellite imagery to evaluate the efficacy of the GBGI measures. Collect data on temperature, humidity, air quality, and vegetation health to evaluate the impact of implemented measures. Employ modelling tools to simulate the cooling effects and assess potential future scenarios.
	Evaluation ^h	 Conduct a comprehensive evaluation of the implemented GBGI measures to assess their effectiveness and cost-effectiveness. Compare the heat risk before and after implementation using temperature data, health indicators, and energy consumption.
		 Analyse the economic, social, and environmental benefits achieved through the implementation of GBGI. Incorporate feedback from stakeholders and learn from the implementation process to inform future improvements.
	Upscaling and replication ⁱ	 Develop strategies for upscaling and replicating successful GBGI measures in different neighbourhoods and cities. Share successful case studies and best practices to encourage replication in other areas and facilitate upscaling of GBGI measures. Adapt the GBGI approach to suit local contexts, considering factors like climate, social dynamics, and available resources. Develop training programs and capacity-building initiatives to support the replication and upscaling of GBGI measures. Foster knowledge exchange among cities and regions.
340 341 342 343 344	^a Sherman and For al. ²³⁸ ; Kumar et al ^g Augusto et al. ²⁴⁴ ;	d ²³³ ; O'Brien et al. ²³⁴ ; ^b Coutts et al. ²³⁵ ; ^c Curt et al. ²³⁶ ; Ommer et al. ²³⁷ ; ^d Dumitru et . ²³⁹ ; ^e Davies et al. ²⁴⁰ ; ^e European Green Deal ²⁴¹ ; ^f Di Pirro et al. ²⁴² ; Topal et al. ²⁴³ ; ^h Frantzeskaki ²⁴⁵ ; ⁱ Cortinovis et al. ²⁴⁶ .

346 **References**

- Mell, I., Allin, S., Reimer, M., & Wilker, J. (2017). Strategic green infrastructure
 planning in Germany and the UK: a transnational evaluation of the evolution of urban
 greening policy and practice. International Planning Studies 22, 333–349.
- Wright, H. (2011). Understanding green infrastructure: the development of a contested
 concept in England. Local Environment 16, 1003-1019.
- Byrne, J.A., Lo, A.Y., & Jianjun, Y. (2015). Residents' understanding of the role of
 green infrastructure for climate change adaptation in Hangzhou, China. Landscape and
 urban planning 138, 132-143.
- Jones, L., Anderson, S., Læssøe, J., Banzhaf, E., Jensen, A., Bird, D.N., Miller, J.,
 Hutchins, M.G., Yang, J., Garrett, J., & Taylor, T. (2022). A typology for urban green
 infrastructure to guide multifunctional planning of nature-based solutions. NatureBased Solutions 2, 100041.
- 5. Debele, S.E., Kumar, P., Sahani, J., Marti-Cardona, B., Mickovski, S.B., Leo, L.S.,
 Porcù, F., Bertini, F., Montesi, D., Vojinovic, Z., & Di Sabatino, S. (2019). Naturebased solutions for hydro-meteorological hazards: Revised concepts, classification
 schemes and databases. Environmental Research 179, 108799.
- 363 6. Cheung, P.K., Jim, C.Y., Tapper, N., Nice, K.A., & Livesley, S.J. (2022). Daytime
 364 irrigation leads to significantly cooler private backyards in summer. Urban Climate 46,
 365 101310.
- Castellar, J.A., Popartan, L.A., Pueyo-Ros, J., Atanasova, N., Langergraber, G.,
 Säumel, I., Corominas, L., Comas, J., & Acuna, V. (2021). Nature-based solutions in
 the urban context: Terminology, classification and scoring for urban challenges and
 ecosystem services. Science of the Total Environment 779, 146237.
- Bemuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave,
 A.G., Mittal, N., Feliú, E., & Faehnle, M. (2014). Mitigating and adapting to climate
 change: Multi-functional and multi-scale assessment of green urban infrastructure.
 Journal of Environmental Management 146, 107-115.
- Rogers, C.D.F., & Hunt, D.V.L. (2019). Realising Visions for Future Cities: An
 Aspirational Futures Methodology. Proceedings of the Institution of Civil Engineers –
 Urban Design and Planning 172, 125-140.
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D.G. (2009). Preferred reporting items
 for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal
 Medicine 151, 264-269.
- R Core Team (2022). R: A language and environment for statistical computing. R
 Foundation for Statistical Computing, Vienna, Austria. URL https://www.R project.org/.
- Mazziotta, M., & Pareto, A. (2022). Normalization methods for spatio-temporal
 analysis of environmental performance: Revisiting the Min–Max method.
 Environmetrics 33, e2730.
- 13. Cai, Y., Li, C., Ye, L., Xiao, L., Gao, X., Mo, L., Du, H., Zhou, Y., & Zhou, G. (2022).
 Effect of the roadside tree canopy structure and the surrounding on the daytime urban air temperature in summer. Agricultural and Forest Meteorology 316, 108850.
- 389 14. Morabito, M., Crisci, A., Guerri, G., Messeri, A., Congedo, L. & Munafò, M. (2021).
 390 Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious 391 surface influences. Science of the Total Environment 751, 142334.
- 392 15. Xi, C., Wang, D., & Cao, S.J. (2023). Impacts of trees-grass area ratio on thermal
 393 environment, energy saving, and carbon benefits. Urban Climate 47, 101393.

- Windbourne, J., Jones, T., Garvey, S., Harrison, J., Wang, L., Li, D., Templer, P., &
 Hutyra, L. (2020). Tree Transpiration and Urban Temperatures: Current Understanding,
 Implications, and Future Research Directions. BioScience 70, 576–588.
- Lu, J., Li, Q., Zeng, L., Chen, J., Liu, G., Li, Y., Li, W., & Huang, K. (2017). A microclimatic study on cooling effect of an urban park in a hot and humid climate.
 Sustainable cities and society 32, 513-522.
- Chibuike, E.M., Ibukun, A.O., Abbas, A., & Kunda, J.J. (2018). Assessment of green parks cooling effect on Abuja urban microclimate using geospatial techniques. Remote Sensing Applications: Society and Environment 11, 11-21.
- Peng, J., Dan, Y., Qiao, R., Liu, Y., Dong, J., & Wu, J. (2021). How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives.
 Remote Sensing of Environment 252, 112135.
- 406 20. Gunawardena, K.R., Wells, M.J., & Kershaw, T. (2017). Utilising green and bluespace
 407 to mitigate urban heat island intensity. Science of the Total Environment 584, 1040408 1055.
- Lynn, B.H. & Lynn, I.M. (2020). The impact of cool and green roofs on summertime
 temperatures in the cities of Jerusalem and Tel Aviv. Science of the Total Environment
 743, 140568.
- 412 22. Iaria, J., & Susca, T. (2022). Analytic Hierarchy Processes (AHP) evaluation of green
 413 roof-and green wall-based UHI mitigation strategies via ENVI-met simulations. Urban
 414 Climate 46, 101293.
- Li, H., Zhao, Y., Sützl, B., Kubilay, A., & Carmeliet, J. (2022). Impact of green walls
 on ventilation and heat removal from street canyons: Coupling of thermal and
 aerodynamic resistance. Building and Environment 214, 108945.
- 418 24. Feitosa, R.C., & Wilkinson, S.J. (2020). Small-scale experiments of seasonal heat stress
 419 attenuation through a combination of green roof and green walls. Journal of Cleaner
 420 Production 250, 119443.
- 421 25. Sun, R., Chen, A., Chen, L., & Lü, Y. (2012). Cooling effects of wetlands in an urban region: The case of Beijing. Ecological Indicators 20, 57-64.
- 26. Zhang, Z., Chen, F., Barlage, M., Bortolotti, L.E., Famiglietti, J., Li, Z., Ma, X., & Li,
 Y. (2022). Cooling Effects Revealed by Modeling of Wetlands and Land-Atmosphere
 Interactions. Water Resources Research 58, e2021WR030573.
- 426 27. Ampatzidis, P, & Kershaw, T. (2020). A review of the impact of blue space on the
 427 urban microclimate. Science of the Total Environment 730, 139068.
- 428 28. Hathway, E.A., & Sharples, S. (2012). The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. Building and Environment 58, 14-22.
- 431 29. Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., & La Rosa, D. (2019).
 432 Understanding the relationship between urban blue infrastructure and land surface
 433 temperature. Science of the Total Environment 694, 133742.
- Wu, S., Yang, H., Luo, P., Luo, C., Li, H., Liu, M., Ruan, Y., Zhang, S., Xiang, P., Jia,
 H., & Cheng, Y. (2021). The effects of the cooling efficiency of urban wetlands in an
 inland megacity: A case study of Chengdu, Southwest China. Building and
 Environment 204, 108128.
- 438 31. Teichmann, F., Horvath, A., Luisser, M., & Korjenic, A. (2022). The Impact of Small439 Scale Greening on the Local Microclimate—A Case Study at Two School Buildings in
 440 Vienna. Sustainability 14, 13089.

- 32. Toe, D. H. C., & Kubota, T. (2015). Comparative assessment of vernacular passive cooling techniques for improving indoor thermal comfort of modern terraced houses in hot–humid climate of Malaysia. Solar Energy 114, 229–258.
- 444 33. Aghasizadeh, S., Kari, B. M., & Fayaz, R. (2022). Thermal performance of balcony
 445 thermal bridge solutions in reinforced concrete and steel frame structures. Journal of
 446 Building Engineering 48, 103984.
- 447 34. Cui, Y., & Zheng, H.-C. (2016). Impact of Three-Dimensional Greening of Buildings in
 448 Cold Regions in China on Urban Cooling Effect. Procedia Engineering 169, 297–302.
- Grudzińska, M. (2021). Overheating assessment in flats with glazed balconies in warmsummer humid continental climate. Building Services Engineering Research and
 Technology 42, 583–602.
- 452 36. Hilliaho, K., Köliö, A., Pakkala, T., Lahdensivu, J., Vinha, J. (2016). Effects of added
 453 glazing on Balcony indoor temperatures: Field measurements. Energy and Buildings
 454 128, 458-472.
- Grudzińska, M., 2021. Overheating assessment in flats with glazed balconies in warmsummer humid continental climate. Building Services Engineering Research and
 Technology 42, 583-602.
- 458 38. Cheung, P. K., Jim, C. Y., Tapper, N., Nice, K. A., & Livesley, S. J. (2022). Daytime
 459 irrigation leads to significantly cooler private backyards in summer. Urban Climate 46, 101310.
- 461 39. Gao, K., Santamouris, M., & Feng, J. (2020). On the cooling potential of irrigation to
 462 mitigate urban heat island. Science of the Total Environment 740, 139754.
- 463 40. Broadbent, A. M., Coutts, A. M., Tapper, N. J., & Demuzere, M. (2018). The cooling
 464 effect of irrigation on urban microclimate during heatwave conditions. Urban Climate
 465 23, 309–329.
- 466 41. Wang, C., Wang, Z.-H., & Yang, J. (2019). Urban water capacity: Irrigation for heat mitigation. Computers, Environment and Urban Systems 78, 101397.
- 468 42. Lau, S. S., Lin, P., & Qin, H. (2012). A preliminary study on environmental
 469 performances of pocket parks in high-rise and high-density urban context in Hong
 470 Kong. International Journal of Low-Carbon Technologies 7, 215–225.
- 471 43. Lin, P., Lau, S. S. Y., Qin, H., & Gou, Z. (2017). Effects of urban planning indicators
 472 on urban heat island: a case study of pocket parks in high-rise high-density
 473 environment. Landscape and Urban Planning 168, 48–60.
- 474 44. Rosso, F., Pioppi, B., & Pisello, A. L. (2022). Pocket parks for human-centered urban climate change resilience: Microclimate field tests and multi-domain comfort analysis
 476 through portable sensing techniques and citizens' science. Energy and Buildings 260, 111918.
- 478 45. Trájer, A. J., Sebestyén, V., Domokos, E., & Abonyi, J. (2022). Indicators for climate
 479 change-driven urban health impact assessment. Journal of Environmental Management
 480 323, 116165.
- 481 46. Hou, J., Wang, Y., Zhou, D., & Gao, Z. (2022). Environmental Effects from Pocket
 482 Park Design According to District Planning Patterns—Cases from Xi'an, China.
 483 Atmosphere 13, 300.
- 484 47. Ma, D., Wang, Y., Zhou, D., & Zhu, Z. (2023). Cooling effect of the pocket park in the
 485 built-up block of a city: a case study in Xi'an, China. Environmental Science and
 486 Pollution Research 30, 23135–23154.

- 487 48. Wu, C., Li, J., Wang, C., Song, C., Haase, D., Breuste, J., & Finka, M. (2021).
 488 Estimating the Cooling Effect of Pocket Green Space in High Density Urban Areas in
 489 Shanghai, China. Frontiers in Environmental Science 9, 657969.
- 49. Ibrahim, M. S. (2021). Mitigation strategies of the urban heat island over Greater Cairo
 491 Metropolitan Area, Egypt utilizing ENVI-met model. Catrina: The International Journal
 492 of Environmental Sciences 24, 35-47.
- 493 50. Huang, J., Hao, T., Wang, Y., & Jones, P. (2022). A street-scale simulation model for
 494 the cooling performance of urban greenery: Evidence from a high-density city.
 495 Sustainable Cities and Society 82, 103908.
- 496 51. Lu, J., Li, Q., Zeng, L., Chen, J., Liu, G., Li, Y., Li, W., & Huang, K. (2017). A microclimatic study on cooling effect of an urban park in a hot and humid climate.
 498 Sustainable Cities and Society 32, 513–522.
- 499 52. Chibuike, E. M., Ibukun, A. O., Abbas, A., & Kunda, J. J. (2018). Assessment of green parks cooling effect on Abuja urban microclimate using geospatial techniques. Remote Sensing Applications: Society and Environment 11, 11–21.
- 502 53. Zhang, Z., Lv, Y., & Pan, H. (2013). Cooling and humidifying effect of plant
 503 communities in subtropical urban parks. Urban Forestry & Urban Greening 12, 323–
 504 329.
- 54. Shi, M., Chen, M., Jia, W., Du, C., & Wang, Y. (2023). Cooling effect and cooling accessibility of urban parks during hot summers in China's largest sustainability experiment. Sustainable Cities and Society 93, 104519.
- 508 55. Du, C., Jia, W., Chen, M., Yan, L., & Wang, K. (2022). How can urban parks be
 509 planned to maximize cooling effect in hot extremes? Linking maximum and
 510 accumulative perspectives. Journal of Environmental Management 317, 115346.
- 56. Peng, J., Dan, Y., Qiao, R., Liu, Y., Dong, J., & Wu, J. (2021). How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives.
 Remote Sensing of Environment 252, 112135.
- 514 57. Yang, A.-S., Juan, Y.-H., Wen, C.-Y., & Chang, C.-J. (2017). Numerical simulation of
 515 cooling effect of vegetation enhancement in a subtropical urban park. Applied Energy
 516 192, 178–200.
- 517 58. Chen, M., Jia, W., Yan, L., Du, C., & Wang, K. (2022). Quantification and mapping
 518 cooling effect and its accessibility of urban parks in an extreme heat event in a
 519 megacity. Journal of Cleaner Production 334, 130252.
- 520 59. Das, M., Das, A., & Momin, S. (2022). Quantifying the cooling effect of urban green
 521 space: A case from urban parks in a tropical mega metropolitan area (India).
 522 Sustainable Cities and Society 87, 104062.
- 523 60. Zhou, Y., Zhao, H., Mao, S., Zhang, G., Jin, Y., Luo, Y., Huo, W., Pan, Z., An, P., &
 524 Lun, F. (2022). Studies on urban park cooling effects and their driving factors in China:
 525 Considering 276 cities under different climate zones. Building and Environment 222,
 526 109441.
- 61. Algretawee, H. (2022). The effect of graduated urban park size on park cooling island
 and distance relative to land surface temperature (LST). Urban Climate 45, 101255.
- 62. Qiu, K., & Jia, B. (2020). The roles of landscape both inside the park and the surroundings in park cooling effect. Sustainable Cities and Society 52, 101864.
- 531 63. Li, Y., Fan, S., Li, K., Zhang, Y., Kong, L., Xie, Y., & Dong, L. (2021). Large urban parks summertime cool and wet island intensity and its influencing factors in Beijing, China. Urban Forestry and Urban Greening 65.

- 64. Gao, Z., Zaitchik, B. F., Hou, Y., & Chen, W. (2022). Toward park design optimization
 to mitigate the urban heat Island: Assessment of the cooling effect in five U.S. cities.
 Sustainable Cities and Society 81, 103870.
- 537 65. Yang, A.S., Juan, Y.H., Wen, C.Y., Chang, C.J. (2017). Numerical simulation of
 538 cooling effect of vegetation enhancement in a subtropical urban park. Applied energy
 539 192, 178-200.
- 540 66. Şimşek, Ç. K., Serter, G., & Ödül, H. (2022). A Study on the Cooling Capacities of
 541 Urban Parks and Their Interactions with the Surrounding Urban Patterns. Applied
 542 Spatial Analysis and Policy 15, 1287–1317.
- 543 67. Li, Y., Fan, S., Li, K., Zhang, Y., & Dong, L. (2021). Microclimate in an urban park
 544 and its influencing factors: a case study of Tiantan Park in Beijing, China. Urban
 545 Ecosystems 24, 767-778.
- 546 68. Cheung, P. K., Jim, C. Y., & Siu, C. T. (2021). Effects of urban park design features on
 547 summer air temperature and humidity in compact-city milieu. Applied Geography 129,
 548 102439.
- 69. Algretawee, H., Rayburg, S., & Neave, M. (2019). Estimating the effect of park
 proximity to the central of Melbourne city on Urban Heat Island (UHI) relative to Land
 Surface Temperature (LST). Ecological Engineering 138, 374–390.
- Yan, H., Wu, F., & Dong, L. (2018). Influence of a large urban park on the local urban
 thermal environment. Science of the Total Environment 662, 882–891.
- 554 71. Chang, N., & Li, D. W. (2016). A study of the temperature-humidity effect and
 555 luminous environment design for urban green space. Chemical Engineering
 556 Transactions 51, 103–108.
- 557 72. Irmak, M. A., Yilmaz, S., & Dursun, D. (2017). Effect of different pavements on human thermal comfort conditions. Atmósfera 30, 355–366.
- 559 73. Su, X. (2018). Study on Humidification and Cooling Effect of Garden Plants. 4th
 560 International Conference on Education, Management and Information Technology
 561 (ICEMIT 2018).
- 562 74. Yilmaz, S., Mutlu, E., & Yilmaz, H. (2018). Alternative scenarios for ecological urbanizations using ENVI-met model. Environmental Science and Pollution Research 25, 26307–26321.
- 565 75. Yilmaz, S., Irmak, M. A., & Qaid, A. (2022). Assessing the effects of different urban
 566 landscapes and built environment patterns on thermal comfort and air pollution in
 567 Erzurum city, Turkey. Building and Environment 219, 109210.
- 568 76. Ghani, S., ElBialy, E. A., Bakochristou, F., Gamaledin, S. M. A., Rashwan, M. M., &
 569 Hughes, B. (2017). Thermal performance of stadium's Field of Play in hot climates.
 570 Energy and Buildings 139, 702–718.
- 571 77. Kuchcik, M., Dudek, W., Błażejczyk, K., Milewski, P., & Błażejczyk, A. (2016). Two
 572 faces to the greenery on housing estates-mitigating climate but aggravating allergy. A
 573 Warsaw case study. Urban Forestry & Urban Greening 16, 170–181.
- 574 78. Vanos, J. K., Middel, A., McKercher, G. R., Kuras, E. R., & Ruddell, B. L. (2016). Hot
 575 playgrounds and children's health: A multiscale analysis of surface temperatures in
 576 Arizona, USA. Landscape and Urban Planning 146, 29–42.
- 577 79. Nguyen, T. T., Eslick, H., Barber, P., Harper, R., & Dell, B. (2022). Cooling effects of
 578 urban vegetation: The role of golf courses. Remote Sensing 14, 4351.
- 579 80. Zölch, T., Maderspacher, J., Wamsler, C., & Pauleit, S. (2016). Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry & Urban Greening 20, 305–316.

- 582 81. Sallay, Á., Mikházi, Z., Gecséné Tar, I., & Takács, K. (2022). Cemeteries as a Part of
 583 Green Infrastructure and Tourism. Sustainability 14, 2918.
- 82. Rost, A. T., Liste, V., Seidel, C., Matscheroth, L., Otto, M., Meier, F., & Fenner, D.
 (2020). How cool are allotment gardens? A case study of nocturnal air temperature differences in Berlin, Germany. Atmosphere 11, 500.
- 83. Hawkins, T. W., Brazel, A. J., Stefanov, W. L., Bigler, W., & Saffell, E. M. (2004).
 The role of rural variability in urban heat island determination for Phoenix, Arizona.
 Journal of Applied Meteorology and Climatology 43, 476-486.
- 84. Masson, V., Lion, Y., Peter, A., Pigeon, G., Buyck, J., & Brun, E. (2013). "Grand Paris": regional landscape change to adapt city to climate warming. Climatic Change 117, 769-782.
- 85. Basu, T., & Das, A. (2023). Urbanization induced degradation of urban green space and
 its association to the land surface temperature in a medium-class city in India.
 Sustainable Cities and Society 90, 104373.
- 86. Boeri, A. N. D. R. E. A., Gaspari, J. A. C. O. P. O., Gianfrate, V. A. L. E. N. T. I. N.
 A., & Longo, D. A. N. I. L. A. (2017). Accelerating urban transition: An approach to greening the built environment. WIT Transactions on Ecology and the Environment 223, 3-14.
- Abdollahzadeh, N., & Biloria, N. (2021). Outdoor thermal comfort: Analyzing the
 impact of urban configurations on the thermal performance of street canyons in the
 humid subtropical climate of Sydney. Frontiers of Architectural Research 10, 394–409.
- 88. Cai, Y., Li, C., Ye, L., Xiao, L., Gao, X., Mo, L., Du, H., Zhou, Y., & Zhou, G. (2022).
 Effect of the roadside tree canopy structure and the surrounding on the daytime urban air temperature in summer. Agricultural and Forest Meteorology 316, 108850.
- 89. Morabito, M., Crisci, A., Guerri, G., Messeri, A., Congedo, L., & Munafò, M. (2021).
 Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Science of The Total Environment 751, 142334.
- 90. Napoli, M., Massetti, L., Brandani, G., Petralli, M., & Orlandini, S. (2016). Modeling
 Tree Shade Effect on Urban Ground Surface Temperature. Journal of Environmental
 Quality 45, 146–156.
- 612 91. Xi, C., Wang, D., & Cao, S.-J. (2023). Impacts of trees-grass area ratio on thermal
 613 environment, energy saving, and carbon benefits. Urban Climate 47, 101393.
- 614 92. Zeeshan, M., Ali, Z., Sajid, M., Ali, M., & Usman, M. (2022). Modelling the cooling
 615 effectiveness of street trees with actual canopy drag and real transpiration rate under
 616 representative climatic conditions. Journal of Building Performance Simulation, 1–14.
- 617 93. Abu Ali, M., Alawadi, K., & Khanal, A. (2021). The role of green infrastructure in
 618 enhancing microclimate conditions: A case study of a low-rise neighborhood in Abu
 619 Dhabi. Sustainability 13, 4260.
- Marando, F., Salvatori, E., Sebastiani, A., Fusaro, L., & Manes, F. (2019). Regulating
 Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect
 mitigation in the municipality of Rome, Italy. Ecological Modelling 392, 92–102.
- 623 95. Zeeshan, M., Ali, Z., Ud Din, E. (2023). Thermal performance prediction of street trees
 624 inside isolated open spaces-evaluations from real scale retrofitting project. Journal of
 625 Building Performance Simulation 16, 381-397.
- 96. Wang, Y., & Akbari, H. (2016). The effects of street tree planting on Urban Heat Island
 mitigation in Montreal. Sustainable Cities and Society 27, 122–128.

- 628 97. Lachapelle, J. A., Scott Krayenhoff, E., Middel, A., Coseo, P., & Warland, J. (2023).
 629 Maximizing the pedestrian radiative cooling benefit per street tree. Landscape and
 630 Urban Planning 230, 104608.
- 631 98. Segura, R., Krayenhoff, E. S., Martilli, A., Badia, A., Estruch, C., Ventura, S., &
 632 Villalba, G. (2022). How do street trees affect urban temperatures and radiation
 633 exchange? Observations and numerical evaluation in a highly compact city. Urban
 634 Climate 46, 101288.
- Miao, C., Li, P., Huang, Y., Sun, Y., Chen, W., & Yu, S. (2023). Coupling outdoor air
 quality with thermal comfort in the presence of street trees: a pilot investigation in
 Shenyang, Northeast China. Journal of Forestry Research 34, 831-839.
- 638 100. Geletič, J., Lehnert, M., Resler, J., Krč, P., Middel, A., Krayenhoff, E. S., & Krüger, E.
 639 (2022). High-fidelity simulation of the effects of street trees, green roofs and green
 640 walls on the distribution of thermal exposure in Prague-Dejvice. Building and
 641 Environment 223, 109484.
- 642 101. Mussetti, G., Brunner, D., Henne, S., Allegrini, J., Scott Krayenhoff, E., Schubert, S.,
 643 Feigenwinter, C., Vogt, R., Wicki, A., & Carmeliet, J. (2020). COSMO-BEP-Tree v1.0:
 644 A coupled urban climate model with explicit representation of street trees.
 645 Geoscientific Model Development 13, 1685–1710.
- Vailshery, L. S., Jaganmohan, M., & Nagendra, H. (2013). Effect of street trees on microclimate and air pollution in a tropical city. Urban Forestry & Urban Greening 12, 408–415.
- 649 103. Gillner, S., Vogt, J., Tharang, A., Dettmann, S., & Roloff, A. (2015). Role of street
 650 trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape
 651 and Urban Planning 143, 33–42.
- Coutts, A. M., White, E. C., Tapper, N. J., Beringer, J., & Livesley, S. J. (2016).
 Temperature and human thermal comfort effects of street trees across three contrasting
 street canyon environments. Theoretical and Applied Climatology 124, 55–68.
- 105. Sanusi, R., Johnstone, D., May, P., & Livesley, S. J. (2016). Street Orientation and Side
 of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in
 Summer. Journal of Environmental Quality 45, 167–174.
- 658 106. Aminipouri, M., Knudby, A. J., Krayenhoff, E. S., Zickfeld, K., & Middel, A. (2019).
 659 Modelling the impact of increased street tree cover on mean radiant temperature across
 660 Vancouver's local climate zones. Urban Forestry & Urban Greening 39, 9–17.
- 107. Kusaka, H., Nakamura, Y., & Asano, Y. (2022). UV Parasol, Dry-Mist Spraying, and
 Street Trees as Tools for Heat Stress Mitigation. Journal of the Meteorological Society
 of Japan. Ser. II 100, 677–685.
- 664 108. Cho, H. (2022). Effects of Road Components and Roadside Vegetation on Temperature
 665 Reduction in Seoul Considering Air, Wet-Bulb Globe, and Surface Temperatures.
 666 Sustainability 14, 16663.
- Huang, K. T., & Li, Y. J. (2017). Impact of street canyon typology on building's peak
 cooling energy demand: A parametric analysis using orthogonal experiment. Energy
 and Buildings 154, 448-464.
- 670 110. Stojanovic, N., Vasiljevic, N., Mešicek, M., & Lisica, A. (2018). The influence of
 671 roadside green spaces on thermal conditions in the urban environment. Journal of
 672 Architectural and Planning Research 35, 165-178.
- 111. Zaki, S. A., Toh, H. J., Yakub, F., Mohd Saudi, A. S., Ardila-Rey, J. A., &
 Muhammad-Sukki, F. (2020). Effects of roadside trees and road orientation on thermal
 environment in a tropical city. Sustainability 12, 1053.

- 676 112. Zheng, X., Chen, L., & Yang, J. (2023). Simulation framework for early design
 677 guidance of urban streets to improve outdoor thermal comfort and building energy
 678 efficiency in summer. Building and Environment 228, 109815.
- 679 113. Žižlavská, N., Mikita, T., & Patočka, Z. (2021). The Effects of Roadside Woody
 680 Vegetation on the Surface Temperature of Cycle Paths. Land 10, 483.
- 681 114. Adams, M. P., & Smith, P. L. (2014). A systematic approach to model the influence of
 682 the type and density of vegetation cover on urban heat using remote sensing. Landscape
 683 and Urban Planning 132, 47-54.
- 115. Yonghong, S., Fandi, L., Gaofeng, Z., Zhang, K., & Qi, Z. (2023). The biophysical climate mitigation potential of riparian forest ecosystems in arid Northwest China. Science of The Total Environment 862, 160856.
- 116. Tsai, C. W., Young, T., Warren, P. H., & Maltby, L. (2017). Riparian thermal conditions across a mixed rural and urban landscape. Applied geography 87, 106-114.
- 689 117. Dugdale, S.J., Malcolm, I.A., Hannah, D.M. (2019). Drone-based Structure-from690 Motion provides accurate forest canopy data to assess shading effects in river
 691 temperature models. Science of the Total Environment 678, 326-340.
- 692 118. Zheng, X., Zhang, N., & Wang, X. (2022). Development of a modified thermal
 693 humidity index and its application to human thermal comfort of urban vegetation
 694 patches. Ecosystem Health and Sustainability 8, 2130095.
- Example 119. Zhang, J., & Hu, D. (2022). Research of practical heat mitigation strategies in a residential district of Beijing, North China. Urban Climate 46, 101314.
- 697 120. Peluso, P., Persichetti, G., & Moretti, L. (2022). Effectiveness of Road Cool
 698 Pavements, Greenery, and Canopies to Reduce the Urban Heat Island Effects.
 699 Sustainability 14, 16027.
- 121. Del Serrone, G., Peluso, P., & Moretti, L. (2022). Evaluation of Microclimate Benefits
 Due to Cool Pavements and Green Infrastructures on Urban Heat Islands. Atmosphere
 13, 1586.
- 703 122. Zou, Z., Yang, Y., Qiu, G. Y. (2019). Quantifying the evapotranspiration rate and its
 704 cooling effects of urban hedges based on three-temperature model and infrared remote
 705 sensing. Remote Sensing 11, 202.
- Yoshida, A., Hayashi, D., Shimazaki, Y., & Kinoshita, S. (2019). Evaluation of thermal sensation in various outdoor radiation environments. Architectural Science Review 62, 261–270.
- 709 124. Wang, X., Li, H., & Sodoudi, S. (2022). The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Building and Environment 217, 109082.
- 712 125. Cortes, A., Rejuso, A. J., Santos, J. A., & Blanco, A. (2022). Evaluating mitigation
 713 strategies for urban heat island in Mandaue City using ENVI-met. Journal of Urban
 714 Management 11, 97–106.
- 715 126. Fleck, R., Gill, R. L., Saadeh, S., Pettit, T., Wooster, E., Torpy, F., & Irga, P. (2022).
 716 Urban green roofs to manage rooftop microclimates: A case study from Sydney,
 717 Australia. Building and Environment 209, 108673.
- 718 127. Dong, J., Lin, M., Zuo, J., Lin, T., Liu, J., Sun, C., & Luo, J. (2020). Quantitative study
 719 on the cooling effect of green roofs in a high-density urban Area—A case study of
 720 Xiamen, China. Journal of Cleaner Production 255, 120152.
- 128. Kostadinović, D., Jovanović, M., Bakić, V., Stepanić, N., & Todorović, M. (2022).
 Experimental investigation of summer thermal performance of the green roof system with mineral wool substrate. Building and Environment 217, 109061.

- Peng, L. L. H., Yang, X., He, Y., Hu, Z., Xu, T., Jiang, Z., & Yao, L. (2019). Thermal and energy performance of two distinct green roofs: Temporal pattern and underlying factors in a subtropical climate. Energy and Buildings 185, 247–258.
- 130. Lee, L. S. H., & Jim, C. Y. (2019). Urban woodland on intensive green roof improved
 outdoor thermal comfort in subtropical summer. International Journal of
 Biometeorology 63, 895–909.
- 730 131. Köhler, M., & Kaiser, D. (2019). Evidence of the climate mitigation effect of green
 731 roofs-A 20-year weather study on an Extensive Green Roof (EGR) in Northeast
 732 Germany. Buildings 9, 157.
- Park, J., Kim, J.-H., Dvorak, B., & Lee, D. K. (2018). The role of green roofs on
 microclimate mitigation effect to local climates in summer. International Journal of
 Environmental Research 12, 671–679.
- 133. Lynn, B. H., & Lynn, I. M. (2020). The impact of cool and green roofs on summertime
 temperatures in the cities of Jerusalem and Tel Aviv. Science of The Total Environment
 743, 140568.
- 134. Chen, X., Jeong, S., Zheng, Y., Park, H., Park, C. E., Joo, J., Choi, W., Chen, X., &
 Zheng, C. (2020). Evaluation of Different Roof Materials for the Mitigation of Urban
 Warming in a Subtropical Monsoon Climate. Journal of Geophysical Research:
 Atmospheres 125, e2019JD031972.
- 135. Cortes, A., Rejuso, A. J., Santos, J. A., & Blanco, A. (2022). Evaluating mitigation
 strategies for urban heat island in Mandaue City using ENVI-met. Journal of Urban
 Management 11, 97–106.
- 136. Solcerova, A., van de Ven, F., Wang, M., Rijsdijk, M., & van de Giesen, N. (2017). Do green roofs cool the air? Building and Environment 111, 249–255.
- 748 137. Bochenek, A. D., & Klemm, K. (2020). The impact of passive green technologies on
 749 the microclimate of historic urban structures: The case study of Lodz. Atmosphere 11,
 750 974.
- 138. Chen, B., Wang, W., You, Y., Zhu, W., Dong, Y., Xu, Y., Chang, M., & Wang, X.
 (2023). Influence of rooftop mitigation strategies on the thermal environment in a subtropical city. Urban Climate 49, 101450.
- 139. Elnabawi, M. H., & Saber, E. (2023). A numerical study of cool and green roof
 strategies on indoor energy saving and outdoor cooling impact at pedestrian level in a
 hot arid climate. Journal of Building Performance Simulation 16, 72–89.
- 757 140. Zuo, J., Ma, J., Lin, T., Dong, J., Lin, M., & Luo, J. (2022). Quantitative valuation of
 758 green roofs' cooling effects under different urban spatial forms in high-density urban
 759 areas. Building and Environment 222, 109367.
- 141. Iaria, J., & Susca, T. (2022). Analytic Hierarchy Processes (AHP) evaluation of green roof- and green wall-based UHI mitigation strategies via ENVI-met simulations. Urban Climate 46, 101293.
- Fleck, R., Gill, R. L., Saadeh, S., Pettit, T., Wooster, E., Torpy, F., & Irga, P. (2022).
 Urban green roofs to manage rooftop microclimates: A case study from Sydney,
 Australia. Building and Environment 209, 108673.
- Robbiati, F. O., Cáceres, N., Hick, E. C., Suarez, M., Soto, S., Barea, G., Matoff, E.,
 Galetto, L., & Imhof, L. (2022). Vegetative and thermal performance of an extensive
 vegetated roof located in the urban heat island of a semiarid region. Building and
 Environment 212, 108791.

- 144. Liao, J., Tan, X., & Li, J. (2021). Evaluating the vertical cooling performances of urban
 vegetation scenarios in a residential environment. Journal of Building Engineering 39,
 102313.
- 145. Cameron, R. W., Taylor, J. E., & Emmett, M. R. (2014). What's 'cool'in the world of
 green façades? How plant choice influences the cooling properties of green walls.
 Building and environment 73, 198-207.
- 146. Zhang, L., Deng, Z., Liang, L., Zhang, Y., Meng, Q., Wang, J., & Santamouris, M.
 (2019). Thermal behavior of a vertical green facade and its impact on the indoor and outdoor thermal environment. Energy and Buildings 204, 109502.
- 147. Liu, Y., Huang, Y., Zhang, Z., Wang, K., Luo, Y., & Cui, P. (2022). Impacts of green walls on the characteristics of thermo-flow and photochemical reaction kinetics within street canyons. Urban Forestry & Urban Greening 72, 127568.
- 148. Cameron, R. W., Taylor, J., & Emmett, M. (2015). A Hedera green façade–energy performance and saving under different maritime-temperate, winter weather conditions.
 Building and Environment 92, 111-121.
- 149. Jesus, M. P., Lourenço, J. M., Arce, R. M., & Macias, M. (2017). Green façades and in situ measurements of outdoor building thermal behaviour. Building and Environment 119, 11–19.
- 150. Lee, L. S. H, & Jim, C. Y. (2017). Subtropical summer thermal effects of wirerope climber green walls with different air-gap depths. Building and Environment 126, 1-12.
- Feitosa, R.C., Wilkinson, S.J. (2018). Attenuating heat stress through green roof and green wall retrofit. Building and Environment 140, 11-22.
- 152. Li, H., Zhao, Y., Sützl, B., Kubilay, A., & Carmeliet, J. (2022). Impact of green walls
 on ventilation and heat removal from street canyons: Coupling of thermal and
 aerodynamic resistance. Building and Environment 214, 108945.
- 795 153. Geletič, J., Lehnert, M., Resler, J., Krč, P., Middel, A., Krayenhoff, E.S. and Krüger, E.
 796 (2022). High-fidelity simulation of the effects of street trees, green roofs and green
 797 walls on the distribution of thermal exposure in Prague-Dejvice. Building and
 798 Environment 223, 109484.
- 799 154. Šuklje, T., Medved, S., & Arkar, C. (2016). On detailed thermal response modeling of
 800 vertical greenery systems as cooling measure for buildings and cities in summer
 801 conditions. Energy 115, 1055-1068.
- 802 155. Medl, A., Mayr, S., Rauch, H. P., Weihs, P., & Florineth, F. (2017). Microclimatic
 803 conditions of 'Green Walls', a new restoration technique for steep slopes based on a
 804 steel grid construction. Ecological engineering 101, 39-45.
- Feitosa, R. C., & Wilkinson, S. J. (2020). Small-scale experiments of seasonal heat stress attenuation through a combination of green roof and green walls. Journal of Cleaner Production 250, 119443.
- 808 157. Blanco, I., Schettini, E., & Vox, G. (2019). Predictive model of surface temperature
 809 difference between green façades and uncovered wall in Mediterranean climatic area.
 810 Applied Thermal Engineering 163, 114406.
- 811 158. Bakhshoodeh, R., Ocampo, C., & Oldham, C. (2022). Exploring the evapotranspirative cooling effect of a green façade. Sustainable Cities and Society 81, 103822.
- 813 159. Davis, M. M., Vallejo Espinosa, A. L., & Ramirez, F. R. (2019). Beyond green façades:
 814 active air-cooling vertical gardens. Smart and Sustainable Built Environment 8, 243815 252.

- 816 160. Hosseinzadeh, A., Bottacin-Busolin, A., & Keshmiri, A. (2022). A parametric study on
 817 the effects of green roofs, green walls and trees on air quality, temperature and velocity.
 818 Buildings 12, 2159.
- 819 161. Djedjig, R., Bozonnet, E., & Belarbi, R. (2015). Experimental study of the urban microclimate mitigation potential of green roofs and green walls in street canyons.
 821 International Journal of Low-Carbon Technologies 10, 34-44.
- Pragati, S., Shanthi Priya, R., Pradeepa, C., & Senthil, R. (2023). Simulation of the
 Energy Performance of a Building with Green Roofs and Green Walls in a Tropical
 Climate. Sustainability 15, 2006.
- Lin, H., Xiao, Y., Musso, F., & Lu, Y. (2019). Green façade effects on thermal
 environment in transitional space: Field measurement studies and computational fluid
 dynamics simulations. Sustainability 11, 5691.
- Price, A., Jones, E. C., & Jefferson, F. (2015). Vertical greenery systems as a strategy
 in urban heat island mitigation. Water, Air, & Soil Pollution 226, 1-11.
- 830 165. Lee, L. S. H, & Jim, C. Y. (2020). Multidimensional analysis of temporal and layered
 831 microclimatic behavior of subtropical climber green walls in summer. Urban
 832 Ecosystems 23, 389-402.
- 166. Lin, H., Musso, F., & Xiao, Y. (2018). Shading Effect and Heat Reflection of the Green
 Façade. PLEA 2018: Smart and Healthy Within the Two-Degree Limit, 931.
- 835 167. Li, J., Zheng, B., Shen, W., Xiang, Y., Chen, X., & Qi, Z. (2019). Cooling and energy836 saving performance of different green wall design: A simulation study of a block.
 837 Energies 12, 2912.
- 838 168. Peng, L.L., Yang, X., He, Y., Hu, Z., Xu, T., Jiang, Z., Yao, L. (2019). Thermal and
 839 energy performance of two distinct green roofs: Temporal pattern and underlying
 840 factors in a subtropical climate. Energy and Buildings 185, 247-258.
- 841 169. Shen, Z. (2022). Green Roof Design of Residential Area Based on Sponge City Theory.
 842 Wireless Communications and Mobile Computing, 2022.
- 843 170. AbdulBaqi, F. K. (2022). The effect of afforestation and green roofs techniques on
 844 thermal reduction in Duhok city. Trees, Forests and People 8, 100267.
- Kim, J., Lee, S. Y., & Kang, J. (2020). Temperature reduction effects of rooftop garden arrangements: A case study of Seoul National University. Sustainability 12, 6032.
- 172. Lee, L. S. H., & Jim, C. Y. (2018). Thermal-cooling performance of subtropical green roof with deep substrate and woodland vegetation. Ecological Engineering 119, 8–18.
- Tan, C. L., Tan, P. Y., Wong, N. H., Takasuna, H., Kudo, T., Takemasa, Y., Lim, C. V.
 J., & Chua, H. X. V. (2017). Impact of soil and water retention characteristics on green roof thermal performance. Energy and Buildings 152, 830–842.
- 852 174. Tan, C. L., Wong, N. H., Jusuf, S. K., & Chiam, Z. Q. (2015). Impact of plant
 853 evapotranspiration rate and shrub albedo on temperature reduction in the tropical
 854 outdoor environment. Building and Environment 94, 206–217.
- 855 175. Watanabe, S., Nagano, K., Ishii, J., & Horikoshi, T. (2014). Evaluation of outdoor
 856 thermal comfort in sunlight, building shade, and pergola shade during summer in a
 857 humid subtropical region. Building and Environment 82, 556–565.
- 858 176. Katsoulas, N., Antoniadis, D., Tsirogiannis, I. L., Labraki, E., Bartzanas, T., & Kittas,
 859 C. (2017). Microclimatic effects of planted hydroponic structures in urban
 860 environment: measurements and simulations. International Journal of Biometeorology
 861 61, 943–956.

- 862 177. Chàfer, M., Pisello, A. L., Piselli, C., & Cabeza, L. F. (2020). Greenery system for
 863 cooling down outdoor spaces: Results of an experimental study. Sustainability 12,
 864 5888.
- Kong, H., Choi, N., & Park, S. (2021). Thermal environment analysis of landscape
 parameters of an urban park in summer A case study in Suwon, Republic of Korea.
 Urban Forestry and Urban Greening 65, 127377.
- 868 179. Teichmann, F., Horvath, A., Luisser, M. and Korjenic, A. (2022). The Impact of Small869 Scale Greening on the Local Microclimate—A Case Study at Two School Buildings in
 870 Vienna. Sustainability 14, 13089.
- 871 180. Fini, A., Frangi, P., Mori, J., Donzelli, D., & Ferrini, F. (2017). Nature based solutions
 872 to mitigate soil sealing in urban areas: Results from a 4-year study comparing
 873 permeable, porous, and impermeable pavements. Environmental research 156, 443-454.
- 181. Kousis, I., Fabiani, C., & Pisello, A. L. (2022). Could a bio-resin and transparent pavement improve the urban environment? An in field thermo-optical investigation and life-cycle assessment. Sustainable Cities and Society 79, 103597.
- 182. Lu, R., Jiang, W., Xiao, J., Xing, C., Ruan, C., Li, Y., & Wu, W. (2022). Temperature
 characteristics of permeable asphalt pavement: Field research. Construction and
 Building Materials 332, 127379.
- 183. Moretti, L., Cantisani, G., Carpiceci, M., D'Andrea, A., Del Serrone, G., Di Mascio, P.,
 & Loprencipe, G. (2021). Effect of sampletrini pavers on urban heat islands.
 International journal of environmental research and public health 18, 13108.
- 184. Wang, J., Meng, Q., Tan, K., Zhang, L., & Zhang, Y. (2018). Experimental
 investigation on the influence of evaporative cooling of permeable pavements on
 outdoor thermal environment. Building and Environment 140, 184-193.
- 185. Wang, X., Wang, X., Chen, Y., & Berlyn, G. P. (2019). Photosynthetic parameters of
 urban greening trees growing on paved land. iForest-Biogeosciences and Forestry 12,
 403.
- 186. Yang, W., Wang, Z., & Zhao, X. (2015). Experimental investigation of the thermal isolation and evaporative cooling effects of an exposed shallow-water-reserved roof under the sub-tropical climatic condition. Sustainable Cities and Society 14, 293-304.
- 892 187. An, K. J., Lam, Y. F., Hao, S., Morakinyo, T. E., & Furumai, H. (2015). Multi-purpose
 893 rainwater harvesting for water resource recovery and the cooling effect. Water
 894 Research 86, 116-121.
- 895 188. Buzzard, V., Gil-Loaiza, J., Grachet, N. G., Talkington, H., Youngerman, C., Tfaily, M.
 896 M., & Meredith, L. K. (2021). Green infrastructure influences soil health: biological
 897 divergence one year after installation. Science of The Total Environment 801, 149644.
- 898 189. Kasprzyk, M., Szpakowski, W., Poznańska, E., Boogaard, F. C., Bobkowska, K., &
 899 Gajewska, M. (2022). Technical solutions and benefits of introducing rain gardens–
 900 Gdańsk case study. Science of The Total Environment 835, 155487.
- 901 190. Bai, J., Lu, Q., Zhao, Q., Wang, J., & Ouyang, H. (2013). Effects of alpine wetland
 902 landscapes on regional climate on the Zoige Plateau of China. Advances in
 903 Meteorology, 2013.
- 904 191. Cai, Z., Guldmann, J. M., Tang, Y., & Han, G. (2022). Does city-water layout matter?
 905 Comparing the cooling effects of water bodies across 34 Chinese megacities. Journal of 906 Environmental Management 324, 116263.
- 907 192. Pucher, B., Zluwa, I., Spörl, P., Pitha, U., & Langergraber, G. (2022). Evaluation of the
 908 multifunctionality of a vertical greening system using different irrigation strategies on

cooling, plant development and greywater use. Science of The Total Environment 849,157842.

- 911 193. Ruiz-Aviles, V., Brazel, A., Davis, J. M., & Pijawka, D. (2020). Mitigation of urban
 912 heat island effects through "green infrastructure": integrated design of constructed
 913 wetlands and neighborhood development. Urban Science 4, 78.
- 914 194. Shahjahan, A. T. M., Ahmed, K. S., & Said, I. B. (2020). Study on Riparian Shading
 915 Envelope for Wetlands to Create Desirable Urban Bioclimates. Atmosphere 11, 1348.
- 916 195. Şimşek, Ç. K., & Ödül, H. (2018). Investigation of the effects of wetlands on micro917 climate. Applied geography 97, 48-60.
- 918 196. Sun, R., Chen, A., Chen, L., & Lü, Y. (2012). Cooling effects of wetlands in an urban
 919 region: The case of Beijing. Ecological Indicators 20, 57-64.
- 920 197. Sušnik, J., Masia, S., Kravčík, M., Pokorný, J., & Hesslerová, P. (2022). Costs and
 921 benefits of landscape-based water retention measures as nature-based solutions to
 922 mitigating climate impacts in eastern Germany, Czech Republic, and Slovakia. Land
 923 Degradation & Development 33, 3074-3087.
- 924 198. Triyuly, W., Triyadi, S., & Wonorahardjo, S. (2021). Synergising the thermal
 925 behaviour of water bodies within thermal environment of wetland settlements.
 926 International Journal of Energy and Environmental Engineering 12, 55-68.
- 927 199. Wu, S., Yang, H., Luo, P., Luo, C., Li, H., Liu, M., Ruan, Y., Zhang, S., Xiang, P., Jia,
 928 H., & Cheng, Y. (2021). The effects of the cooling efficiency of urban wetlands in an
 929 inland megacity: A case study of Chengdu, Southwest China. Building and
 930 Environment 204, 108128.
- 200. Xu, H., Chen, H., Zhou, X., Wu, Y., & Liu, Y. (2020). Research on the relationship
 between urban morphology and air temperature based on mobile measurement: A case
 study in Wuhan, China. Urban Climate 34, 100671.
- 201. Zhang, W., Jiang, J., & Zhu, Y. (2015). Change in urban wetlands and their cold island
 effects in response to rapid urbanization. Chinese Geographical Science 25, 462-471.
- 936 202. Wenguang, Z., Wenjuan, W., Guanglei, H., Chao, G., Ming, J., & Xianguo, L. (2020).
 937 Cooling effects of different wetlands in semi-arid rural region of Northeast China.
 938 Theoretical and Applied Climatology 141, 31-41.
- 203. Zhang, Z., Chen, F., Barlage, M., Bortolotti, L. E., Famiglietti, J., Li, Z., Ma. X., & Li,
 Y. (2022). Cooling effects revealed by modeling of wetlands and land-atmosphere
 interactions. Water Resources Research 58, e2021WR030573.
- 942 204. Sun, R., Chen, A., Chen, L., Lü, Y. (2012). Cooling effects of wetlands in an urban region: The case of Beijing. Ecological Indicators 20, 57-64.
- 205. Le Phuc, C. L., Nguyen, H. S., Dao Dinh, C., Tran, N. B., Pham, Q. B., & Nguyen, X.
 C. (2022). Cooling island effect of urban lakes in hot waves under foehn and climate change. Theoretical and Applied Climatology 149, 817-830.
- 206. Theeuwes, N. E., Solcerova, A., & Steeneveld, G. J. (2013). Modeling the influence of
 open water surfaces on the summertime temperature and thermal comfort in the city.
 Journal of Geophysical Research: Atmospheres 118, 8881-8896.
- 207. Xu, H., Chen, H., Zhou, X., Wu, Y., Liu, Y. (2020). Research on the relationship
 between urban morphology and air temperature based on mobile measurement: A case
 study in Wuhan, China. Urban Climate 34, 100671.
- 953 208. Yang, S. J., Ran, G. P., Zhang, W., & Wang, Z. H. (2020). The cooling effect of an
 954 urban lake landscape on the urban heat island: a case study in Jinan, China. Applied
 955 Ecology & Environmental Research 18, 2197-2211.

- 209. Masiero, É., & de Souza, L. C. L. (2016). Improving urban thermal profile with trees
 and water features. Proceedings of the Institution of Civil Engineers-Urban Design and
 Planning 169, 66-77.
- 959 210. Novo, A. V., Bayon, J. R., Castro-Fresno, D., & Rodriguez-Hernandez, J. (2013).
 960 Temperature performance of different pervious pavements: rainwater harvesting for 961 energy recovery purposes. Water resources management 27, 5003-5016.
- 962 211. Novo, A. V., Bayon, J. R., Castro-Fresno, D., & Rodriguez-Hernandez, J. (2013).
 963 Monitoring and evaluation of the thermal behavior of permeable pavements for energy
 964 recovery purposes in an experimental parking lot: Preliminary results. Journal of
 965 Energy Engineering 139, 230-237.
- 966 212. Dandou, A., Papangelis, G., Kontos, T., Santamouris, M., & Tombrou, M. (2021). On
 967 the cooling potential of urban heating mitigation technologies in a coastal temperate
 968 city. Landscape and Urban Planning 212, 104106.
- 213. Zhou, X., Okaze, T., Ren, C., Cai, M., Ishida, Y., Watanabe, H., & Mochida, A. (2020).
 Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze. Sustainable Cities and Society 55, 102060.
- 214. Zhou, Y., Guan, H., Gharib, S., Batelaan, O., & Simmons, C. T. (2021). Cooling power
 of sea breezes and its inland penetration in dry-summer Adelaide, Australia.
 Atmospheric Research 250, 105409.
- 215. Zhou, Y., Guan, H., Huang, C., Fan, L., Gharib, S., Batelaan, O., & Simmons, C.
 (2019). Sea breeze cooling capacity and its influencing factors in a coastal city.
 Building and Environment 166, 106408.
- 216. Zhu, D., Zhou, X., & Cheng, W. (2022). Water effects on urban heat islands in summer
 using WRF-UCM with gridded urban canopy parameters A case study of Wuhan.
 Building and Environment 225, 109528.
- 981 217. Sahani, J., P, Kumar., SE., Debele. (2023). Efficacy assessment of green-blue nature982 based solutions against environmental heat mitigation. Environment International.
 983 Under review.
- 984 218. Fung, C. K., & Jim, C. Y. (2017). Assessing the cooling effects of different vegetation
 985 settings in a Hong Kong golf course. Procedia Environmental Sciences 37, 626-636.
- 986 219. Fung, C. K., & Jim, C. Y. (2019). Microclimatic resilience of subtropical woodlands
 987 and urban-forest benefits. Urban Forestry & Urban Greening 42, 100-112.
- 988 220. Yonghong, S., Fandi, L., Gaofeng, Z., Zhang, K., Qi, Z. (2023). The biophysical climate mitigation potential of riparian forest ecosystems in arid Northwest China.
 990 Science of The Total Environment 862, 160856.
- 221. Chang, N., Li, D.W. (2016). A study of the temperature-humidity effect and luminous
 environment design for urban green space. Chemical Engineering Transactions 51, 103108.
- 222. Liu, W., Zhao, H., Sun, S., Xu, X., Huang, T., & Zhu, J. (2022). Green space cooling
 effect and contribution to mitigate heat island effect of surrounding communities in
 beijing metropolitan area. Frontiers in Public Health 10, 870403.
- 223. Ma, Y., Zhao, M., Li, J., Wang, J., & Hu, L. (2021). Cooling effect of different land cover types: a case study in Xi'an and Xianyang, China. Sustainability 13, 1099.
- 999 224. Fung, C.K., Jim, C.Y. (2017). Assessing the cooling effects of different vegetation settings in a Hong Kong golf course. Procedia Environmental Sciences 37, 626-636.
- 1001 225. Adams, M.P., Smith, P.L. (2014). A systematic approach to model the influence of the
 1002 type and density of vegetation cover on urban heat using remote sensing. Landscape
 1003 and Urban Planning 132, 47-54.

- 1004 226. Callard, S. L., Newnham, R. M., Vandergoes, M. J., Alloway, B. V., & Smith, C.
 1005 (2013). The vegetation and climate during the Last Glacial cold period, northern South
 1006 Island, New Zealand. Quaternary Science Reviews 74, 230-244.
- 1007 227. Amani-Beni, M., Zhang, B., Xie, G. D., & Shi, Y. (2019). Impacts of urban green
 1008 landscape patterns on land surface temperature: Evidence from the adjacent area of
 1009 Olympic Forest Park of Beijing, China. Sustainability 11, 513.
- 1010 228. Liu, W., Zhao, H., Sun, S., Xu, X., Huang, T., Zhu, J. (2022). Green space cooling
 1011 effect and contribution to mitigate heat island effect of surrounding communities in
 1012 beijing metropolitan area. Frontiers in Public Health 10, 870403.
- 1013 229. Jain, S., Sannigrahi, S., Sen, S., Bhatt, S., Chakraborti, S., & Rahmat, S. (2020). Urban
 1014 heat island intensity and its mitigation strategies in the fast-growing urban area. Journal
 1015 of Urban Management 9, 54-66.
- 1016 230. Targino, A. C., Coraiola, G. C., & Krecl, P. (2019). Green or blue spaces? Assessment
 1017 of the effectiveness and costs to mitigate the urban heat island in a Latin American city.
 1018 Theoretical and Applied Climatology 136, 971-984.
- 1019 231. Cheung, P. K., & Jim, C. Y. (2019). Differential cooling effects of landscape parameters in humid-subtropical urban parks. Landscape and urban planning 192, 103651.
- 1022 232. Dai, Z., Guldmann, J. M., & Hu, Y. (2019). Thermal impacts of greenery, water, and impervious structures in Beijing's Olympic area: A spatial regression approach.
 1024 Ecological indicators 97, 77-88.
- 1025 233. Sherman, M.H., & Ford, J. (2014). Stakeholder engagement in adaptation interventions:
 1026 an evaluation of projects in developing nations. Climate Policy 14, 417-441.
- 1027 234. O'Brien, R.M., Phelan, T.J., Smith, N.M., & Smits, K.M. (2021). Remediation in developing countries: A review of previously implemented projects and analysis of stakeholder participation efforts. Critical Reviews in Environmental Science and Technology 51, 1259-1280.
- 1031 235. Coutts, J., White, T., Blackett, P., Rijswijk, K., Bewsell, D., Park, N., Turner, J.A., &
 1032 Botha, N. (2017). Evaluating a space for co-innovation: Practical application of nine
 1033 principles for co-innovation in five innovation projects. Outlook on Agriculture 46, 991034 107.
- 1035 236. Curt, C., Di Maiolo, P., Schleyer-Lindenmann, A., Tricot, A., Arnaud, A., Curt, T.,
 1036 Parès, N., & Taillandier, F. (2022). Assessing the environmental and social co-benefits
 1037 and disbenefits of natural risk management measures. Heliyon 8, e12465.
- 1038 237. Ommer, J., Bucchignani, E., Leo, L.S., Kalas, M., Vranić, S., Debele, S., Kumar, P.,
 1039 Cloke, H.L. & Di Sabatino, S. (2022). Quantifying co-benefits and disbenefits of
 1040 Nature-based Solutions targeting Disaster Risk Reduction. International Journal of
 1041 Disaster Risk Reduction 75, 102966.
- 1042 238. Dumitru, A., Frantzeskaki, N., & Collier, M. (2020). Identifying principles for the
 1043 design of robust impact evaluation frameworks for nature-based solutions in cities.
 1044 Environmental Science & Policy 112, 107-116.
- 1045 239. Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri, S. M., Basu,
 1046 B., Basu, A. S., Bowyer, P., Charizopoulos, N., Gallotti, G., Jaakko, J., Leo, L. S.,
 1047 Loupis, M., Menenti, M., Mickovski, S. B., Mun, S.-J., Gonzalez-Ollauri, A., Pfeiffer,
 1048 J., Pilla, F., Proll, J., Rutzinger, M., Santo, M. A., Sannigrahi, S., Spyrou, C.,
 1049 Tuomenvirta, H., & Zieher, T. (2021a). Nature-based solutions efficiency evaluation
 1050 against natural hazards: Modelling methods, advantages and limitations. Science of The
 1051 Total Environment 784, 147058.

- 240. Davies, C., Chen, W.Y., Sanesi, G., & Lafortezza, R. (2021). The European Union
 roadmap for implementing nature-based solutions: A review. Environmental Science &
 Policy 121, 49-67.
- 1055 241. European Green Deal (2021). The European Green Deal and cohesion policy. Available1056 at:
- https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698058/EPRS_BRI(2021)
 698058_EN.pdf (retrieved on 23 June 2023).
- 1059 242. Di Pirro, E., Sallustio, L., Sgrigna, G., Marchetti, M., & Lasserre, B. (2022).
 1060 Strengthening the implementation of national policy agenda in urban areas to face
 1061 multiple environmental stressors: Italy as a case study. Environmental Science & Policy
 1062 129, 1-11.
- 1063 243. Topal, H.F., Hunt, D.V.L., & Rogers, C.D.F. (2021). Exploring urban sustainability
 1064 understanding and behavior: A systematic review towards a conceptual framework.
 1065 Sustainability 13, 1139.
- 1066 244. Augusto, B., Roebeling, P., Rafael, S., Ferreira, J., Ascenso, A., & Bodilis, C. (2020).
 1067 Short and medium-to long-term impacts of nature-based solutions on urban heat.
 1068 Sustainable Cities and Society 57, 102122.
- 1069 245. Frantzeskaki, N. (2019). Seven lessons for planning nature-based solutions in cities.
 1070 Environmental Science & Policy 93, 101-111.
- 1071 246. Cortinovis, C., Olsson, P., Boke-Olén, N., & Hedlund, K. (2022). Scaling up nature1072 based solutions for climate-change adaptation: Potential and benefits in three European
 1073 cities. Urban Forestry & Urban Greening 67, 127450.