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C, without cutting either C. or C, or passing through the position of
the line infinity. This is a region which can be easily marked out
on the complex plane and will have inside of it neither of the contours
C. and C,.
Thus our theorem asserts that if the zeros of P,, are inside of one

branch of an hyperbola and the zeros of P. are inside the other branch,
all the zeros of <' are inside of the hyperbola, or again, if all the zeros
of Pn are real and lie in the interval (1) x > a, while all the zeros of
P. are real and lie in the interval (2) x < b . a, then V' (z) has no
complex zeros and all of its zeros lie in the intervals (1) and (2).
* J. Ec. Polytech., Paris, 28.

2All these proofs save one by Hayashi (Annals of Mathematics, March, 1914) are

based on dynamical considerations. Fej6r, Ueber die Wurzel vom kleinstein absoluten
Betrage, etc., Leipzig, Math. Ann., 65, 417, attributes the theorem to Gauss and gives
a bibliography for it.

'If this is not at once intuitionally evident it can be shown by resolving the vectors
in question into components parallel to the arms of the angle above mentioned.
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If y = f (x) is the cartesian equation of a plane curve, the integral

s=fX£ /1(+( dx, (1)

which represents the length of the arc of this curve between the points
Po(xo. yo) and Pi(xi, yi), obviously remains unchanged when the curve
is subjected to a plane motion. Therefore we may speak of s as an
integral invariant of the group of motions, or as a metric integral invariant.

In the present paper we shall show how to find integrals connected
with a given plane curve, whose values are not changed when the points
of the plane are subjected to an arbitrary projective transformation.
We shall speak of these integrals as projective integral invariants.
Let yi. Y2, ys. be the homogeneous co6rdinates of a point Py, and let

YI, y2. y3 be given as linearly independent analytic functions of a parame-
ter x. As x changes P, will describe a non-rectilinear analytic curve
Cy. There exists a uniquely determined linear homogeneous differential
equation of the third order

y"' + 3 piy" + 3pWy' + p.y = 0 (2)
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of which yi, y2, ys form a fundamental system of solutions, and of
which C, shall be said to be an integral curve. All other integral curves
of (2), associated with different fundamental systems of solutions, are

projective transforms of C,.
Since the coordinates yi. y2, ys are homogeneous, only those combina-

tions of the coefficients pl, P2, P8 can be of interest for the geometry of
the curve Cy which depend only upon the ratios y y2 y. These
combinations, the so-called seminvariants of (2), are all expressible as
functions of

P2 = P2 - P2 - Pl', P3 = P - 3pip2 + 2pl - p (3)
and of their derivatives. The seminvariants of (2) are not altered if
(2) is transformed by putting y = X(x)y where X(x) is an arbitrary func-
tion of x.1
Although the seminvariants depend only upon the ratios yi :Y2 :ys.

they are still not adequate to represent the purely geometric properties
of the curve C,. The values of P2 and P3 depend also upon the special
parametric representation which has been chosen for C,. We may
change this parametric representation in the most general way by put-
ting x 't(x), where t(x) is an arbitrary function of x. Those combina-
tions of the seminvariants, called absolute projective differential invariants,
which are left unaltered by all possible transformations of this sort,
express intrinsic properties of the curve Cy. Moreover these properties
are projective properties, since any projective transform of C, may be
regarded as an integral curve of (2).
Every absolute projective differential invariant can be expressed as

a quotient of two relative invariants. The simplest of these relative
invariants is2

308 = P3-2 . (3)

The property of 08 which justifies us in speaking of it as a relative
invariant, is the following. Let us transform (2) by putting

x = t(x), y = X(x)y, (4)
where t(x) and X(x) are arbitrary functions of x. From the coefficients
of the resulting differential equation between x and y let us form the
quantity 0s(x) according to the same rule which was used in forming
0s from the coefficients of (2). We shall find'

( s(x) (4)
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This equation may be written

08(X) (di)' = 03(x)dx3.
Consequently the integral

P = (x)dx (5)

will not change its value under the transformations (4). Thus we

see that thp integral p is intrinsically connected with some geometric
property of that arc of the curve Cvwhich corresponds to the interval
a _ x . b. It is also clear that this integral and its geometric signifi-
cance will remain unaltered by any projective transformation of the
plane, since it is expressed entirely in terms of the coefficients pi, P2. P3
of (2) which are invariants of the projective group.
' Therefore the integral p, defined by (5), is a projective integral invariant.

If I is any absolute differential invariant of the curve C,, the integral
JfIdp is again an integral invariant, and all integral invariants are

expressible in terms of those obtained in this way.
We wish to explain the geometrical significance of the invariant

integral p. 'For this purpose we need one further preliminary notion,
namely that of the eight-pointic nodal cubic of a given point of a given
curve.
A cubic curve is in general determined by nine of its points. If eight

points only are given, there exist infinitely many cubics, forming a

pencil, which pass through these points. In particular there exists a

pencil of cubics, such that each cubic of the pencil has eight-pointic or
seventh-order contact with the given curve C, at a specified non-singular
point P,. One and only one of the cubics of this pencil has P,, the
point of contact, as double point. We call this cubic the eight-pointic
nodal cubic of the point Py, or the penosculating nodal cubic of P,y4
The significance of the integral p is contained in the following theorem

which we shall state without proof, but all of the terms of which have
now been explained.

Consider an arc of an analytic curve corresponding to the interval
a . x 5 b of the independent variable. Divide this interval into n

parts by means of the values x0 = a,xx2, . . . x. = b, such
that lim axk = lim (Xk+i-Xk) = 0 as n grows beyond bound. Let
A, P1, P2, . . . P,n-. B be the points on the curve which correspond
to these n + 1 values of x. Let tk be the tangent and Ck the eight-
pointic nodal cubic of Pk. The three points of infection of the cubic
Ck are on a line ik which interesects tk in a point Ik. Denote by tk one
of the three inflectional tangents of Ck and let Tk be its intersection with
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tk. The line PkPk+l will intersect i and t in two points, Ik' and Tk',
and the cross-ratio (Ik Tk', Pk, Pk+,) turns out to be equal to

1-J 3 (x) 5Xk (6)

except for terms of higher than the first order in Ax*.
By a perspective correspondence the three points I'J_,. T'_-.1 Pn_,

of P.-1 B may be projected into the points I'I-2 T',-_, Pn,- of P,-2 P.-l.
Let B._- be the point of Pn,,_2 P,,1 which, in this perspective, corresponds
to B. Then project similarly I',n-, T'n-2. Pn-2. B,.1 into the four
points I'n-3. T'n-3. Pn-2. B,_2 of Pn,- P,-2. and continue in this way.
We shall finally obtain upon the line AP1 a point.B1 determined from B
by this sequence of perspectives. As n grows beyond bound, B1 will
approach a limiting position Q on the initial tangent to of the arc AB.
The cross-ratio

. k = (0, To, A,Q) (7)
will be the limit which the product

k-1'( a*) (8)kn - 3f Y6(Xk) b/k
approaches when n grows beyond bound. Consequently we find

3 b

log k =-) dx. (9)

This equation contains the desired interpretation of the integral p.
From a theoretical point of view the expression (5) for the integral p

is the simplest and most general.' We shall however give, in conclusion,
three other expressions for p in terms of more familiar variables.

If the curve is given by means of its cartesian equation in the form
y = f (x), we may write

1 C/9 (y)2y()-45 y/yly(4) + 40 y(3),

where y' = dy/dx, y" = d2y/dx,2 and so on.

If the curve is given by means of parametric equations of the form
x = op(s), y = #,k(s), where s denotes the length of arc, and if r is the
radius of curvature at the point which corresponds to the value s of
the parameter, we find

-/--+4r3- 7',
whered-+8+4-ds,s ,w h r r r 9 rd3 rS

where / = dr/ds, r" = d2r/ds2, etc..
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Finally we may write

p = f -d, (12)
Po 2r

where r has the same meaning as in (11), where p is the distance from
the point P of the curve to the centerM of the corresponding osculating
conic, and where ro is the radius of curvature at M of the locus whichM
describes when P moves along the given curve.

1E. J. Wilczynski, Projective Differential Geometry of Curves and Ruled Surfaces, p. 58.
2Loc. cit., p. 59. 'Loc. cit., p. 60. 4Loc. cit., pp. 67-68.
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For several years my pupils and I have been engaged in studying
the inheritance of size and weight differences among animals, these being
characteristics of much economic importance and of peculiar theoreti-
cal interest. Preliminary studies published in 1909 showed that size
and weight in rabbits do not follow the Mendelian rules of dominance
and segregation as unit-characters. But Lang subsequently suggested
that multiple Mendelian factors may be concerned in such cases, extend-
ing to animals a principle already recognized by Nilsson-Ehle in dealing
with certain categories of characters in plants. Punnett and Bailey
(1914) accept this principle in explaining weight inheritance in crosses
of bantam fowls with those of ordinary size. They believe that four
differential factors are concerned in a particular cross studied, three
dominant factors which tend to increase size being found in the larger
race, one such factor being found in the bantam race. By recombina-
tion in F2 some individuals are obtained smaller than the bantam race,
and others in Fs larger than the larger race. But there are some reasons
for questioning the validity of this analysis which assigns very definite
quantitative values to the several hypothetical factors, without however
making any allowance for physiological changes of size due, to non-
genetic causes, or for possible quantitative variation in the factors them-
selves. Moreover, let it be granted for the sake of argument that these
four Mendelizing factors exist and that each is an independent agency
for increasing size. On the Mendelian hypothesis there should be ob-
tained from the cross in question individuals which lack all four of these
factors. What, it may be asked, will their size be? Will they be with-
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