Figure Legends:

<u>Fig. S1:</u>

Preliminary gene structure of *Aplysia* H_v **channel genes.** CDS: coding region, exon borders are indicated.

517424..517617 524625..524790 528150..528258 528668..528904 530671..531415

AcH_v1 scaffold00253

CDS		1951040
Exon	1	1194
Exon	2	193356
Exon	3	356464
Exon	4	463700
Exon	5	6961440

AcH_v2 scaffold00057

CDS		4491468	
Exon	1	1272	702415702144
Exon	2	273633	697725697365
Exon	3	631755	632843632719
Exon	4	756897	625404625263
Exon	5	8951029	623446623312
Exon	6	10261084	622455622397
Exon	7	10801221	617783617642
Exon	8	12201336	613702613586
Exon	9	13351423	612130612042
Exon	10	14222591	610782609613

AcH_v3 scaffold00078

	33286270	
1	1120	439851439970
2	120473	458948459301
3	4743394	460584463504
4	33903517	522792522919
5	35184451	550319551252
6	44504505	582759582814
7	45024644	589380589522
8	46434759	592841592957
9	47594833	595045595120
10	483010253	598366603788
	1 2 3 4 5 6 7 8 9	1 1120 2 120473 3 4743394 4 33903517 5 35184451 6 44504505 7 45024644 8 46434759 9 47594833

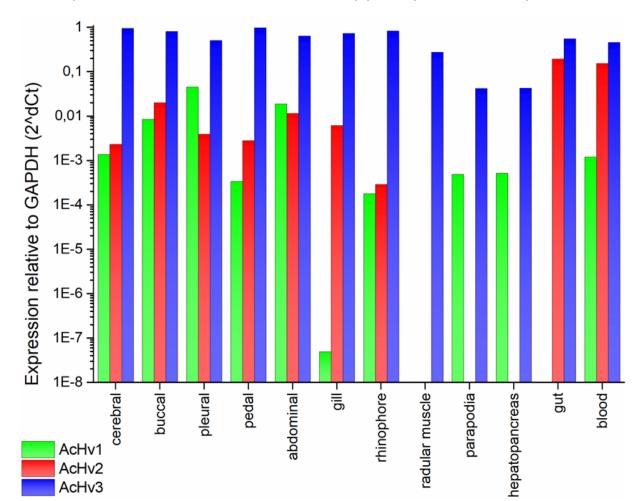

Fig. S2:

Aplysia EST expression analysis

	juvenile CNS	Pedal-Pleural Ganglia	homologous channels in other molluscs
AcH _v 1	SAMN00150086	SAMN00150073 SAMN00150074	hemocyte (<i>Crassostrea gigas</i>) larvae (<i>Lottia gigantea</i>) CNS (<i>Melibe leonina</i>)
AcH _v 2	EB327294 EB299171	EB210826	hemocyte (<i>Crassostrea</i> gigas) larvae (<i>Lottia gigantea</i>)
AcH _v 3	EB295811 EB313783 EB337456		CNS (<i>Tritonia diomedea</i>) larvae (<i>Lottia gigantea</i>)

Fig. S3

Sequence alignments of the three *Aplysia californica* channels

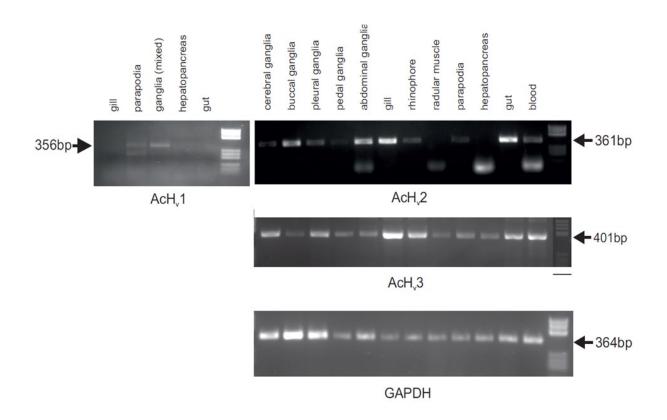

Direct alignment of the four transmembrane domains (S1-S4) including the cytosolic linkers. The extracellular S1-S2 loops show no significant homology. All three channels have an aspartate (selectivity filter) in the middle of S1.

<u>Fig S4:</u>

Туре	total length	NTD	S1-S2	S2-S3	S3-S4	CTD
		int	ext	int	ext	int
AcH_v1	281	53	14	17	8	114
AcH _v 2	339	73	79	17	11	82
AcH _v 3	980	35	299	3	8	534
hHv1	273	100	12	17	8	55
NpH _v 1	239	54	10	17	8	69
KvH _v 1	248	39	41	17	8	65

Aplysia H_v channels: Loop and domain length

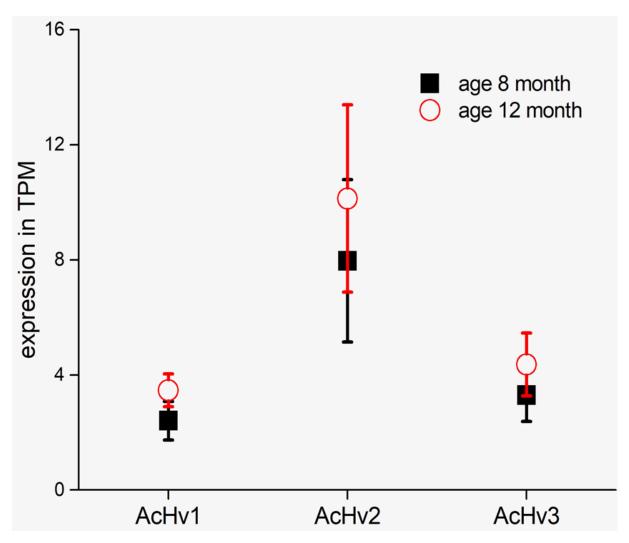
Number of amino acids in different regions of the AcH_v1-2 channels and H_vs of three additional species. NTD: N-terminal domain, CTD: C-terminal domain, loops between the four transmembrane regions are indicated. hH_v1: human; NpH_v1: *Nicoletia phytophila*; KvH_v1: *Karlodinium veneficum*.


RT-PCR quantification of AcH_v1, AcH_v2, and AcH_v3, in *Aplyisa californica* tissue samples

AcH_v1, 2, 3 RT-PCR quantification relative to GAPDH in 12 different tissues of 4 animals with up to 5 individual measurements. Numbers are given in $2^{\Delta}Ct$, where 1 would be equal to the expression of GAPDH.

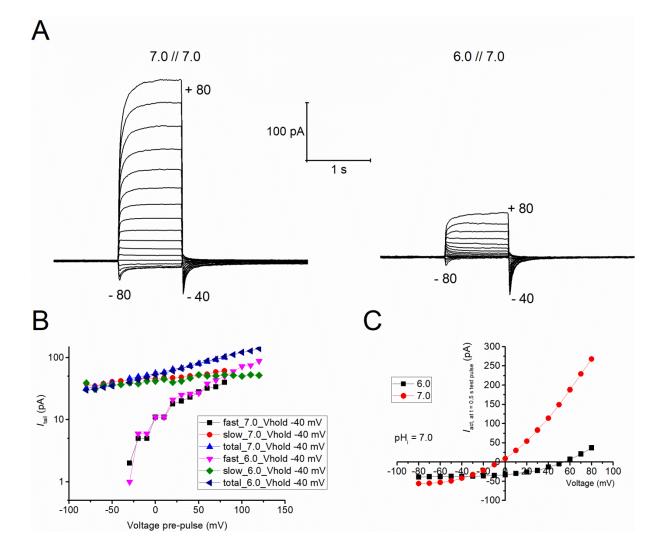
<u>Fig S5:</u>

<u>Fig S6:</u>


Expression of AcH $_v$ 1, AcH $_v$ 2, and AcH $_v$ 3 in comparison to GAPDH

Independent mRNA analysis of the expression of AcH_v1 , AcH_v2 , AcH_v3 , and GAPDH from 3 animals. Data is in good agreement with the RT-PCR data from **Fig. S5**.

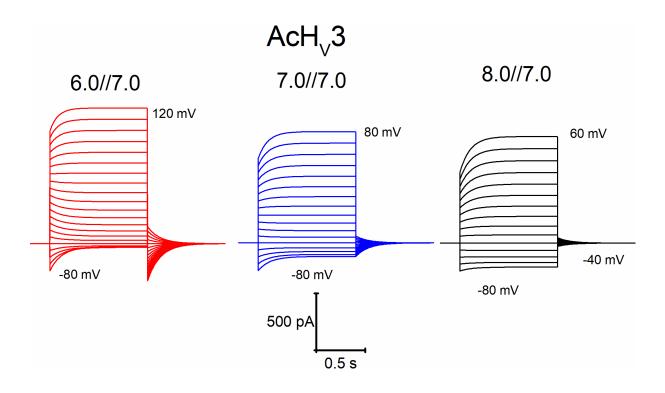
Fig. S7:



Expression in Transcripts Per Million (TPM) in pleural ganglion sensory neurons obtained from 6 sexually mature animals at age 8 months (black squares) and at age 12 months (red circles), data depicted in mean and S.E.M. AcH_v2 appears to be upregulated by age (p = 0.0618); AcH_v1 and AcH_v3 are not obviously affected by aging (AcH_v1 p = 0.2555, AcH_v3 p = 0.4710 students t-test)

Fig. S8:

Tail current amplitude analysis of $AcH_{\nu}3$



A) Two current families with pulses from -80 mV to + 80 mV in 10 mV increments and a holding potential of -40 mV at pH_0 7.0 or 6.0 and pH_i 7.0.

B) Tail current amplitude in pA at both pH_o 7.0 and 6.0. Tail currents showed a fast and a slow component. The slow component amplitude was calculated from the intersection of the extrapolated current to the starting time point of repolarisation to holding potential. The fast component was directly measured at the identical time point. Total current is the sum of slow and fast components. The currents are affected by pH_o . However, the reversal potential was -8 mV at pH_o 7.0 and +55 mV at pH_o 6.0. **C)** Current voltage plot, current 0.5 s after the pulse was plotted at each voltage. Reversal potential can be estimated from the individual curves.

Fig S9:

HH model of AcH $_{\rm V}$ 3 currents

Currents from the simple two states model. Note that there is no pH-dependence of gating or pH-dependence of conductance implemented. Overall the shape of the currents is presented in accordance with figure 4. Holding potential is -40 mV at all pH_o .

Fig. S10:

EST-coverage of predicted coding region:

AcHv1: 76.9 % (100 % exon-intron boundaries within coding sequence)

FC764689 3-219

AcHv2: 100% (100% exon-intron boundaries within coding sequence)

EB327294	1-186
EB299171	122-270
FC764689	168-304
EB210826	290-339

AcHv3: 62.0 % (100% exon-intron boundaries within coding sequence)

EB337456	1-64
EB295811	96-323
HS121401	338-520
EB313783	797-929

EST-coverage of the predicted coding region of the three *Aplyisa californica* paralogs. Of all three channels the whole exon-intron boundaries are covered by the EST sequences. Therefore, all exons are included. Not EST covered parts of the genomic DNA was verified by mollusk genome sequences other than *Aplysia californica*. A detailed analysis mollusk H_v channels will be presented in a upcoming publication.

Fig. S11:

Aplysia californica voltage-gated hydrogen channel 1-like (LOC101848758) AcH_v1 XM_005100609 TSA: GBBG01064906 GBDA01021710 GBCZ01104187

MKLDGLRKMQDDLVKVIERDDTSTVTSDSDETIARGPKTLRETLDDVIHS QKFMVFIIVLVVLDCLMVIAELLFDLEIVKLGEEHHYIPK<mark>IFHYGSLGIL SLFLIEIGL</mark>RIFVLRLDFFKHK<mark>LELFDAVVVIVSFILDIV</mark>FRDNEDAATG VGLLIILRLWRVTRIVNGIVLSVQKQAEKKIEREKHLREECEQELAKFRE YCMAQEAEIEVLQGLLHKHNIEFTTNKITRPESRVQVDVVAEVNSMTAVA ETDIPLSPSQPGEQEISLSSSGDNVTDAVVVV-

Aplysia californica uncharacterized LOC101850633_X1-X4 XM_005093050 AcH_v2 TSA: GBBE01033180

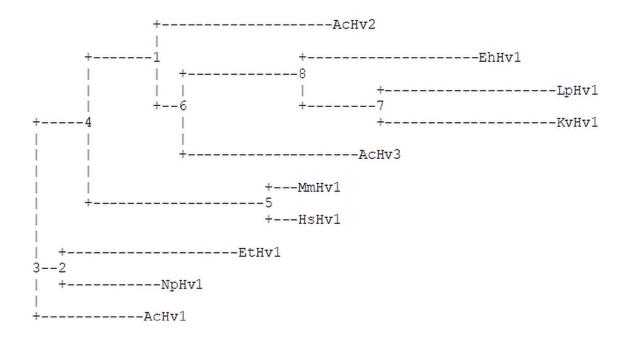
MRMSRSIEYPSEKNGEPSCIEAEQRSGETKMLKSEQSQDEAETSDWSENE DSHSGKLDANSCKGKLAAFLKTNLVQYSIIALVILDCLIIVMELLI DMNI IVFPEDDPHHPPGEGSSHHPVAFASRSSNLTGDNHTVYPAHHIHTHHDNS SNLTMYGNDSAHAAPVHHHTNKEKAEH<mark>VLHALSLTILSIFMVEVCV</mark>KIYV EGKHMLKQKAEVFDAIVVIVSFTLDITFSFV</mark>SVSKAASEAAGLMVILRLW RVTRIINGVIMSVKLDANKKMEVHKKARRKLERENKRLQAKIERLEREVA TLKQKMATSSTPQMSFEMQSGLSVERSPSGEMRENSAQV-

Aplysia californica uncharacterized LOC101855857 XM_005094218 AcH_v3 TSA: GBAV01052985

MGDAEPRAHPRPRGQASPFMPRLRKRGEKLLHSKY<mark>VVILVIILTVTDCAL</mark> VIAELILDLSSVKKTQGATEAMTLSFVEKIIKKYPDEVAPLHSLTDVFEE LNHADIVWNNTRNSRGHDLDPDLERNLHHHHHKNRDALHTSVTTPTSVPV VGGESVAEGWPLSSDTPLGVGNFSRALRTLWIQKRNYSSNSRFRRSNRND SLRDSSAVLSRLLERTRLEIEKVLSKLSRRRKRSSEETGGLTAEYEATDS GEAGDTSRNSQELEDEVLNSDFFENNYGKNNGKTYLSSLTGLIVKILTMQ SNETGPILGGPARYAEAPLTVESAGKGEGKGAKHVSDQDILHKYRLEFHH SEDMEIA<mark>HKLH</mark>YASVAVVSILLIEVTMKIICAGSHFLKRK<mark>IEVFDAVIVV</mark> ASVIVDLIFIKGLNQFPVDDSIFVLAFLL<mark>PWR</mark>VI<mark>R</mark>VVNSLVMAVIDHEHV KLRLLYSRKKKLDKTVETLRNEVDELKGMMQDIRQFCIKEGIEASRIDSL LGKFAPRRRKDSKFYTLVKLVMSTASINNNNDNDSVSSSSMENDLRDYA NRDSVLNEATSNENTVTSLKQYLSVPFFSGGNRSNTLDIESRGSGRSGGS PSIYITSPASDDEAPVFSFDIADEDDVDMSNDQDDAGSQDDETSIQAGSD AATIAVTSAEVNTVSPNVAFYVGSQSSLCSVHSQEDIRTVVDTNDNYERN FPMCGVPCASGGEDLAAAALDDVISNSPTVNSNSWGPSRHYSRFLTVPCC TLSLSAVTNTTSTATSYPSSSNNTNNNSNSNNNNNACAETHPLLGDPPP GQNMTRSVSDNCDVTATQYGARTCGGRYGSPVPMRRKPCLSEKRRSYARA RSESIENQEFIPLMSQGANKGRVRHHSDLEGRPSTRKDDLKRSRSHSPSP MVLLGVPGQTKKYSDPPPSYQAASRSMNDVSSAGKGQSGNPHANNLGKDG RILRRSCLSLTSEGRKRRGKSPQRVSFKVS-

Amino acid sequence Maximum Likelihood method (implemented in Bio-Edit), version 3.6a2.1

Jones-Taylor-Thornton model of amino acid change


Fig. S12:

List of *Aplysia californica* H_v channels. GenBank and TSA accession numbers are shown. Transmembrane regions (yellow), selectivity filter (magenta), and voltage-sensor motif (R blue, W red) are indicated.

Identity/Homology within the core region (S1-S4) (in %)

			AcHv1	AcHv2	AcHv3
Extatosoma tiaratum	Insecta	GAWG01024136	39/59	35/60	28/51
Nicoletia phytophila	Insecta	KT780722	46/70	41/61	38/57
Homo sapiens	Mammalia	NM_001040107	45/66	40/60	33/56
Mus musculus	Mammalia	NM_001042489	43/59	42/59	33/52
Karlodinium	Alveolata	JN255155	27/41	27/42	26/46
veneficum					
Lingulodinium	Alveolata	KU752798	35/56	27/45	24/44
polyedra					
Emiliania huxley	Haptista	XP_005762299	28/42	28/47	24/38

Preliminary cladogram of ten different Hv channels

