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1 Data preparation and preprocessing

1.1 Protein family data collection and preprocessing1

The datasets used in this study were obtained from Rivoire et al. [13] or from the PFAM database2

(release 27.0). Accession codes PF00071, PF00186, and PF13354 were used for G proteins, DHFR,3

and class A β-lactamases, respectively. For each protein family, a reference sequence/structure was4

selected, namely rat trypsin (PDB 3TGI) for S1A proteases, human Ras (PDBs 5P21 and 4Q21) for5

G proteins, E. coli DHFR (PDB 1RX2) for DHFR, and E. coli TEM1 β-lactamase (PDB 1FQG).6

The number of sequences in each dataset was as follows: DHFR (1759 sequences), G-protein7

(4974 sequences), β-lactamase (814 sequences), and S1A proteases (1344 sequences). To prepare the8

sequences for analysis, they were converted into one-hot encoded tensors. In this encoding scheme,9

each amino acid label corresponds to an index of the one-hot encoded vector along each position of the10

sequence. The size of the tensor was defined as the maximum length protein homolog in the family.11

Sequences with less than the maximum sequence length were padded with mask tokens, which have12

their own one-hot encoded index.13

The DHFR, G-protein, beta-lactamase, and S1A proteases datasets were then converted into 2D14

tensors with sequence lengths of 150, 158, 199, and 205, respectively. The one-hot encoded vector used15

in the encoding scheme had a length of 21. The datasets can be found here: https://github.com/Pra16

ljakReps/ProtWaveVAE/tree/main/Pfam analysis/data/protein families.17

1.2 Fitness prediction benchmarking data collection and preprocessing18

The datasets used in this study include the Fitness Landscape Inference for Proteins (FLIP) and the19

Tasks Assessing Protein Embedding (TAPE). The FLIP datasets consist of two benchmarking tasks20

(AAV and GB1) and were obtained from FLIP benchmarks [4]. The TAPE datasets also include two21

benchmarking tasks and were obtained from TAPE benchmarks [10].22

The AAV benchmarking task involves a mutational screening landscape of VP-1 AAV proteins [2,23

21] (UniProt Accession P03135). Sequences were mutagenized along a 28-amino acid window from24

position 561 to 588 of VP-1, and the resulting variants were tested for fitness, with between 1 and25

39 mutations. The VP-1 AAV benchmark task has seven dataset splits: (1) sampled, (2) sampled-26

designed, (3) design-sampled, (4) train on single mutants, (5) train on single and double mutants, (6)27

train on mutants with up to seven changes, and (7) train on low fitness, test on high.28

The GB1 benchmarking task involves an exhaustive, combinatorial, and highly epistatic mutational29

landscape, ranging from variants with fewer mutations to predict activity of variants with more mu-30

tations [20]. The number of fitness measurements was 149,361 out of 160,000 possible combinations of31

mutations at four positions. The GB1 benchmark task also has seven dataset splits: (1) sampled, (2)32

train on single mutants, (3) train on single and double mutants, (4) train on single, double, and triple33

mutants, and (5) train on low fitness, test on high.34

The TAPE benchmarking tasks include a green fluorescence protein (GFP) and stability mea-35

surements of candidate proteins. For the fluorescence regression predictions, a Deep Mutational36

Scanning (DMS) approach was used to characterize the local genotype-to-phenotype mapping of a37

single protein [16]. The training and validation sets include mutants with only Hamming distance38

3 from the original protein, while the testing set includes mutants with Hamming distances 4-15.39

In contrast, the stability task [14] has a training and validation set containing proteins from four40

rounds of experimental data measuring candidate proteins, while the testing set consists of mutant41

variants of seventeen 1-Hamming distance neighborhoods. The FLIP datasets can be found here:42

https://benchmark.protein.properties/, while the TAPE datasets can be found here: https://github.com/43

songlab-cal/tape#data.44
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1.3 Chorismate mutase data collection and preprocessing45

The dataset used in this study was obtained from Russ et al. [15]. For each protein family, four46

CM atomic structures (PDB entries 1ECM, 2D8E, 3NVT, 1YBZ) were selected as reference se-47

quences/structures to build the multiple sequence alignment. The 1ECM PDB corresponds to the48

wild-type Chorismate mutase E. coli. The training dataset consists of natural homolog sequences,49

with 1130 sequences, while the testing dataset consists of synthetic natural homolog sequences, with50

1618 sequences. Each protein sequence has a corresponding fitness value quantified by the normalized51

relative enrichment (r.e.).52

To prepare the sequences for analysis, they were converted into one-hot encoded tensors, with each53

amino acid label corresponding to an index of the one-hot encoded vector along each position of the54

sequence. The size of the tensor was defined as the maximum length protein homolog in the family.55

Sequences with less than the maximum sequence length were padded with mask tokens, which have56

their own one-hot encoded index.57

The CM dataset was then converted into a 2D tensor with a sequence length of 96. The one-hot58

encoded vector used in the encoding scheme had a length of 21. The dataset can be found here:59

https://github.com/PraljakReps/ProtWaveVAE/tree/main/Pfam analysis/data/protein famil60

ies.61

1.4 SH3 protein data collection and preprocessing62

The datasets used in this study were obtained from [7], and consist of SRC homolog 3 (SH3) homologs.63

The dataset contains various natural paralogs, Sho1 orthologs, and synthetic domains with fitness64

measurement scores, quantified by the relative enrichment (r.e.). The dataset size is 17,218 sequences,65

which includes both natural and synthetic sequences.66

To prepare the sequences for analysis, the input data tensor was set to a length of 82, corresponding67

to the maximum sequence length within the dataset. Shorter sequences were padded with mask tokens68

at the ends. Each sequence was then converted into 2D tensors using a one-hot encoded transformation,69

such that each amino acid and masked padded token corresponded to a one-hot encoded index.70

The number of sequences with fitness measurements is 14,768. During stratified cross-validation, we71

set k = 5 and split the dataset into five partition bins, such that the training and validation set sizes are72

80% and 20%, respectively. The dataset can be found here: https://github.com/PraljakReps/Prot73

WaveVAE/tree/main/SH3 design project/data.74

2 Model architecture and hyperparameterization75

2.1 Gated dilated encoder76

The primary hyperparameters for the gated dilated convolutional encoder network qϕ(z|x) include77

encoder depth, input channel depth for the initial convolutional layer, hidden channel depth for the78

subsequent convolutional layers, kernel size for each convolutional layer, and the number of fully79

connected linear layers before transitioning the encoder outputs into the latent space. We increased80

the dilation window for the convolutional layer by 2i, based on the encoder layer depth (where i is the81

depth index of the encoder), creating what is known as dilated convolution layers.82

For each protein family task, the encoder depth was chosen to ensure that the original input se-83

quence remained greater than length 0 after the convolutional layers reduced its length. Consequently,84

hyperparameter optimization for the encoder depth was not necessary, as it depended on the input85

sequence length compute max enc depth. Following the approach used in WaveNet [9] and Pixel-86

CNN [19], we employed two sets of dilated convolutions: one for signal activations and another for87

gated activations.88

Our nonlinear activation function was a linear gated activation function [5], which multiplied the89

outputs of the signal and gated convolution layers after applying a sigmoid function onto the gated90
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convolution outputs. This enabled the encoder to incorporate a memory gate similar to LSTMs and91

GRUs [6, 3]. A batch normalization layer was applied after each gated activation operation. Once92

the dilated convolution layers processed the hidden representations, signal and gate convolution layers93

with kernel size 1 and channel depth 1 were applied to the outputs. Subsequently, a gated activation94

operation and a batch normalization layer were added.95

Next, we applied k fully connected layers, using leaky ReLU activation functions with an α hyper-96

parameter of 0.1. The final outputs were then passed through a variational mean linear layer and a97

variational variance module, which comprised a linear layer followed by a softplus activation function.98

Ultimately, the final variational mean and variational variance outputs were combined using the repa-99

rameterization trick (reparam trick). This involved sampling Gaussian noise from a normal distribu-100

tion ϵ, multiplying it with the square root of the variational variance, and adding the variational mean101

to produce the latent vector. The forward pass for the encoder network is shown in pseudocode (Algo-102

rithm 1). The source code and class object of the encoder network is in PyTorch and can be found in the103

following link: https://github.com/PraljakReps/ProtWaveVAE/blob/main/SH3 design project/104

source/model components.py.105
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Algorithm 1 Gated dilated convolution encoder network qϕ(z|x)
Input: {
x, encoder depth, num fc, sigmoid, lrelu, initial conv layer,
signal dilated conv layers, gate dilated conv layers,
batc norm layers, final signal conv layers, final gate conv layers,
fc layers, mean z layers, var z layers

}
// *Description of inputs.*

// x --> input sequence data

// encoder depth --> number of dilated convolution layers

// num fc --> number of fully connected linear layers

// sigmoid --> sigmoidal activation function

// lrelu --> leaky ReLU activation function

// initial conv layer --> first convolution layer with kernel size 1

// signal dilated conv layers --> list of layers along the signal network path,

consisting of dilated convolutions with increasing dilations by factor of 2

// gate dilated conv layers --> list of layers along the gated network path,

consisting of dilated convolutions with increasing dilations by factor of 2

// batch norm layers --> list of batch normalization layers

// batch norm layers --> list of batch normalization layers

// final signal conv layers --> single convolution layer with kernel size 1 and depth

channel 1

// final gate conv layers --> single convolution layer with kernel size 1 and depth

channel 1

// final gate conv layers --> single convolution layer with kernel size 1 and depth

channel 1

// fc layers --> fully connected linear layers

// mean z layers --> fully connected linear layers mapping encoder outputs to latent

mean

// var z layers --> fully connected linear layers mapping encoder outputs to latent

variance

1 batch size, input channels, max protein length = x.shape
2 encoder depth = compute max enc depth(

max protein length=max protein length

) // Determine encoder depth based on protein sequence length

3 h = init conv layer(x)// 1x1 convolution operation

4 h = batch norm[i](h)
5 for i ← 1 to encoder depth

6 // signal and dilated convolution layer operation

7 h signal=signal dilated conv layers(dilation=2i−1)[i](h)
8 h gate=gate dilated conv layers(dilation=2i−1)[ii](h)
9 h = h signal * sigmoid( h gate)

10 h = batch norm layers[ii+1](h)

11 end for
// final single no-dilated convolution layer to map output depth channels to 1

12 h signal = final signal conv layer(h)
13 h gate = final gate conv layer(h)

// apply gated activation function

14 h out = h signal * sigmoid(h gate)
15 h out = final gate conv layer(h out)
16 for i ← 1 to num fc

17 h out = fc layers[ii](h out)
18 h out = lrelu(h out)
19 end for
20 z mean, z var = mean z layer(h out), var z layer(h out)

// infer latent variables using reparameterization trick

21 z = reparam trick(z mean, z var) Output: z, z mean, z var

2.2 WaveNet decoder with latent conditioning106

The WaveNet architecture is based on the work of van Oord et al. [9], utilizing dilated causal convo-107

lution layers. Our approach differs in that we employ latent variables for conditional inference rather108
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than one-hot encoded class variables. In accordance with the class conditional WaveNet, we upsample109

our latent variables through a linear layer, enabling us to extend the latent vector to the sequence110

data dimension’s length. This is referred to global conditioning [9]. No activation function is applied111

during this linear upsampling for the latent variable, and the latent linear upscaling operation for112

global conditioning is the following:113

Z = V T
k z (1)

where Vk is learnable linear project, z is the inferred latent low-dimensional varible, Z is the vector114

broadcast over the sequence position dimension. This operation is implemented by latent cond net()115

nn.module, and the source code is https://github.com/PraljakReps/ProtWaveVAE/blob/01cecd05116

4be7ca77540b23d19aeea5a3b9012d79/SH3 design project/source/wavenet decoder.py#L23.117

The WaveNet decoder has two primary components: the main module, which is composed of dilated118

causal convolutions, gated activation functions, residual connections, and skip connections; and the119

top head, which is inspired by van Oord et al.’s architecture [9] and features two convolution layers120

(non-dilated) with kernel size 1 and a ReLU activation function. The second component generates121

logits that is converted to the amino acid class distribution using a softmax function. The main122

hyperparameter optimization for the first component involves input channel depth, output channel123

depth, and the number of dilation rates (i.e., the WaveNet’s depth). The causal dilation convolutions’124

long-range reach is determined by the last hyperparameter. The top model’s hyperparameters include125

input channel depth, output channel depth, and hidden state depth. The output channel depth is set126

to the WaveNet’s input channel depth, which corresponds to the one-hot encoded vector’s length (20127

amino acids plus 1 padded token).128

The WaveNet decoder processes the upsampled latent variable and input sequence. The first layer129

applies a convolution layer with kernel size 1 to the input sequence, creating an amino acid embedding130

layer h = Wk=1 x, where Wk=1 is the 1×1 kernel with learnable weights. Subsequently, the causal131

dilated convolution is employed in two separate modules for signal and gated representations. At132

the same layer depth as the dilated convolutions, a vanilla convolution layer with kernel size 1 is133

also applied to the upsampled latent variable, mapping input depth 1 to output depth as per the134

hyperparameter Cout. The hidden representation outputs from the signal causal dilated convolution135

are then summed with the outputs from the signal latent convolution, and the outputs from the gated136

causal convolution are summed with those from the latent gated convolutions. A sigmoid function is137

applied as a gating function to the gated output representations, and these values are multiplied with138

the signal hidden representations. After completing this process for a given dilated causal convolution139

layer, a convolution layer corresponding to the skip module and another convolution layer for the140

residual module, both with kernel size 1, are applied. Thus, in terms of mathematical expression, the141

layer operations are the following:142

h =
(
Wa,k ∗ h+ W̃a,k=1 ∗ Z

)
⊙ σ

(
Wg,k ∗ h+ W̃g,k=1 ∗ Z

)
(2)

where first term in the parentheses corresponds to linear activations a while the second term in the143

parentheses corresponds to the gated inputs to the sigmoidal function σ, acting as a gated function144

and outputting gated activations g. The learnable kernel weight for the sequence representations and145

latent variable representations are W∗,k and W̃∗,k=1. The variables h and Z corresponds to the hidden146

representations of the input protein sequence and upsampled global latent conditioning.147

The skip output representations are accumulated (i.e., summed) after each dilated causal convo-148

lution layer, are implemented with a linear convolution with kernel size 1, and independently applied149

relative the to residual layer; and thus the mathematical operation for this layer are the following:150

hl
skip = V skip

l,k=1 ∗ h (3)

hcumm−skip += hl
skip (4)
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where hcumm−skip is the cumulative skip representations of all the skip output representations from151

the l dilated causal convolution layers applied to the input sequence. The output representations from152

the residual module’s convolution layers are added to the embedded input sequence, which is then fed153

back into the next dilated causal convolution layer with an increased dilation scale by 2i, where i is154

the depth index of the dilated causal convolution layer. The mathematical operations are then the155

following:156

hres = V res
l,k=1 ∗ h (5)

h = h+ hres (6)

The top model exclusively utilizes the accumulated skip connections as input and processes these157

hidden representations using a ReLU function, a convolution layer with kernel size 1, a second ReLU158

activation function, and finally a second convolution layer with kernel size 1. The top model generates159

logits that can be converted into probabilities using a softmax function. Thus, the final sequence160

probabilities using the top model is following:161

h1
top−model = Conv

(
ReLU(hcumm−skip)

)
162

h2
top−model = Conv

(
ReLU(h1

top−model)
)

(7)

p(x|z) = softmax(h2
top−model) (8)

where ReLU is elementwise nonlinear activation function and Conv is a linear learnable affine trans-163

formation with bias and kernel size 1. The softmax layer converts the network logits into probabilties164

using the following function softmax(xi) =
exp(xi)∑
j exp(xj)

165

The source code for the class objects, written in PyTorch, can be found via this https://github.com166

/PraljakReps/ProtWaveVAE/blob/01cecd054be7ca77540b23d19aeea5a3b9012d79/SH3 design167

project/source/wavenet decoder.pyL23, with the pseudocode provided below. The pseudocode for168

the upsampling latent network in PyTorch, comprising a solitary linear layer, is displayed below.169

The subsequent PyTorch pseudocode represents the WaveNet decoder, encompassing numerous170

causal dilation convolutions, latent convolution layers, a skip module with convolution layers, and a171

residual module with convolution layers (see https://github.com/PraljakReps/ProtWaveVAE/blob/172

01cecd054be7ca77540b23d19aeea5a3b9012d79/SH3 design project/source/wavenet decoder.py173

#L98).174

The final PyTorch pseudocode pertains to the TopHead of the WaveNet decoder, which produces the175

ultimate logits before utilizing a softmax function to transform them into amino acid class probabilities.176

This component features two straightforward convolution layers and two ReLU functions, while solely177

accepting cumulative skip outputs as input (see https://github.com/PraljakReps/ProtWaveVAE178

/blob/01cecd054be7ca77540b23d19aeea5a3b9012d79/SH3 design project/source/wavenet decoder179

.py#L222).180

Forward pass of the latent conditional WaveNet deocder in psuedocode (see https://github.com181

/PraljakReps/ProtWaveVAE/blob/01cecd054be7ca77540b23d19aeea5a3b9012d79/SH3 design182

project/source/wavenet decoder.py#L303).183
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Algorithm 2 Forward pass for latent conditioned WaveNet decoder pθ(x|z)
Input: x, z, softmax, latent cond net, WaveNet head, Top head

// *Description of inputs.*

// x --> input sequence data

// z --> inferred latent variable data

// latent cond net --> upsampling linear layer for the latent variables

// WaveNet head --> WaveNet causal dilated convolution component

// Top head --> Top model component, consisting of convolution layers and outputting

amino acid logits

22 z upsampled = latent cond net(z)
23 tot cum skip = 0 // Initialize the cumulative skip representations

24 h, h cum skip = WaveNet head(x, z upsampled)
25 tot cum skip += h cum skip // Cumulate WaveNet’s skip representations

26 logits = Top head(tot cum skip) // final operation to compute amino acid logits

27 p(x|z) = softmax(logits)
Output: p(x|z)

2.3 Discriminate top model over the latent space for semi-supervision184

In our semi-supervised learning implementation, we utilize a top model that samples from the latent185

variables and predicts fitness regression values y and/or classifies sequences as functional or nonfunc-186

tional. For regression tasks, we employ the mean-squared error as our loss objective. Conversely, for187

classification tasks, we use the binary cross-entropy loss, l(y, ỹ), where the loss value for a given sample188

sequence n is defined as ln = yn ∗ log ỹn + (1− yn) ∗ log(1− ỹn). Here, ỹn represents the classification189

prediction probability, while yn denotes the ground truth label (0 or 1).190

The model architecture remains consistent, regardless of whether the task is regression or classifi-191

cation. It consists of hidden modules, with each module containing the following layers:192

h = Dropout(SiLU(LayerNorm(Linear(z)))) (9)

Dropout is a widely used regularization layer for neural networks [18]. SiLU represents a nonlinear-193

ity function, LayerNorm is a layer normalization layer [1], and Linear refers to a simple fully connected194

linear layer. The primary hyperparameters include num layers, which defines the number of hidden195

modules to stack, and hidden width, which sets the hidden width size of the linear layers. The hidden196

output representations h are then fed into a final linear layer for either regression or classification pre-197

dictions. The classification path concludes with a sigmoidal function that maps the values to a binary198

probability, while the regression path does not require any final nonlinear layer since the outputs are199

continuous values. The hidden module’s architecture is denoted as TopModel layer, while the overall200

neural network architecture pω(y|z) is illustrated in object Decoder re. The model and hidden mod-201

ule’s source code can be found at this https://github.com/PraljakReps/ProtWaveVAE/blob/01cecd054202

be7ca77540b23d19aeea5a3b9012d79/SH3 design project/source/model components.py.203

The hidden blocks found along the top model discriminator pω(y|z), which consist of linear layer204

followed by a layer normalization layer [1], then followed by a SiLU nonlinearity and dropout regular-205

ization layer [18]. The subsequent pytorch psuedocode represents these hidden block modules called206

TopModule layer.207

The top model discriminator’s hidden blocks, pω(y|z), consist of a linear layer followed by a layer208

normalization layer [1], a SiLU nonlinearity, and a dropout regulation layer [18]. The subsequent209

PyTorch pseudocode represents these hidden block modules, referred to as TopModule layer.210

We present the entire neural model for the top discriminate model pω(y|z). This architecture encom-211

passes both regression and classification tasks. However, the network can be easily adapted to cater to212

individual discriminate tasks. The subsequent PyTorch pseudocode represents these hidden block mod-213

ules, denoted as Decoder re. The source code can be found https://github.com/PraljakReps/ProtWave214
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VAE/blob/01cecd054be7ca77540b23d19aeea5a3b9012d79/SH3 design project/source/model comp215

onents.py#L279.216

We demonstrate the forward pass of the latent discriminative top model pω(y|z) in pseudocode217

(refer to the https://github.com/PraljakReps/ProtWaveVAE/blob/01cecd054be7ca).218

Algorithm 3 Forward pass for latent discriminative top model pω(y|z)
Input: z, Decoder re

// *Description of inputs.*

// z --> inferred latent variable data

// Decoder re --> discriminative regression and classification model

28 y pred R, y pred C = Decoder re(z) // model predictions p(y|z)

Output: y pred R, y pred C

2.4 Model architecture and hyperparameter optimization for protein fam-219

ily task220

The task of the protein family is to evaluate the ability of ProtWave-VAE to generate biologically221

meaningful latent representations for a given protein family, without any supervision (i.e., unsuper-222

vised). Additionally, since the model is generative, this task tests its ability to generate novel sequences223

that are indistinguishable from the protein family in terms of tertiary structure, using known PDB224

structure and ColabFold structure predictions. Therefore, the architecture of ProtWaveVAE for pro-225

tein family tasks (specifically Gprotein, DHFR, S1A, and lactamase families) consists of the gated226

dilated encoder qϕ(z|x) with the latent conditioned WaveNet decoder pθ(x|z), since it is solely un-227

supervised. The loss objective is the unsupervised loss, which includes the negative log-likelihood,228

Kullback Leibler divergence between the posterior and prior latent distribution, and the max-mean229

discrepancy between the aggregated posterior and prior latent distribution. Since each family has230

different maximum sequence lengths, the encoder depth is determined based on the maximum possi-231

ble depth, or the number of dilated convolutions that can be applied onto the input sequence before232

compressing the sequence length below 0. The hyperparameters that were optimized are the latent233

space dimension z, channel depth of dilated convolution in the WaveNet decoder whs, channel depth234

of the 1x1 convolution layers for WaveNet TopHead hhs, channel depth of the encoder convolution235

layers C out, number of fully connected layers along the encoder path num fc, number of dilated236

causal convolutions along the decoder path ndr, prefactor weight for the KL divergence loss term237

KL weight, prefactor weight for the negative log-likelihood term NLL weight, and the prefactor weight238

for the max-mean discrepancy term MMD weight. These hyperparameters were optimized in order,239

and the optimal values were determined by the optimal negative log-likelihood loss while maintain-240

ing excellent max-mean discrepancy regularization loss on a random hold-out that consisted of 20%241

of the original protein family dataset. The optimization was performed over the domains z∈ [1, 20],242

whs∈ {32, 64, 128, 256, 512}, hhs∈ {32, 64, 128, 256, 512}, C out∈ {32, 64, 128, 256, 512}, num fc∈[0,4],243

ndr∈[1,10], KL weight∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99}, NLL weight∈ {0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0},244

and MMD weight∈ {1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0}. The training consisted of using an Adam opti-245

mizer with a learning rate equal to 1× 10−4. The minibatch size was 256, and the number of epochs246

was 500. The model was trained on unaligned sequences for each protein family.247

The final optimized hyperparameter configurations for the G-protein, DHFR, S1A, and lactamase248

families are presented below. For G-protein, the model configuration is z=6, whs=128, hhs=512,249

C out=32, num fc=3, ndr=5, KL weight=0.99, NLL weight=1.0, MMD weight=5. For DHFR, the250

model configuration is z=6, whs=128, hhs=256, C out=32, num fc=3, ndr=5, KL weight=0.99, NLL251

weight=1.0, MMD weight=10. For S1A, the model configuration is z=4, whs=128, hhs=512, C out=256,252

num fc=3, ndr=5, α=0.99, ξ=10.0, λ=1. For lactamase, the model configuration is z=3, whs=128,253

hhs=512, C out=512, num fc=1, ndr=7, KL weight=0.99, NLL weight=100.0, MMD weight=10. These254

models were k-fold cross-validated with k=5 and found that the average negative log-likelihood and255
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max-mean discrepancy were consistent across different folds and close to the training values (result256

spreadsheets found https://github.com/PraljakReps/ProtWaveVAE/tree/01cecd054be7ca77540b257

23d19aeea5a3b9012d79/Pfam analysis/outputs/train sess/pfam), indicating that the models are258

not overfitting on the training set. Next, after verifying that the model is not overfitting on the given259

random training set split, the final model was trained on the entire dataset using the same number of260

epochs (500). The work presented in protein inference and generative design here utilized these models261

trained on the whole protein family dataset.262

2.5 Model architecture and hyperparameter optimization for benchmark263

fitness task264

The fitness and function benchmarking tasks aim to assess the ability of ProtWave-VAE to predict265

regression values for various extrapolative problems. By leveraging semi-supervision, we introduce a266

second decoder head that incorporates a regression model, allowing us to sample latent variables z and267

predict functional/fitness continuous values y. This task tests the model’s capacity to use the inferred268

latent variables for more than simply generative design, but for extrapolative regression prediction,269

and more importantly, compare it against state-of-the-art models, including large language models270

(e.g., ESM-1 [12]). The architecture of ProtWave-VAE for the fitness benchmarking tasks consists of271

a gated dilated encoder qϕ(z|x), a latent-conditioned WaveNet decoder pθ(x|z), and a discriminative272

multi-layer perceptron model pω(y|z). The decoder component that is implemented for regression273

follows the architecture Decoder re.274

The following hyperparameters were optimized for the ProtWave-VAE model: (1) latent space275

embedding size z dim, (2) number of kernel channels for the dilate convolutions along the encoder276

path C out, (3) number of fully connected layers at the end of the encoder path num fc, (4) num-277

ber of channels implemented in the dilated causal convolutions along the WaveNet decoder path whs,278

(5) number of channels implemented in the 1x1 convolutions along the WaveNet TopHead decoder279

path hhs, (6) number of dilated causal convolutions used ndr, (7) number of discriminative hidden280

module layers disc num layers, (8) width of the hidden linear layers along the discriminative de-281

coder hidden width, (9) dropout probability for the discriminative decoder path p, (10) negative log-282

likelihood prefactor weight NLL weight, (11) Kullback-Leibler divergence prefactor weight KL weight,283

(12) max-mean discrepancy prefactor weight MMD weight, and (13) discriminative likelihood prefactor284

weight gamma weight. These hyperparameters were optimized for each of the following four protein285

families: AAV-capsid task (FLIP), GB1 task (FLIP), GFP task (TAPE), and stability task (TAPE).286

The hyperparameters were optimized sequentially, with the optimal values chosen based on the optimal287

spearman ρ correlation and mean square error loss while maintaining good negative log-likelihood loss288

and excellent max-mean discrepancy regularization loss. For FLIP benchmarks, we hyperparameter289

optimized over the random split train/valid split and used those hyperparameters for the remaining290

benchmark splits. While for for the TAPE benchmarks, we simply hyperparameter optimized based291

on the chosen validation set by the TAPE authors.292

The optimization process covered the following domains: (1) z dim∈ [1, 20], (2) C out∈ {32, 64, 128,293

256, 512}, (3) whs∈ {32, 64, 128, 256, 512}, (4) hhs∈ {32, 64, 128, 256, 512}, (5) num fc∈ [0, 5], (6) ndr∈294

{2, 4, 6, 8, 10}, (7) disc num layers∈ 1, 2, 3, 4, 5, (8) hidden width∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000},295

(9) p∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, (10) NLL weight∈ {0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0}, (11) KL weight∈296

{0.8, 0.85, 0.9, 0.95, 0.99}, (12) MMD weight∈ {1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0, 200.0, 500.0, 1000.0}, and297

(13) gamma weight ∈ {0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0}. An Adam optimizer with a learning rate of298

1×10−4 was used during training, and unaligned sequences were employed for all benchmarking tasks.299

For the TAPE benchmark tasks, the training set was split into a train/validation set, and the previ-300

ously mentioned metrics were optimized on the validation set. The AAV capsid task used an epoch of301

500 and a batch size of 256, while the GB1 task used an epoch of 500 and a batch size of 512. For the302

GFP task, a batch size of 256 and an epoch of 300 were used, while for the stability task, a batch size303

of 256 and an epoch of 300 were used.304

The final optimized hyperparameter configurations for the AAV capsid, GB1, GFP, and stability305
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tasks are presented below. For AAV capsid, the model configuration is z dim = 6, C out = 128,306

whs = 128, hhs = 256, num fc = 3, ndr = 8, disc num layers = 1, hidden layers = 50, p = 0.3,307

NLL weight = 100.0, KL weight = 0.99, MMD weight = 10.0, and gamma weight = 10. For GB1,308

the model configuration is z dim = 3, C out = 128, whs = 256, hhs = 512, num fc = 3, ndr =309

6, disc num layers = 5, hidden layers = 20, p = 0.0, NLL weight = 50.0, KL weight = 0.99,310

MMD weight = 10.0, and gamma weight = 10. For GFP, the model configuration is z dim = 4, C out =311

512, whs = 256, hhs = 256, num fc = 2, ndr = 8, disc num layers = 2, hidden layers = 500,312

p = 0.3, NLL weight = 10.0, KL weight = 0.99, MMD weight = 20.0, and gamma weight = 50. For313

stability, the model configuration is z dim = 11, C out = 512, whs = 64, hhs = 128, num fc = 0,314

ndr = 10, disc num layers = 4, hidden layers = 50, p = 0.3, NLL weight = 0.50, KL weight = 0.99,315

MMD weight = 100.0, and gamma weight = 5.0, while training configuration was epochs equal to 2000316

and batch size equal to 512. After finding the optimal hyperparameter configuration for which task,317

we used these hypeparameters on the train/test splits defined for the benchmarking tasks.318

2.6 Model architecture and hyperparameter optimization for Chorismate319

Mutase task320

To assess if ProtWave-VAE can perform semi-supervised learning for reshaping the latent space con-321

cerning fitness or function while retaining generative capacity, we compare an unsupervised ProtWave-322

VAE to a similar architecture with an additional regression decoder that samples from z and predicts323

fitness y. The Chorismate mutase dataset is an ideal protein dataset as it includes enzyme sequences324

x from a specific protein family and fitness measurements y obtained by Russ et al. [15].325

For the unsupervised learning architecture, we employed a model architecture similar to the one326

described above and optimized over comparable hyperparameters based on the negative log-likelihood327

on the hold-out set. In this instance, the training set consists of natural homologs, while the hold-out set328

contains synthetic designs. The final hyperparameter optimization values are: z dim=4, C out=256,329

num fc=0, wave hidden state=64, head hidden state=512, num dil rates=8, NLL weight=1, KL330

weight= 0.95, and MMD weight=10. The hyperparameter optimization search results can be found331

https://github.com/PraljakReps/ProtWaveVAE/tree/main/Pfam analysis/outputs/hp optimization/332

CM. The optimizer is Adam with a learning rate of 1× 10−4, 300 epochs, and a batch size of 512. The333

model was trained on unaligned sequences.334

For semi-supervised learning, the gated dilated encoder and latent-conditioned WaveNet decoder335

architecture utilize the previously described hyperparameter optimized unsupervised architecture. We336

then introduce a discriminative decoder pω(y|z) with a depth of disc num layers=2, a linear layer337

width of hidden width=10, and p=0.3. Here, we only implement a regression decoder and omit a clas-338

sification decoder from Decoder re. Next, we add a mean-squared error loss between the relative en-339

richment (r.e.) fitness prediction and ground truth to the unsupervised loss objective, applying a prefac-340

tor weight of 1. The results presented in Chorismate mutase (CM) inference and protein sequence gen-341

eration for unsupervised and semi-supervised architectures use the above hyperparameters. Pretrained342

weights for these two models can be found https://github.com/PraljakReps/ProtWaveVAE/tree/343

main/Pfam analysis/outputs/train sess/pfam/CM.344

2.7 Model architecture and hyperparameter optimization for SH3 design345

task346

To evaluate the ability of ProtWave-VAE to design functional sequences using semi-supervised learn-347

ing and alignment-free sequence inference, we tasked the model with designing functional in vivo SH3348

domains in Saccharomyces cerevisiae. The model consists of a gated dilated encoder qϕ(z|x), a latent-349

conditioned WaveNet decoder pθ(x|z), and a discriminative decoder that includes a regression and clas-350

sification path pω(y|z). The regression path samples z and predicts continuous values yre, which repre-351

sent the relative enrichment (r.e.) scores that measure the functionality within the Sho1 osmosensing352

assay using next-generation sequencing. The classification path is independent of the regression path353

S13

https://github.com/PraljakReps/ProtWaveVAE/tree/main/Pfam_analysis/outputs/hp_optimization/CM
https://github.com/PraljakReps/ProtWaveVAE/tree/main/Pfam_analysis/outputs/train_sess/pfam/CM
https://github.com/PraljakReps/ProtWaveVAE/tree/main/Pfam_analysis/outputs/train_sess/pfam/CM
https://github.com/PraljakReps/ProtWaveVAE/tree/main/Pfam_analysis/outputs/train_sess/pfam/CM


and samples z to predict class probabilities yc using a final sigmoidal function layer. The two classes are354

functional (sequences with r.e. ≥ 0.5) versus non-functional (sequences with r.e. < 0.5) sequences. The355

loss objective for classification is binary cross-entropy, while the loss objective for regression is mean-356

squared error. We performed hyperparameter optimization based on good negative log-likelihood,357

mean-squared error, and binary cross-entropy values, while maintaining excellent max-mean discrep-358

ancy regularization values. Based on the metrics and the procedure described in the previous sections359

for hyperparameter optimization, the final hyperparameter optimization configuration is as follows: (1)360

z dim=6, (2) C out=128, (3) num fc=2, (4) disc num layers=2, (5) hidden width=10, (6) p=0.4,361

(7) whs=256, (8) hhs=512, (9) num dil rates=12, (10) NLL weight=1.0, (11) KL weight=0.99, (12)362

MMD weight=10.0, and (13) gamma weight=1.0. The sequence data is alignment-free, and the optimizer363

implemented is Adam with a learning rate of 1×10−4. We used a batch size of 1024 and trained for 200364

epochs. The results of the hyperparameter optimization can be found at https://github.com/PraljakReps365

/ProtWaveVAE/tree/main/SH3 design project/outputs/SH3 task/hp optim.366

We conducted stratified cross-validation instead of vanilla k-fold cross validation because the dataset367

contained a larger number of nonfunctional sequences than functional sequences. For stratified cross-368

validation, we trained five different train/validation configurations while monitoring the negative log-369

likelihood, mean-squared error loss, binary cross entropy loss, and max-mean discrepancy regularization370

loss, as well as classification performance metrics such as precision, recall, and F1 score on the validation371

set. The results, which can be found https://github.com/PraljakReps/ProtWaveVAE/tree/main372

/SH3 design project/outputs/SH3 task/CV, show that the values are consistent and good over the373

five stratified train/validation splits. With the hyperparameter configuration and training configura-374

tion described above, ProtWave-VAE was trained on the entire dataset before generating and designing375

novel sequences for experimental testing. The pretrained weights can be found https://github.com/Pr376

aljakReps/ProtWaveVAE/tree/main/SH3 design project/outputs/SH3 task/final model377

3 Supplementary Methods378

3.1 Random mutagenesis of SH3 sequences379

The goal of this study was to enhance the functionality of a weak binding natural ortholog (sub-380

group III) and a weak binding natural hof1 paralog (subgroup IV) by using N-terminus plus latent381

conditioning and inpainting the C-terminus missing region. To avoid elevating functionality based on382

random chance, the generative model’s performance was compared with that of random mutagene-383

sis. To achieve this, we mutated the same C-terminus region of the weak ortholog and weak paralog384

randomly, while maintaining the same novelty as the designed inpainted sequences. The random mu-385

tagenesis sequences were substituted with amino acids belonging to the reference sequence at random386

sites along the C-terminus design region until we matched the minimum Levenshtein distance that cor-387

responds to the generative designs. By doing so, we ensured that the random mutagenized sequences388

were mutated along the same inpainted region as the designs, while retaining the same diversity and389

novelty as the synthetic generative designs. The results showed that for weak binding ortholog sub-390

group IV and weak binding paralog group V, the random mutagenized sequences had matching edit391

distances to the design’s minimum Levenshtein distance to the original weak binding natural paralog392

or ortholog, respectively. The matching edit distances were obtained when the N-terminus condition-393

ing was 25%, 50%, or 75%. Figure S1A and B show the corresponding results for the weak binding394

ortholog and paralog, respectively.395
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4 Supplementary Results396

4.1 Pfam task: ColabFold structure prediction analysis of design sequences397

A crucial evaluation of the ProtWave-VAE involves determining the extent to which the model can398

discern biologically relevant representations without receiving any annotations. We observed that399

the latent space sorts training sequences into phylogenetic groups and functional subclasses for S1A400

serine protease and beta-lactamase protein families (Figure S2A). The following assessment involves401

confirming if ProtWave-VAE can sample from this specific biologically significant latent space and402

produce new artificial sequences indistinguishable from the training set.403

To evaluate the model’s generative capabilities, we created alignment-free sequences, predicted404

associated tertiary structures utilizing ColabFold [8], and assessed if predictions mirrored the ter-405

tiary structures of natural homologs. For DHFR, S1A proteases, and lactamase protein families, we406

sampled 100 latent vectors z from an isotropic Gaussian distribution and employed the ProtWave-407

VAE autoregressive decoder pθ(x|z) to generate artificial sequences. Subsequently, we predicted the408

tertiary structure of each artificial sequence and calculated the TMscores and heavy-atom root mean409

squared distances (RMSDs). The anticipated tertiary structure with maximum, median, and minimum410

TMscores for the DHFR, S1A protease, and lactamase protein families are displayed in Figure S2B.411

We observed that the structure corresponding to the median TMscore accurately reflects the natural412

homolog’s tertiary structure.413
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Figure S1: Random mutagenesis control for C-terminus diversification of protein designs with N- ter-
minus plus latent conditioning. (A) The edit distance – number of random substitutions along the
remaining C-terminus region of the reference weak binding ortholog – is shown on the y-axis for 25%,
50%, and 75% N-terminus conditioned subgroups. The x-axis shows the minimum Levenshtein dis-
tance between the designed sequences using N-terminus plus latent conditioning generative approach
and weak binding natural ortholog sequence. (B) Similarly, the edit distance –number of random
substitutions along the remaining C-terminus region of the reference weak binding paralog – is shown
on the y-axis for 25%, 50%, and 75% N-terminus conditioned subgroups. The x-axis shows the mini-
mum Levenshtein distance between the designed sequences using N-terminus plus latent conditioning
generative approach and weak binding natural paralog sequence.
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Figure S2: ProtWave-VAE infers meaningful biological representations on alignment-free protein
families. (A) Principal component analysis (PCA) projections of the inferred latent spaces for the S1A
proteases and beta-lactamase families are presented. The unsupervised model of the S1A protease
family disentangles homologs within the inferred latent space based on vertebrate, environmental
conditions, and functional specificity. For the beta-lactamase family, the model disentangles homologs
in the inferred space in terms of the phylogeny. (B) To test the generative capacity of ProtWave-VAE,
we randomly sampled 100 latent vectors z for each protein family from a normal distribution N (0,I),
corresponding to the latent prior. Using a computational structure prediction workflow (ColabFold +
TMalign), we predicted each structure of the sample sequences and compared the predicted structure
against a natural homolog that defines the corresponding protein family. We retrieved TMscores and
root-mean-square distance (RMSD) scores. The structure predictions of ProtWave-VAE novel design
sequences (red) for DHFR, S1A protease, and lactamase are visualized with the alignment of maximum,
median, and minimum TM-score synthetic sequences against the natural reference homolog structure
(grey).

4.2 SH3 design task: experimental results414

The relative enrichment (r.e.) score provides a quantitative measurement of the degree to which our415

designed SH3 domains are functional in vivo and capable of activating a homeostatic osmoprotective416

response. The assay shows good reproducibility in independent trials (R2 = 0.94, ρpearson=0.97,417

n=1002, p < 10−307, Figure S3).418
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Figure S3: Validation of the high-throughput select-seq assay. A scatter plot of the enrichment score
relative to wild-type r.e. for two independent (n = 1002 including standard curve mutants) trials of the
select-seq assay under the same experimental conditions. The position of the wild-type Sho1 sequence
is normalized to be at (1, 1) and of the null allele is at (0, 0). The red dashed line indicates the identity
trace. The data shows that the select-seq assay shows good reproducibility between independent runs
(R2 = 0.94; ρPearson = 0.97, n = 1002, p < 10−307)
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4.3 Comparison on generative performance for protein families419

Table S1: This table provides a comprehensive overview of the scores associated with the four protein
families as predicted by the three generative models: WaveNet (Shin et al. [17]), ProteinGAN (Repecka
et al. [11]), and ProtWave-VAE (ours). It offers values for RMSD, TMscore, and sequence similarity
(seq. sim.) in terms of their maximum, median, and minimum values. In the table, bold text is used
to highlight the best scores for each metric and protein family combination.

WaveNet ProteinGAN ProtWave-VAE
Metric G-protein DHFR Lactamase S1A proteases G-protein DHFR Lactamase S1A proteases G-protein DHFR Lactamase S1A proteases

RMSD (max) _ 1.902 1.466 1.9 1.662 5.824 5.754 6.028 6.328 3.386 3.49 6 6.17
RMSD (median) _ 1.412 1.033 1.256 1.058 1.601 1.874 1.402 3.075 1.633 1.31 2.644 2.322
RMSD (min) _ 1.093 0.806 1.038 0.796 1.245 1.102 1.152 1.432 0.926 0.277 1.494 1.1

TMscore (max) ^ 0.955 0.967 0.968 0.98 0.945 0.946 0.962 0.943 0.967 0.967 0.941 0.967
TMscore (median) ^ 0.933 0.954 0.96 0.969 0.917 0.877 0.951 0.725 0.911 0.933 0.836 0.861
TMscore (min) ^ 0.903 0.923 0.905 0.931 0.198 0.223 0.229 0.245 0.549 0.6 0.256 0.227
Seq. sim. (max) _ 0.627 0.687 0.714 0.659 0.557 0.587 0.668 0.473 0.658 0.564 0.503 0.537

Seq. sim. (median) _ 0.563 0.6 0.678 0.595 0.5 0.457 0.623 0.37 0.473 0.48 0.333 0.335
Seq. sim. (min) _ 0.474 0.507 0.512 0.5 0.234 0.245 0.213 0.243 0.266 0.278 0.2 0.226

Table S2: This table provides a comprehensive overview of the scores associated with the N-terminus
prompting for the Chorismate mutase family as predicted by the ProtWave-VAE (ours) and WaveNet
decoder (Shin et al. [17]). Bold values indicates the best values between WaveNet decoder versus
ProtWave-VAE.

Metric No N-terminus Prompt N-terminus Prompt
WaveNet ProtWave-VAE WaveNet ProtWave-VAE

RMSD (max) ↓ 3.660 4.192 0.772 2.454
RMSD (median) ↓ 1.407 2.063 0.561 1.142
RMSD (min) ↓ 0.626 0.876 0.468 0.572
Tmscore (max) ↑ 0.966 0.920 0.952 0.943
Tmscore (median) ↑ 0.871 0.746 0.945 0.888
Tmscore (min) ↑ 0.444 0.318 0.929 0.748
Seq. sim (max) ↓ 0.882 0.463 0.936 0.734
Seq. sim (median) ↓ 0.532 0.340 0.883 0.617
Seq. sim (min) ↓ 0.404 0.229 0.819 0.489
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